中考数学专题复习_数形结合思想

合集下载

中考数学总复习《数形结合问题》考点梳理及典例讲解课件

中考数学总复习《数形结合问题》考点梳理及典例讲解课件
∴S△ABO=12 ×1×1=12 .
(2)结合函数图象可得,当 y1>y2 时,x<1.
例 1:甲、乙两地之间是一条直路,在全民健身活 动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从 乙地往甲地,两人同时出发,王浩月先到达目的地,
两人之间的距离 s(单位:km)与运动时间 t(单位:h)的
函数关系大致如图所示,下列说法中错误的是( )
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
例 2:如图,AB,CD 是⊙O 的两条互相垂直的直 径,点 P 从点 O 出发,沿 O→C→B→O 的路线匀速运 动,设∠APD=y(单位:度),那么 y 与点 P 运动的时
间(单位:秒)的关系图是( )
A
B
C

D
答案:B
例 3:如下图,抛物线 y=-14 x2-x+2 的顶点为
A,与 y 轴交于点 B. (1)求点 A,点 B 的坐标; (2)若点P是 x 轴上任意一点,
n=(BC+CD+DE+EF+FA )÷2=(BC+DE+AB +AF)÷2=(8+6+6+8+6)÷2=17.
(3)解:由图 2 知,点 P 在 BC 上运动时,0≤t≤4, ∴S=12 ×6×2t=6t,即 S=6t(0≤t≤4); ∵由图 2 知,点 P 在 DE 上运动时,6≤t≤9, ∴S=12 ×6×(2t-4)=6t-12,即 S=6t-12 (6≤t≤9).
当点 P 在 x 轴上又异于 AB 的延长线与 x 轴的交点
时,
在点 P,A,B 构成的三角形中,PA -PB<AB. 综合上述,PA -PB≤AB.

中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)

中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)

中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。

作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。

“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。

1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

2.数形结合思想应用常见的四种类型(1)实数与数轴。

实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。

(2)在解方程(组)或不等式(组)中的应用。

利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。

(3)在函数中的应用。

借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

(4)在几何中的应用。

对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。

3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。

专题复习数形结合(含答案)

专题复习数形结合(含答案)

专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。

2。

」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。

中考数学专题之数形结合

中考数学专题之数形结合

中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

【中考数学必备专题】数形结合专题(含答案)

【中考数学必备专题】数形结合专题(含答案)

【中考数学必备专题】数形结合专题一、单选题(共2道,每道10分)1.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为().A.在A,C点的右边;B.在A,C点的左边;C.在A,C点之间;D.以上三种情况都有可能答案:C解题思路:画数轴,借助数形结合,|a-b|是AB的长度,|b-c|是BC的长度,|a-c|是AC的长度,又因为a,b,c不相等,所以B点应在A、C之间试题难度:三颗星知识点:绝对值2.若m,n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b答案:A解题思路:将1-(x-a)(x-b)=0整理成(x-a)(x-b)=1的形式,就知道m,n是y=(x-a)(x-b)图象与直线y=1交点的横坐标,而a、b是y=(x-a)(x-b)与x轴交点的横坐标。

画出图象及可以比较大小试题难度:三颗星知识点:二次函数的应用二、填空题(共6道,每道10分)1.关于x的不等式组只有4个整数解,则a的取值范围是.答案:5<a≤6解题思路:分三步走,第一步解出不等式的解题;第二步画数轴,根据只有四个整数解确定a的大致取值范围;第三步,借助数轴看等号是否成立试题难度:三颗星知识点:不等式的整数解2.已知一次函数y=-x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是.答案:k>4解题思路:因为画图象,很难直接看出k的取值范围,借助于代数的方法,联立表达式,让关于x的一元二次方程无解,进而确定k的取值范围试题难度:三颗星知识点:反比例函数与一次函数的交点问题3.直线y=mx+4经过A点,直线y=kx-3过B点,且两直线交于P(,n)点,则不等式kx-3&le;mx+4<kx的解集是.答案:解题思路:利用函数图象,数形结合的方法求解集:将y=kx-3向上平移三个单位,得到y=kx 的图象,然后观察几何特征,存在A字型相似,进而知道对应高之比就等于对应边之比,从而确定另外一个点的横坐标是-2试题难度:三颗星知识点:一次函数的应用4.已知a、b均为正数,且a+b=2。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

中考数学复习专题 数形结合思想(含答案)

中考数学复习专题 数形结合思想(含答案)

数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。

① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。

初三数学中考复习第十四讲数形结合问题

初三数学中考复习第十四讲数形结合问题

______________________________________________________________跃龙学堂 您身边的中小学生辅导专家1第十四讲 数形结合问题【典型例题1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的表达式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解:(1)设抛物线的表达式为 4)1(21+-=x a y 。

把A (3,0)代入表达式,求得1-=a 。

所以324)1(221++-=+--=x x x y 。

设直线AB 的表达式为 b kx y +=2。

由3221++-=x x y 求得B 点的坐标为)3,0( 。

把)0,3(A ,)3,0(B 代入b kx y +=2中,解得 3,1=-=b k 。

所以32+-=x y 。

(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2。

所以CD =4-2=2。

xCOy ABD 1 1______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家2 32321=⨯⨯=∆CAB S (平方单位)。

(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h , 则x x x x x y y h 3)3()32(2221+-=+--++-=-=。

由S △P AB =89S △CAB ,得 389)3(3212⨯=+-⨯⨯x x 。

化简得 091242=+-x x 。

解得 23=x 。

将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习——数形结合思想 一、知识梳理
数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。

华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。

”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。

二、典型例题
(一)在数与式中的应用
例1、实数a 、b 在数轴上的位置如图所示,化简2
||a a b +-=_________。

(二)在方程、不等式中的应用 例2、已知关于x 的不等式组0
20x a x ->⎧⎨
->⎩
的整数解共有2个,则a 的取值范围是____________。

例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )
A .203210x y x y +-=⎧⎨--=⎩,
B .2103210x y x y --=⎧⎨--=⎩

C .2103250x y x y --=⎧⎨
+-=⎩

D .20210x y x y +-=⎧⎨
--=⎩

(三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2
1
,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这
样的三角形可以画_______个。

(四)在函数中的应用
例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大.
a b
0 · P (1,1)
1 1
2 2
3
3 -1 -1
O
x y
x
y O
3 -1
正确的说法有.(请写出序号)
(五)在概率统计中的应用
例6、某报社为了解读者对本社一种报纸四
个版面的喜欢情况,对读者作了一次问卷调查,
要求读者选出自己最喜欢的一个版面,将所得数
据整理后绘制成了如图所示的条形统计图:
⑴请写出从条形统计图中获得的一条信息;
⑵请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么⑶请你根据上述数据,对该报社提出一条合理的建议。

例7以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点,
(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;
(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.
三、综合训练
1、“数轴上的点并不都表示有理数,如图中数轴上的点A 所表示的数是2”,这种利用图形直观说明问题的方式体现的数学思想方法叫()
A.代入法B.数形结合C.换元法D.分类讨论
2、某人从A地向B地打长途电话6分钟,按通话电话收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是()
3、若M
1
1
,
2
y
⎛⎫
-

⎝⎭
,N
2
1
,
4
y
⎛⎫
-

⎝⎭
,P
3
1
,
2
y
⎛⎫

⎝⎭
三点都在函数(0)
k
y k
x
=<的图象上,则y1,y2,y3的大小关系为()
A、y2>y3>y1
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
4、关于x的一元二次方程x2―x―n=0没有实数根,则抛物线y=x2―x―n的顶点在()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
5、如图,在平面直角坐标系中,∠AOB =150°,OA=OB=2,
则点A、B的坐标分别是___________和___________。

6、如图,已知函数y x b
=+和3
y ax
=+的图象交点为
P,则不等式3
x b ax
+>+的解集为.
7、如图,为实数a、b在数轴上的位置,
化简222
()
a b a b
---。

O x
y
1
P
y=x+b
y=ax+3
A
1
-1 2
思考题:
5、函数2y x x m =-+(m 为常数)的图象如图,如果x a =时,
0y <;那么1x a =-时,函数值( )
A .0y <
B .0y m <<
C .y m >
D .y m =
2、如图1是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/(cm 2)和0.01元
/(cm 2),那么制作这样一块瓷砖所用黑白材料的最低成本是_________元(π取3.14,结果精确到0.01元) 中考链接
1.(湖北中考)将不等式⎪⎩⎪
⎨⎧-≤-<+x x x x 23821148的解集在数轴上表示出来,正确的是(
2.(临沂中考)直线

1:y=k1x+b与
直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b >k 2x 的解为( )
A.x>-1 B.<-1 C.x<-2 D.x无法确定
3.(威海中考)下列四个点中,有三个点在同一条直线上,不在这条直线上的是( )
A.(-3,-1) B.(1,1) C.(3,2) D.(4,3)
4.(赤峰中考)如下图所示,半径为1的圆和边长为3的正方形如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )
x
y
O x 1 x 2
图2
图1
A B C D
5.(金华中考)如图在24个边长为1的小正三角形组成的网格中,以格点P 为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 .
6.在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC
平移使点A移至图中的点A/的位置.
(1)在直角坐标系中,画出平移后所得的△A/B/C/(其中B/,C/分别是B,C的对应点). (2)计算:对应点的横坐标的差: xA /-xA= ,xB /-xB= , xC/-xC = ;
对应点的枞坐标的差:yA /-yA= ,yB /-yB= ,Yc /- yC = . (3)从(2)的计算中,你发现了什么规律?请你把你发现的规律用文字表述出来. (4)根据上述规律,若将△ABC平移使得点A移至A""(2,-2),那么相应的点B"",C"
"(其中B"",C""分别是B,C的对应点)的坐标分别是
, .
7.(乐山中考)解不等式组⎪⎩⎪
⎨⎧-≤-+>+3122145)1(3x x x x 并将解集在数轴上表示出来.
8.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:
(1)求y l与y2的函数解析式;
(2)解释图中表示的两种方案是如何付推销费的;
(3)如果你是推销员,应如何选择付费方案.
9.(德州中考)某公司专销产品A,第一批产品A上市
40天内全部售完.该公司对第一批产品A上市后的市
场销售情况进行了跟踪调查,调查结果如图所示,其中
图1中的折线表示的是市场日销售量与上市时间的关
系;图2中的折线表示的是每件产品A的销售利润与上
市时间的关系.
(1)试写出第一批产品A的市场日销售量y与上市时间t的关系
式;
(2)第一批产品A上市后,哪一天这家公司市场日销售利润最
大?最大利润是多少万元?
10.(贵阳中考)甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?。

相关文档
最新文档