太阳能跟踪完整版

合集下载

太阳能双轴跟踪说明书

太阳能双轴跟踪说明书

全方位太阳能跟踪发电研究仪
说明书
【概述】
太阳能跟踪发电研究仪是一款自动追踪太阳光的实验研究仪,它能够最大限度的采集太阳光,并将太阳能转化为电能,储存在蓄电池中。

可以通过本实验仪观察太阳能电池板的电流,电压,功率,温度,以及太阳光与水平面的夹角。

还可外接无线收发装置,远程监控。

本仪器曾获得过多项国家专利。

专利号:
【适用范围】
太阳能路灯(交通灯)
太阳能实验仪
太阳能演示仪
家用太阳能发电
其他一些太阳能追踪设备
【功能特点】
【仪器面板】
一正面
1.功率表
2.电压表
3.电流表
4.温度表
5.角度开关--按下:开启数码管显示弹起:关闭数码管显示
6.电压表,电流表,功率表开关----按下;开启三表显示弹起;关闭三表显示
7.led指示灯----按下开启led灯条弹起关闭led灯条
8.充电选择开关-----按下给蓄电池充电弹起断开蓄电池连接
9.工作模式显示H 正常工作 4 休眠
10.11.角度的数码显示最小精度为1度
12.led灯柱----用于指示太阳光强度(改变太阳光强度亮不同的灯)
13.led灯柱----用于指示与太阳光与电池板的夹角量
14.摇杆----用于手动调节太阳能电池板,设置水平,长按可以将角度致零,同时也是自动转手动的开启按键之一,同时还需要按下16
15.工作状态选择按键-----H正常工作4休眠模式
16.自动手动切换按键切换时需要和14同时使用(按下)
二反面。

太阳跟踪系统

太阳跟踪系统

太阳跟踪系统1.引言随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。

新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。

无疑,太阳能是最理想的新能源。

照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。

可以说,太阳能是真正取之不尽、用之不竭的能源。

而且太阳能发电绝对干净,不产生公害。

所以太阳能发电被誉为是理想的能源。

然而它也存在着间歇性、光照方向和强度随时间不断变化的问题, 这就对太阳能的收集和利用提出了更高的要求。

目前很多太阳能电池板阵列基本上都是固定的, 没有充分利用太阳能资源, 发电效率低下。

在太阳能光发电中,相同条件下自动跟踪发电设备要比固定发电设备的发电量提高35 % ,成本下降25 % ,因此在太阳能利用中,进行跟踪是很有必要的。

本文介绍一种对太阳进行混合跟踪的方式,即光电跟踪和视日跟踪相结合的方式,它结合了二者的优点,克服了二者的缺点:在一般没有云的情况下使用光电跟踪方式,但云层挡住太阳一段时间后,控制系统将改变为视日轨迹跟踪方式,继续跟踪,直到云层过去一段时间后,再重新使用光电跟踪的方式。

2.视日跟踪地球周而复始很有规律地绕太阳运动,站在地球上的人可以看到太阳有规律地在天上运动,每天东升西落。

时日跟踪就是利用电子控制单元根据相应的公式和参数计算出白天时太阳的实时位置, 然后发出指令给步进电机去驱动太阳跟踪装置, 以达到对太阳实时跟踪的目的。

太阳相对于地球的位置可由太阳高度角α和太阳方位角β来确定。

太阳高度角α是指太阳光线与地表水平面之间的夹角(0 ≤α≤90°)。

α可由下式计算得出:sinα = sinφsinδ+ cosφco sδcosω (1)δ = 23.45sin [360/365×(284 + n)] (2)式中各角度单位均为度, 其中φ为当地纬度;δ为太阳赤纬角。

太阳能跟踪技术的实现原理

太阳能跟踪技术的实现原理

太阳能跟踪技术的实现原理近年来,随着气候变化的日益严重以及能源需求的快速增长,人们对可再生能源的需求也越来越高。

太阳能能源作为一种最为广泛应用的可再生能源,由于其绿色、环保以及可再生等诸多优点,越来越受到人们的青睐,成为未来发展的重点领域。

而实现太阳能最高效的利用,则需要利用太阳跟踪技术来优化能源的收集效率。

本文将为您介绍太阳能跟踪技术的实现原理。

一、什么是太阳能跟踪技术?太阳能跟踪技术是指根据太阳在天空中的位置变化来调整太阳能电池板的方向,以达到最佳采集效果的一种技术。

太阳在天空中的位置每天都会有所变化,而太阳能跟踪技术可以调整太阳能电池板的方向,让它始终面向太阳的位置,从而最大限度地利用太阳能源。

通过太阳能跟踪技术,太阳能的采集效率可以提高30%到50%。

二、太阳能跟踪技术的实现原理太阳能跟踪技术的实现原理可以分为两种,一种是日边追踪,另一种是赤纬仰角追踪。

1、日边追踪日边追踪原理是太阳能跟踪器通过追踪太阳的运动轨迹,将太阳能电池板始终面向太阳的方向。

太阳在天空中的位置是由其高度和方位角决定的,而太阳的方位角是由太阳视在轨迹的方向决定的。

由于地球的自传运动以及公转运动,太阳的视在轨迹在天空中呈现出一定的运动规律。

因此,太阳能跟踪器可以通过计算太阳视在轨迹的运动规律,来实现太阳能电池板的自动追踪。

日边追踪的太阳能跟踪器通常包括两个联动的轴,一个是水平轴,另一个是俯仰轴。

这两个轴根据太阳在天空中的位置变化来调整太阳能电池板的方向。

水平轴和俯仰轴可以通过电机或水压装置控制,以便调节太阳能电池板的角度。

2、赤纬仰角追踪赤纬仰角追踪原理与日边追踪有所不同。

赤纬仰角追踪的太阳能跟踪器需要根据地球的赤纬以及太阳的高度角来进行调整。

赤纬是指地球的北极点在地球赤道平面上的投影点与黄道的交点。

赤纬的变化也代表着太阳在天空中的位置的变化。

太阳在天空中的高度角也可通过自赤纬得出。

因此,赤纬仰角追踪器可以根据赤纬和高度角来自动调节太阳能电池板的角度,以保证在不同的时间采集到最大的太阳能量。

毕业设计 太阳能电池板自动跟踪系统设计

毕业设计    太阳能电池板自动跟踪系统设计

第1章绪论1.1太阳能利用的前景当今,煤,石油,天然气等常规矿产能源,储量越来越少,世界各大经济体都面临能源危机。

按照目前的开采和使用速度,己探明的矿产能源仅够人类再利用几十年,可以说,己经是处在日益枯竭的形势之下。

为了能够获得更多的资源,在石油储量丰富的地区,一直以来冲突不断,而且有外部势力的干预。

为了得到能源,保证经济这架大车的正常运转,不惜以战争为手段,以人民的生命为代价。

中国,作为世界上最大的发展中国家,对石油的依赖程度很高。

以2010年为例:海关总署公布的数据显示,2010年全年我国进口原油2.39亿吨,去年全年原油产量2亿吨,对外依存度逼近55%。

我国已经进入能源预警阶段。

根据国家能源局的报告,到2010年中国已成为世界第一大能源消费国。

其中,电力消费从2005年的2.5亿千瓦时增加到2010年的4.2亿千瓦时,年均增长11.1%;煤炭消费量从2005年的23.18亿吨增加到2010年的32亿吨,年均增长6.8%;石油消费从3.25亿吨增加到4.28亿吨,年均增长5.7%;天然气消费从468亿立方米增加到1090亿立方米,年均增长18.5%;非石化能源消费从1.6亿吨标准煤增加到2.6亿吨标准煤,年均增长10.1%。

“十二五”期间我困能源消费总量将增加8亿至1亿吨标准煤,年均增长4.8%至5.5%,到2015年能源消费总量达41亿至42.5亿吨标准煤。

从以上的数据,很容易看出,完全依靠煤炭!石油等常规能源,是无法满足未来社会经济发展对于能源需求的[1]。

另外一个方面,矿产能源在使用中产生的二氧化碳会造成温室效应;其它的废渣废气对环境造成了无法挽回的损失。

即使是这些能源本身泄漏都会对环境造成危害,如石油管道损坏造成的石油泄漏。

基于以上两个方而的原因,人类正在寻找更适合的能源。

希望能够逐步取代常规的矿产能源。

在填补现有能源不足的同时,也为保护环境做积极的改善。

目前所开发和利用的新能源主要有核能、风能、太阳能、潮汐能等。

太阳能光伏发电最大功率点跟踪技术

太阳能光伏发电最大功率点跟踪技术

二、MPPT技术的基本原理和性能检测方法
I(mA)
曲线1 曲线2
负载1
A1
A2 B1
负载2 B2
O
U(mV)
➢最大功率点A1→最大功率点B1 (条件:将系统负载特性由负载1改为负载2)
➢最大功率点B1→最大功率点A1
(条件:将系PPT技术的基本原理和性能检测方法
由上述公式推导,可得系统运行点与最大功率点的判据如下:
① G+dG>0,则UPV<UMPP,需要适当增大参考电压来达到最大
功率点;
② G+dG<0,则UPV>UMPP, 300
250
需要适当减小参考电压来达 200
输出功率(W)
到最大功率点;
150
100
③ G+dG=0,则UPV=UMPP, 50
0
由此可得
IPV dIPV G dG 0 UPV dUPV
式中,G为输出特性曲线的电导;dG为电导G的增量。由
于增量dUPV和dIPV可以分别用ΔUPV和ΔIPV来近似代替,可得:
dUPV t2 UPV t2 UPV t2 UPV t1 dIPV t2 IPV t2 IPV t2 IPV t1
dPPV 0 dU PV
最大功率点
dPPV 0 dU PV
dPPV 0 dU PV
此时系统正工作在最大功率 点处;
0 0 10 20 30 40 50 60 70 80 90 输出电压(V)
常用的最大功率点跟踪算法
光伏电池仿真模型设计
仿真结果
由此可见,光伏发电系统中的MPPT控制策略,就是先根 据实时检测光伏电池的输出功率,再经过一定的控制算法预测 当前工况下光伏电池可能的最大功率输出点,最后通过改变当 前的阻抗或电压、电流等电量等方式来满足最大功率输出的要 求。

太阳能双轴跟踪系统原理解析

太阳能双轴跟踪系统原理解析

太阳能双轴跟踪系统原理解析太阳能双轴跟踪系统原理解析1. 引言太阳能作为一种清洁、可再生的能源形式,受到了越来越多的关注和应用。

为了更高效地收集太阳能,提高太阳能发电系统的效率,太阳能双轴跟踪系统应运而生。

本文将深入探讨太阳能双轴跟踪系统的原理及其在太阳能发电领域的应用。

2. 太阳能双轴跟踪系统的基本原理太阳能双轴跟踪系统是一种能够根据太阳的位置来调整太阳能发电设备角度的系统。

它通过使用两个轴(水平轴和垂直轴)来实现对太阳能接收器的定位,以确保太阳能始终垂直照射到接收器上。

这种追踪方式与传统的固定式太阳能系统相比,能够使得接收器相对于太阳的角度始终保持最佳状态,从而提高太阳能发电的效率。

3. 太阳能双轴跟踪系统的构成太阳能双轴跟踪系统主要由以下几个组成部分构成:3.1 太阳能追踪控制器:该控制器根据预设的追踪算法和传感器采集的数据,来计算并控制太阳能发电设备的运动。

它可以通过控制执行机构,调整发电设备的角度和方向。

3.2 电动机或执行机构:太阳能双轴跟踪系统通过电动机或其它执行机构来实现设备的角度调整。

这些电动机或执行机构通过接收控制器的指令,将设备转动到正确的位置上。

3.3 传感器:为了准确地获取太阳的位置信息,太阳能双轴跟踪系统通常会配备多个传感器。

这些传感器可以是太阳光电传感器、倾斜传感器等。

它们通过检测太阳的位置和周围环境的变化,向控制器提供实时的反馈信息,以确保设备能够准确追踪太阳。

3.4 太阳能接收器:太阳能双轴跟踪系统最关键的一部分是太阳能接收器。

它通常由太阳能电池板或聚光器组成,用于将太阳光转化为电能。

通过精确地追踪太阳,太阳能接收器可以最大限度地吸收太阳的能量,提高太阳能的利用效率。

4. 太阳能双轴跟踪系统的优势相较于固定式太阳能系统,太阳能双轴跟踪系统具有以下几个优势:4.1 提高发电效率:通过追踪太阳的位置并使接收器始终垂直照射,太阳能双轴跟踪系统可以最大限度地吸收太阳能,提高发电效率。

(完整版)太阳能最大功率跟踪控制器的设计与实现_毕业设计40设计41

(完整版)太阳能最大功率跟踪控制器的设计与实现_毕业设计40设计41

学科分类号本科生毕业论文(设计)题目(中文):太阳能最大功率跟踪控制器的设计与实现(英文):Design and Implementation of theMaximum Power Point TrackingController学生姓名:学号:系别:专业:电子信息科学与技术指导教师:起止日期:本科毕业论文(设计)诚信声明作者郑重声明:所呈交的本科毕业论文(设计),是在指导老师的指导下,独立进行研究所取得的成果,成果不存在知识产权争议。

除文中已经注明引用的内容外,论文不含任何其他个人或集体已经发表或撰写过的成果。

对论文的研究做出重要贡献的个人和集体均已在文中以明确的方式标明。

本声明的法律结果由作者承担。

本科毕业论文(设计)作者签名:年月日目录摘要 (I)关键词 (I)Abstract (I)Key words .................................................................................................................... I I1 前言 (1)2 任务分析与方案论证 (4)2.1 任务要求及分析 (4)2.2 系统方案论证 (4)2.2.1 太阳能电池板特性 (4)2.2.2 方案论证 (6)2.2.3 方案比较和选取 (7)3 系统设计 (8)3.1 硬件设计 (9)3.1.1 转换模块电路设计 (9)3.1.2 控制模块电路设计 (11)3.2 软件设计 (12)3.2.1 设计思路 (12)3.2.2 子程序设计实现 (14)4 系统调试与测试 (17)4.1 调试与测试工具 (17)4.2 系统调试 (17)4.3 系统测试 (20)5 总结 (21)参考文献 (22)致谢 (24)附录A 系统主体程序 (25)附录B 系统实物图 (27)太阳能最大功率跟踪控制器的设计与实现摘要由于目前太阳能电池板存在发电效率低、生产成本高等问题,这就造成了太阳能的应用难以推广。

太阳能双轴跟踪系统原理

太阳能双轴跟踪系统原理

太阳能双轴跟踪系统原理一、前言太阳能作为一种清洁、可再生的能源,越来越受到人们的关注和重视。

而太阳能跟踪系统则是提高太阳能利用效率的重要手段之一。

本文将详细介绍太阳能双轴跟踪系统的原理。

二、太阳能双轴跟踪系统的概述太阳能双轴跟踪系统是指通过控制电机驱动,使得光伏板始终朝向太阳,并保持与太阳光线垂直,从而最大限度地提高光伏板的发电效率。

该系统由控制器、电机、传感器和支架等组成。

三、控制器控制器是整个系统的核心部件,它负责接收传感器采集到的数据,并根据预设算法计算出正确的电机转动角度和方向,从而实现对光伏板的精确跟踪。

控制器还可以设置参数,如时间间隔、角度误差等。

四、电机电机是实现光伏板转动的关键部件,通常采用直流电机或步进电机。

在工作时,控制器会根据传感器采集到的数据计算出电机需要转动的角度和方向,并通过控制电流来驱动电机转动。

五、传感器传感器是实现太阳能跟踪的关键部件,它可以测量太阳的位置和光线的强度。

常用的传感器有光敏电阻、光电二极管、太阳能光伏电池等。

传感器采集到的数据将被送往控制器进行处理。

六、支架支架是安装在地面或屋顶上,用于支撑光伏板并实现转动的设备。

通常采用钢材或铝合金材料制成,具有足够强度和稳定性。

七、原理太阳能双轴跟踪系统的原理基于日地运动学原理。

地球绕着太阳公转,同时自转,因此在任何时刻都会有一个方向与太阳相对应。

通过精确测量这个方向,就可以实现对光伏板的精确跟踪。

具体来说,系统中安装有两个传感器:一个用于测量水平方向上的角度(俯仰角),另一个用于测量垂直方向上的角度(方位角)。

根据这两个角度以及当前时间和地理位置等信息,控制器可以计算出太阳的位置,并确定光伏板需要转动的角度和方向。

控制器通过驱动电机来实现光伏板的转动,使其始终朝向太阳,并保持与太阳光线垂直。

八、总结太阳能双轴跟踪系统是提高太阳能利用效率的重要手段之一,其原理基于日地运动学原理。

系统由控制器、电机、传感器和支架等组成,通过精确测量太阳位置和光线强度来实现对光伏板的精确跟踪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档