人教版七年级下册数学5.1.2垂线
5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
5_1_2 垂线 (课件)【2023春人教版七下数学精品备课】

1O B
2D
E
课后作业:
必做题:习题5.1第3、4、5、6题. 选做题:习题5.1第9、10题
跟踪练习:
教材P8 5如图,直线AB、CD相交于点O,OE⊥AB, ∠EOC=35°,求∠AOD的度数.
解: ∵ AB⊥OE∴ ∠EOB=90° C E
∵ ∠EOC=35°
∴ ∠ AOC=35° ∴ ∠ AOD= 180°-∠ AOC
A
O
B
=180°- 35° =145 °
D
课堂小结:
垂 线
当两条直线相交所成的四个角中,有一个角是直
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
问题:这样画l的垂线可以画几条? 无数条
动手实践:
如图,已知直线 l 和l上的一点A ,作l的垂线.
B A
1放:放直尺,直尺的一边要 与已知直线重合; 2.靠:靠三角板,把三角板的 一直角边靠在直尺上; 3移:移动三角板到已知点; 4画线:沿着三角板的另一 直角边画出垂线.
四点到直线的距离:
如图,从A点向已知直线 l 画一条垂直的线段和 几条不垂直的线段.
说一说:
1.线段AB, AC, AD , AE谁最短?
A
2.你能用一句话表示这个结论吗?
B CD
l E
总结归纳:
P
AB C
Dm
连接直线外一点与直线上各点的所有线段中, 垂线段最短.
简单说成:垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
定义 角时,这两条直线互相垂直,其中一条直线叫另一条
直线的垂线,它们的交点叫垂足.
人教版七年级数学下册5.1.2.1《垂线》说课稿

人教版七年级数学下册5.1.2.1《垂线》说课稿一. 教材分析《垂线》这一节的内容位于人教版七年级数学下册第五章第一节,主要介绍了垂线的定义、性质和应用。
通过这一节的学习,学生能够理解垂线的概念,掌握垂线的性质,并能够运用垂线解决实际问题。
在教材中,首先通过实例引入垂线的概念,让学生感知到垂线是与水平线相交且交点垂直的线段。
接着,通过探究垂线的性质,让学生发现垂线与水平线的交点是垂直的,并且垂线的长度是固定的。
最后,通过应用举例,让学生学会如何运用垂线解决实际问题。
二. 学情分析在七年级的学生中,他们已经具备了一定的几何基础,对于线段、直线等概念有一定的了解。
但是,对于垂线的定义和性质可能还没有完全理解,需要通过本节课的学习来进一步巩固。
在学生的学习过程中,他们可能对于垂线的概念和性质的理解存在一定的困难,需要通过实例和实际问题来加深理解。
同时,学生需要培养观察、思考和解决问题的能力,能够运用垂线解决实际问题。
三. 说教学目标1.知识与技能目标:学生能够理解垂线的定义,掌握垂线的性质,并能够运用垂线解决实际问题。
2.过程与方法目标:通过观察实例,学生能够感知垂线的概念,通过探究垂线的性质,学生能够培养观察、思考和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:垂线的定义和性质。
2.教学难点:垂线的性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法。
2.教学手段:多媒体课件、几何模型和板书。
六. 说教学过程1.引入新课:通过展示实例,引导学生观察和思考,引入垂线的概念。
2.探究垂线的性质:学生分组讨论,通过实际操作和观察,发现垂线的性质。
3.讲解与演示:教师通过多媒体课件和几何模型,讲解垂线的性质,并进行演示。
4.练习与应用:学生进行练习题,运用垂线解决实际问题,教师进行指导和讲解。
人教版数学七年级下册5.1.2垂线 课件

感悟新知
例 1 如图5.1-11,直线AB,CD 相交于点O,OE ⊥ AB 于 点O,且∠ COE=40°,求∠ BOD 的度数. 解题秘方:利用垂直的定 义及对顶角的性质,将要 求的角向已知角转化.
感悟新知
解:因为OE ⊥ AB, 所以∠ AOE=90°. 又因为∠ AOE= ∠ AOC+ ∠ COE,∠ COE=40°, 所以∠ AOC=90°-40°=50°. 所以∠ BOD= ∠ AOC=50°
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
感悟新知
(2)点P 为直线m 外一点,点A,B,C 为直线m 上的三点,
PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线m 的距
离( D )
A. 等于4 cm
B. 等于2 cm
C. 小于2 cm
D. 不大于2 cm
感悟新知
解题秘方:根据点到直线的距离的定义,找出垂线段. 解:点到直线的距离是该点到这条直线的垂线段的 长度,而垂线段是该点与直线上各点的连线中最短 的. 从条件看,PC是三条线段中最短的,但不一定 是所有连线中最短的,所以点P 到直线m 的距离应 该是不大于2 cm.
感悟新知
1-1. [中考·河南] 如图,直线AB,CD相交于点O,EO⊥ CD,垂足为O,若∠ 1=54°,则∠ 2 的度数为( B ) A. 26° B. 36° C. 44° D.54°
感悟新知
例2 将一张长方形纸片按如图5.1-12 所示方式折叠,EF, EG 为折痕,判断EF 与EG 的位置关系. 解题秘方:利用折叠的性 质求出两线的夹角,根据 夹角是90°判断两条直线 的位置关系.
1. 垂线段:
特别解读 垂线、垂直与垂线段之间的区别与联系: 1. 区别:垂线是一条与已知直线垂直的直线;垂
人教版初一数学下册垂线(1)

5.1.2垂线(1)教学目标:1.知道垂直是相交的特殊情况,理解垂线的概念.2.会用三角尺或量角器过一点画已知直线的垂线.3、通过操作、探究等活动,培养学生的动手能力,并通过活动使学生对知识的学习从感性认识上升到理性认识.4、通过生动、有趣的活动,使学生积极参与到数学活动中,并在活动中感受成功的快乐.教学重难点:【重点】垂线的定义,用三角尺或量角器过一点画已知直线的垂线.【难点】过一点画已知直线的垂线.教学设计导入一:出示意大利比萨斜塔图片.师:同学们,你们认识这个世界著名的建筑吗?对!是意大利的比萨斜塔.那么这个斜塔倾斜多少度呢?如图所示,直线AB可以看成地平面,射线OC可以看成塔身所在的直线.要回答这个问题,就涉及我们要学习的垂线问题.[设计意图]从学生比较熟悉的事物中抽象出数学问题,更能唤起学生探求新知的欲望.导入二:(学生事先准备宽约为1 cm,长约为20 cm的两张硬纸条,图钉一个)课堂操作:学生用图钉在中间把两张纸条订在一起,提示学生可以把两张纸条看作是两条直线,观察两条直线相交有几个交点?如图所示,可以看到,直线AB与CD相交,只有一个交点,可以说明直线AB,CD相交于点O.【思考】两条直线相交所构成的四个角能否相等?[设计意图]用现实生活中的例子,引入相交线所成的角,为理解垂直的定义做认知准备,同时也会激发学生的学习兴趣,有利于进入新的知识学习.导入三:如图所示,直线AB,CD相交于点O,若∠1=90°,求其他三个角.教师出示问题,学生独立解决问题,并在练习本上书写解答过程.在这一过程中,教师应当关注学生是否能够独立完成问题,并且能否较规范地写出解答过程.然后学生口述过程并说明理由.[设计意图]通过练习,一是复习上节课的邻补角和对顶角的概念及性质,二是逐步培养学生的推理论证能力.一、探究垂线的概念思路一教师出示相交线模型,如图(1)所示,固定其中一个木条a,转动另一个木条b,在这一过程中,它们的交角∠α在不停地变化,这一过程中,一定会出现它们的交角等于90°的情况,这时我们说a与b互相垂直,这时其中一条直线叫另一条直线的垂线,记作a⊥b,它们的交点叫做垂足,如图(2)所示,可记作:AB⊥CD,垂足为O.推理过程如下:因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).[设计意图]通过模型的展示让学生认识到,垂直是相交的一种特殊情形,使学生对垂直首先有一个感性的认识,进而引入相关的概念.同时通过教师对图形的描述,使学生逐步学习用几何语言描述图形的语句.[知识拓展](1)垂直是相交线中一种特殊形式,当垂直时,这个公共点即为垂足.(2)线段与线段、线段与射线、射线与射线、线段与直线或射线与直线垂直,特指它们所在的直线互相垂直.(3)根据两条直线互相垂直的定义可知:若两条直线互相垂直,则所成的四个角都为直角;反之,若两条直线相交所成的四个角中的任意一个角等于90°,则这两条直线互相垂直.2.感受生活中互相垂直的实例.【思考】生活中有许多垂直的例子,你能举出一些例子吗?教师出示图片:(提示学生观察铁轨和枕木之间的位置关系)学生从中观察相互垂直的直线,然后举出一些互相垂直的例子.[设计意图]通过对实物的感知,使学生认识到生活中处处有数学图形,在感受生活中的数学的同时加深对垂线的理解与掌握.3.例题讲解(自设).如图所示,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A.30°B.34°C.45°D.56°〔解析〕∠1和∠2既不是对顶角也不是邻补角,这就需要根据给出的∠1的度数和相关位置进行思考.根据已知条件,把CO⊥AB转化为∠AOC=∠COB=90°是关键.发现∠AOD,∠DOB 分别是∠2的邻补角和对顶角后,问题即可解决.方法1:因为CO⊥AB,所以∠COB=90°,所以∠DOB=90°-∠1=90°-56°=34°.所以∠2=∠DOB=34°(对顶角相等).方法2:因为CO⊥AB,所以∠COB=90°,所以∠AOD=90°+∠1=90°+56°=146°.所以∠2=180°-146°=34°(邻补角互补).故选B.[设计意图]角度计算题,目的是考查学生利用垂直定义以及对顶角性质解决问题的能力.思路二1.实验探究.教师自制教具,将两根木条钉在一起(如图所示),固定其中一根木条a,转动木条b,请学生观察:问题:在木条b的转动过程中,哪个量也随之发生改变?师生活动:学生发言,相互补充.教师借机和学生一起回忆上节课学习的内容:对顶角和邻补角的概念和性质.教师追问(1):当a与b所成角α为90°时,其余各角分别为多少度?师生活动:教师引导学生发现,当a与b所成角α为90°时,其余各角都为90°,是木条相交中最特殊的一种情况.教师追问(2):这时木条a与b有何位置关系呢?师生活动:学生根据小学已学的知识可以知道,此时木条a与b互相垂直.[设计意图]让学生借助已有的知识发现数学问题,并解决问题,进一步提高对垂直概念的认识.2.变换角度,认识垂直.仔细观察下图,当两条直线相交时所形成的4个角中,有一个角为90°,可以得出这两条直线有何位置关系呢?师生活动:学生回答,并归纳概括出垂直的定义.教师补充指出垂线和垂足的概念,并给出垂直的符号表示.教师追问(1):如图所示,如何用符号语言表示垂直的定义呢?师生活动:学生观察图形,独立完成用符号语言表示垂直的定义,教师点拨,规范学生的书写过程.如图所示,若AB和CD相交,且∠1=90°,则直线AB和CD互相垂直,记作“AB⊥CD”(或CD⊥AB),读作“AB垂直于CD”.如果垂足是O,记作“AB⊥CD,垂足为O”.一般地,垂直在图中用“”表示,在推理计算的过程中用“⊥”表示.教师追问(2):如何判定两条射线互相垂直?两条线段呢?师生活动:学生积极踊跃发言,教师做总结,提醒学生注意:两条线段垂直、两条射线垂直、射线与直线垂直、线段与射线垂直、线段与直线垂直,都是指它们所在的直线垂直.根据两条直线互相垂直的定义可知:若两条直线互相垂直,则相交所成的四个角为直角;反之,若两条直线的交角为直角,则这两条直线互相垂直.如图所示,这个推理过程可以写成:因为AB⊥CD(已知),所以∠AOC=∠COB=∠BOD=∠AOD=90°(垂直的定义);反之,因为∠AOC=90°(已知),所以AB⊥CD.[设计意图]教师引导学生用几何语言描述图形的位置关系,并学会用符号语言表示,培养学生表达几何图形的能力.教师追问(3):你能举出一些生活中与垂直有关的实例吗?[设计意图]学生列举身边的实物,能由实物的形状想象出直线的垂直关系,将新知识应用到对周围环境的直接感知中,有利于学生建立直观、形象的数学模型.1.用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2.经过直线l上一点A画l的垂线,这样的垂线能画出几条?3.经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法点拨:过一点画已知直线的垂线,可以用直角三角板来画,具体步骤为:(1)贴:将三角板的一条直角边紧贴在已知直线上;(2)过:使三角板的另一直角边经过已知点;(3)画:沿已知点所在直角边画出所求的直线.如图所示,图(1)是点在直线l上,图(2)是点在直线l外.两直线垂直的概念中的核心内容是直角,所以在画垂线时这个直角的位置就显得相当重要了,画错了位置,已知直线的垂线也就画错了.在画垂线时要注意让直角的一边与已知直线重合,而另一边要过已知点(即过此点画已知直线的垂线),在画垂线时要注意只有满足上述条件时,这两条直线才是垂直的.另外要画的已知直线的垂线是一条直线,千万不要画成线段或射线.提示:(1)过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上.(2)过一点包括两种情况:①点在直线外;②点在直线上.活动方式:教师出示问题,学生分小组讨论尝试,然后找学生回答讨论的结果,并找学生到黑板上画一画.师生共同归纳结论:经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线,即在同一平面内,过一点有且只有一条直线与已知直线垂直.[设计意图]通过尝试、讨论、探究,找到画已知直线垂线的方法,使学生手脑并用,加深印象.通过师生的共同总结,培养学生的归纳总结能力,同时让学生认识到作已知直线的垂线的两种情况.(补充)如图(1)所示,在三角形ABC中,∠BCA为钝角.(1)画出过点C且与线段BA垂直的直线;(2)画出过点A且与线段BC垂直的直线.〔解析〕利用三角尺的直角正确画出图形,注意垂足的位置.(1)过点C作AB的垂线,垂足在线段AB上.(2)因为∠BCA是钝角,过点A画BC的垂线时,垂足在BC的延长线上.解:(1)过点C画AB的垂线,交AB于D,CD就是所求,如图(2)所示.(2)过点A画BC的垂线,交BC的延长线于E点,AE就是要求的垂线,如图(2)所示.[知识拓展](1)在同一平面内,经过直线上一点或直线外一点画已知直线的垂线,只能画出一条.(2)经过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在射线的反向延长线或线段的延长线上(如图所示).(3)画垂线时是实线,此时如需延长线段或反向延长射线,要用虚线延长或反向延长.课堂小结:1.垂线的概念:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.2.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)“有且只有”中,“有”指“存在性”,“只有”指“唯一性”.(3)“过一点”中的“点”在直线上或直线外都可以.课堂检测:1.下列说法中,正确的个数是()①相等的角是对顶角;②在同一平面内,过一点有且只有一条直线和已知直线垂直;③两条直线相交有且只有一个交点;④两条直线相交成直角,则这两条直线互相垂直.A.1B.2C.3D.4解析:两角相等指的是数量关系上的相等,对顶角是特殊位置关系的相等的角,故①错误;在同一平面内,过一点有且只有一条直线和已知直线垂直,故②正确;两条直线相交有且只有一个交点,故③正确;两条直线相交成直角,则这两条直线互相垂直,故④正确.即正确的个数是3.故选C.2.下列四个条件中能判断两条直线互相垂直的有()①两条直线相交所成的四个角中,有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中,有一组相邻的角相等;④两条直线相交所成的四个角中,有一组对顶角的和为180°.A.4个B.3个C.2个D.1个解析:①两条直线相交所成的四个角中有一个角是直角,是定义,能判断;②两条直线相交所成的四个角相等,则四个角都是直角,能判断;③两条直线相交所成的四个角中有一组相邻的角相等,根据邻补角的定义能求出这两个角都是直角,能判断;④两条直线相交所成的四个角中有一组对顶角的和为180°,根据对顶角相等求出这两个角都是直角,能判断.所以四个条件都能判断两条直线互相垂直.故选A.3.如图所示,过P点,画出射线OA,OB的垂线.解析:图(1)的P点在射线OA,OB之外,图(2)的P点在射线OA之外,在射线OB之上.图(2)过点P作射线OA的垂线时,要注意垂足在射线OA的反向延长线上,需要用虚线表示延长线.解:如图所示.4.如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,求∠AOE和∠DOF的度数.解:因为OE⊥CD,OF⊥AB,∠BOD=25°,所以∠AOE=90°-25°=65°,∠DOF=90°+25°=115°.布置作业:【必做题】教材第5页练习第1,2题.【选做题】教材第8页习题5.1第3,4题.。
2020春人教版数学七年级下册同步课件02-第五章5.1.2垂线

图5-1-2-5 A.两点之间,线段最短 B.过两点有且只有一条直线 C.垂线段最短 D.过一点可以作无数条直线 答案 C 根据垂线段的性质“垂线段最短”可知,选C.
知识点四 点到直线的距离
5.1.2 垂线
栏目索引
7.(独家原创试题)如图5-1-2-6,P是直线l外一点,A,B,C三点在直线l上,且PB ⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线 段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段 PC的长是点P到直线l的距离,其中正确的个数是 ( )
5.1.2 垂线
栏目索引
例1 如图5-1-2-1,直线AB、CD相交于点O,OE⊥AB,且∠COE=40°,求∠ BOD的度数.
图5-1-2-1
解析 解法一:因为OE⊥AB,所以∠BOE=∠AOE=90°.因为∠AOE=∠AOC +∠COE,∠COE=40°,所以∠AOC=90°-40°=50°,所以∠BOD=∠AOC=50°. 解法二:因为OE⊥AB,所以∠BOE=90°.因为∠COD是平角,所以∠EOC+∠ BOE+∠BOD=180°,所以∠BOD=180°-90°-40°=50°. 点拨 观察并找出图中所求角与已知角之间的关系是解决此类题的关键.
5.1.2 垂线
栏目索引
知识点一 垂直的定义
定义
符号语言
图例
垂直
两条直线相交所成的 如图,∠AOC=90°或∠
四个角中有一个角为9 BOC=90°或∠AOD=90
0°时,这两条直线互相 °或∠BOD=90° AB
垂直.其中一条直线是 ⊥CD 另一条直线的垂线,它
们的交点叫垂足
拓展延伸
人教版七年级数学下册同步备课 5.1.2 垂线(教学设计)

5.1.2 垂线教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.2垂线,内容包括:垂线的有关概念、性质及画法、垂线段和点到直线的距离的概念.2.内容解析垂线是平面几何所要研究的基本内容之一.垂线的概念、画法和性质是重要的基础知识,是进一步学习平面直角坐标系、三角形的高、切线的性质和判定、以及空间里的垂直关系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用.垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一.基于以上分析,确定本节课的教学重点为:垂直定义、垂直性质的理解与运用.二、目标和目标解析1.目标(1)理解垂线的有关概念、性质及画法;(2)知道垂线段和点到直线的距离的概念,并会应用其解决问题.2.目标解析认识垂线,理解“互相垂直”和“垂足”的含义;会用三角板或量角器过一点画一条直线(或射线、线段)的垂线:3.知道垂线的性质:过一点有且只有一条直线垂直于已知直线;培养学生的观察、理解能力,几何语言能力,画图能力,抽象思维能力;培养学生动手操作能力和创造精神,运用知识解决实际问题能力,形成垂线的空间观念;培养学生辩证唯物主义思想及勇于探索的精神;培养学生的合作精神,进行集体观念的教育.三、教学问题诊断分析七年级学生是第三学段低年级的学生,他们在课堂中思维活跃,有想法就会举手发言甚至是抢答,探索真理的欲望比较强.因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情境中充满好奇地学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想、在评价中逐步形成数学价值观.七年级学生由于年龄较小,他们虽然对新事物容易产生兴趣,但这种兴趣并不稳定,上课时注意力也不易持久,容易分散,因而在教学中不断激发他们的兴趣,吸引他们的注意力至关重要。
人教版七年级数学下册5.1.2《垂线段最短》讲义(PDF版 )

释义图示垂线段线段PO点P 为直线l 外一点,点O ,1A ,2A ,3A ,…,在直线l 上,其中l PO ⊥公理:垂线段最短连接直线外一点与直线上各点的所有线段中,垂线段最短.【简单说成,垂线段最短】点P 与直线l 各点的连线中,线段PO 最短点到直线的距离直线外一点到这条直线的垂线段的长度..,叫做点到直线的距离.线段PO 的长度即为点P 到直线l 的距离:点到直线的距离是一个正的数值,并非图形,所以不能说...垂线段是距离名称定义性质图示点到直线的距离直线外一点到这条直线的垂线段的长度垂线段最短两点之间的距离连接两点线段的长度两点之间,线段最短ii1、如图所示,ABC ∆中,BC AD ⊥于D ,下列说法正确的是()A.点B 到AC 的垂线段是线段ABB.点C 到AB 的垂线段是线段ACCABD2、【2017北京】如图所示,点P 到直线l 的距离是()A.线段PA 的长度B.线段PB 的长度C.线段PC 的长度D.线段PD 的长度3、如图所示,点D 在AC 上,点E 在AB 上,CE BD ⊥于M .说法正确的是(填序号)①BM 的长度是点B 到CE 的距离;②CE 的长度是点C 到AB 的距离;③BD 的长是点B 到AC 的距离;④CM 的长是点C 到BD 的距离.CEM A BD4、点到直线的距离是()A 、点到直线上一点的连线B 、点到直线的垂线C 、点到直线的垂线段D 、点到直线的垂线段的长度5、如图所示,︒=∠90AOB (1)、AB BO (填“>”,“<”或“=”),判断理由是(2)、若m OA 2=,cm OB 3=,则点A 到OB 的距离是cm ;点B 到OA 的距离是cm ;ABO6、如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是()A .2.5B .3C .4D .5P7、点P 为直线l 外一点,A 、B 、C 为直线l 上三点,cm PA 4=,cm PB 5=,cm PC 2=,则P 到直线l 的距离()A.不小于2cm B.小于2cm C.不大于2cm D.不小于5cm 8、如图,点M ,N 分别在直线1l ,2l 上,画出三条线段,使它们的长分别是:(1)、M ,N 两点间的距离;(2)、点M 到直线2l 的距离;(3)、点N 到直线1l 的距离.∙MN∙1l 2l 9、如图,计划把河水引到水池A 中,先引CD AB ⊥,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是_______________________________________.10、如图,修一条公路将村庄A ,B 与公路MN 连接起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.A BM N∙∙答案:1、D 2、B ;3、①④4、D 5、(1)、>;垂线段最短;(2)、2;36、A7、C8、EF ∙M N∙1l 2l 答案:(1)、图中线段MN 为所求(2)、图中线段ME 为所求(3)、图中线段NF 为所求9、垂线段最短10、连接AB ,作MN BC ⊥于C ,沿AB ,BC 修公路长度最短.理由:①两点之间,线段最短;②垂线段最短A BCMN∙∙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.2 垂线
要点感知 1 两条直线相交,当有一个夹角为__________时,这两条直线互相垂直,其中一条直线叫做另一条直线的__________.它们的交点叫做__________.
预习练习1-1如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是__________;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=__________.
要点感知2 在同一平面内,过一点__________一条直线与已知直线垂直.
预习练习2-1 如图,过直线l外一点A,作直线l的垂线,可以作__________条.
要点感知3 连接直线外一点与直线上各点的所有线段中,__________最短.
预习练习3-1 如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC,AB,AD中最短的是( )
A.AC
B.AB
C.AD
D.不确定
要点感知4 直线外一点到这条直线的垂线段的长度,叫做__________.
预习练习4-1 点到直线的距离是指这点到这条直线的( )
A.垂线段
B.垂线
C.垂线的长度
D.垂线段的长度
4-2 到直线l的距离等于2 cm的点有( )
A.0个
B.1个
C.无数个
D.无法确定
知识点1 认识垂直
1.(2014·贺州)如图,OA⊥OB,若∠1=55°,则∠2的度数是( )
A.35°
B.40°
C.45°
D.60°
2.如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )
A.125°
B.135°
C.145°
D.155°
知识点2 画垂线
3.过线段外一点,画这条线段的垂线,垂足在( )
A.这条线段上
B.这条线段的端点
C.这条线段的延长线上
D.以上都有可能
4.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )
A.1个
B.2个
C.3个
D.4个
知识点3 垂线的性质
5.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,可以过任意一点画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
6.如图所示,AD⊥BD,BC⊥CD,AB=a,BC=b,则BD的范围是__________,理由是____________________.
知识点4 点到直线的距离
7.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是__________,点A到直线BC的距离是__________.
8.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD__________时,他跳得最远.
9.(2014·厦门)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )
10.如图所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段
D.线段BD是点B到AD的垂线段
11.如图,直线AB,CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于( )
A.45°
B.35°
C.25°
D.15°
12.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )
A.2.5
B.3
C.4
D.5
13.如图,当∠1与∠2满足条件__________时,OA⊥OB.
14.(2014·河南改编)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为__________.
15.如图所示,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC=26°,求∠AOD的度数.
16.如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判断OF与OD的位置关系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.
挑战自我
17.如图所示,一辆汽车在直线形的公路AB上由A向B行驶,C,D分别是位于公路AB两侧的村庄.
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄D越来越近?(只叙述结论,不必说明理由)
参考答案
课前预习
要点感知1 90°垂线垂足
预习练习1-1垂直90°
要点感知2 有且只有
预习练习2-1 1
要点感知3垂线段
预习练习3-1 B
要点感知4点到直线的距离
预习练习4-1 D
4-2 C
当堂训练
1.A
2.B
3.D
4.D
5.C
6.b<BD<a 垂线段最短
7.6 cm 5 cm
8.垂直
课后作业
9.C 10.C 11.A 12.A 13.∠1+∠2=90°14.55°
15.因为OM平分∠AOB,ON平分∠COD,
所以∠AOB=2∠AOM=2∠BOM,∠COD=2∠CON=2∠DON.
因为OM⊥ON,所以∠MON=90°.
所以∠CON+∠BOC+∠BOM=90°.
因为∠BOC=26°,
所以∠CON+∠BOM=90°-26°=64°.
所以∠DON+∠AOM=64°.
所以∠AOD=∠DON+∠AOM+∠MON=64°+90°=154°.
16.(1)因为OF平分∠AOE,
所以∠AOF=∠EOF=1
2
∠AOE.
又因为∠DOE=∠BOD=1
2
∠BOE,
所以∠DOE+∠EOF=1
2
(∠BOE+∠AOE)=
1
2
×180°=90°,
即∠FOD=90°.
所以OF⊥OD.
(2)设∠AOC=x°,
因为∠AOC∶∠AOD=1∶5,
所以∠AOD=5x°.
因为∠AOC+∠AOD=180°,
所以x+5x=180,x=30.
所以∠DOE=∠BOD=∠AOC=30°.
又因为∠FOD=90°,
所以∠EOF=90°-30°=60°.
17.(1)图略.
过点C作AB的垂线,垂足为C′,过点D作AB的垂线,垂足为D′.
(2)在C′D′上距离村庄C越来越远,而离村庄D越来越近.
初中数学试卷
金戈铁骑制作。