【精品文章】第三代宽禁带半导体材料碳化硅(SiC)与氮化镓(GaN)

合集下载

一文带你认识第三代半导体材料双雄——碳化硅VS氮化镓

一文带你认识第三代半导体材料双雄——碳化硅VS氮化镓

一文带你认识第三代半导体材料双雄——碳化硅VS氮化镓进入21世纪以来,随着摩尔定律的失效大限日益临近,寻找半导体硅材料替代品的任务变得非常紧迫。

在多位选手轮番登场后,有两位脱颖而出,它们就是氮化镓(GaN)和碳化硅(SiC)——并称为第三代半导体材料的双雄。

SiC早在1842年就被发现了,但直到1955年,才有生长高品质碳化硅的方法出现;到了1987年,商业化生产的SiC进入市场;进入21世纪后,SiC的商业应用才算全面铺开。

相对于Si,SiC的优点很多:有10倍的电场强度,高3倍的热导率,宽3倍禁带宽度,高一倍的饱和漂移速度。

因为这些特点,用SiC制作的器件可以用于极端的环境条件下。

微波及高频和短波长器件是目前已经成熟的应用市场。

42GHz频率的SiC MESFET,用在了军用相控阵雷达、通信广播系统中,用SiC做为衬底的高亮度蓝光LED则是全彩色大面积显示屏的关键器件。

现在,SiC材料正在大举进入功率半导体领域。

一些知名的半导体器件厂商,如ROHM,英飞凌,Cree,飞兆等都在开发自己的SiC功率器件。

英飞凌公司在今年推出了第五代SiC肖特基势垒二极管,其结合了第三代产品的低容性电荷(Qc)值与第二代产品的正向电压(Vf)水平相结合,使PFC电路达到最高效率水平,击穿电压则达到了650V。

飞兆半导体发布了SiC BJT,其实现了1200V的耐压,传到和开关损耗相对于传统的Si器件降低了30~50%,从而能够在相同尺寸的系统中实现高达40%的输出功率提升。

ROHM公司则推出了1200V的第二代SiC制MOSFET产品,其实现了SiC-SBD与SiC-MOSFET的一体化封装,比Si-IGBT相比,工作损耗降低了70%,并可达到50kHz 以上的开关频率。

值得一提的是,IGBT的驱动比较复杂,如果使用SiC基的MOSFET,则能使系统开发的难度大为降低。

SiC的市场颇为被看好,根据预测,到2022年,其市场规模将达到40亿美元,年平均复合增长率可达到45%。

第三代半导体分类

第三代半导体分类

第三代半导体分类第三代半导体是指在半导体材料和器件方面的新一代技术。

与第一代和第二代半导体相比,第三代半导体具有更高的性能和更广泛的应用领域。

本文将从材料和器件两个方面介绍第三代半导体的分类。

一、材料分类第三代半导体的材料主要包括氮化硅(GaN)、碳化硅(SiC)和氮化镓(GaN)。

这些材料具有优异的电子特性和热特性,使得第三代半导体在高频、高功率和高温环境下表现出色。

1. 氮化硅(GaN)氮化硅是一种宽禁带半导体材料,具有较高的电子饱和迁移率和较高的击穿电场强度。

它在高频功率放大器、射频开关和LED照明等领域有广泛应用。

2. 碳化硅(SiC)碳化硅是一种宽禁带半导体材料,具有较高的热导率和较高的击穿电场强度。

它在功率电子器件、高温电子器件和光电子器件等领域有广泛应用。

3. 氮化镓(GaN)氮化镓是一种窄禁带半导体材料,具有较高的电子迁移率和较高的饱和漂移速度。

它在高频功率放大器、射频开关和蓝光LED等领域有广泛应用。

二、器件分类第三代半导体的器件主要包括高电子迁移率晶体管(HEMT)、功率二极管和蓝光LED。

这些器件利用第三代半导体材料的优异特性,实现了更高的性能和更广泛的应用。

1. 高电子迁移率晶体管(HEMT)高电子迁移率晶体管是一种基于第三代半导体材料的场效应晶体管。

它具有较高的电子迁移率和较低的漏电流,适用于高频功率放大器和射频开关等领域。

2. 功率二极管功率二极管是一种基于第三代半导体材料的二极管。

它具有较高的击穿电压和较低的导通电阻,适用于功率电子器件和高温电子器件等领域。

3. 蓝光LED蓝光LED是一种基于第三代半导体材料的发光二极管。

它具有较高的发光效率和较长的寿命,适用于照明和显示等领域。

总结:第三代半导体是一种具有高性能和广泛应用领域的新一代半导体技术。

通过不同的材料和器件设计,第三代半导体实现了在高频、高功率和高温环境下的优异表现。

随着技术的不断发展,第三代半导体将在各个领域展现出更大的潜力和应用前景。

第三代半导体芯片的原料

第三代半导体芯片的原料

第三代半导体芯片主要是指基于宽禁带半导体材料的芯片,这些材料具有较高的击穿电压、热稳定性和电子迁移率。

与传统的硅基半导体相比,第三代半导体在高温、高电压和高功率应用中表现出更好的性能。

第三代半导体芯片的主要原料包括:
1. 碳化硅(SiC):碳化硅是一种典型的宽禁带半导体材料,具有高击穿电压、高热导率和低电子迁移率的特点。

碳化硅芯片适用于高功率和高温的应用,如电动汽车、可再生能源和工业自动化。

2. 氮化镓(GaN):氮化镓同样是一种宽禁带半导体材料,具有更高的电子迁移率和更低的电阻率。

氮化镓芯片适用于高效率的电力电子转换和高速通信系统。

3. 氧化镓(Ga2O3):氧化镓是另一种宽禁带半导体材料,其熔点较高,适用于高功率和高温环境下的应用。

4. 金刚石:虽然金刚石不是宽禁带半导体,但它是一种优秀的导热材料,可以用于散热applications。

这些材料在生产第三代半导体芯片时需要经过严格的加工和处理,包括晶体生长、切割、抛光、蚀刻、掺杂和封装等步骤。

第三代半导体芯片的研究和开发正在不断进展,有望在未来的电子和光电应用中发挥重要作用。

第三代半导体材料

第三代半导体材料

第三代半导体材料
第三代半导体材料是指具有较高电子运动性能和导电性的新型材料,通常用于
替代传统的硅材料在电子器件中的应用。

这些材料在电子器件中具有更高的能带宽度和电子迁移率,因此可以实现更高的频率和功耗效率。

第三代半导体材料主要包括氮化镓(GaN)、碳化硅(SiC)和氮化铟(InN)等。

氮化镓(GaN)
氮化镓是一种优良的半导体材料,具有较宽的能隙和高电子迁移率。

它在高功
率电子器件中广泛应用,如射频功率放大器、微波器件和光电子器件等。

氮化镓材料的高电子迁移率和高饱和漂移速度使其成为发展高频率高功率电子器件的理想选择。

碳化硅(SiC)
碳化硅是一种具有优良热导性和耐高温特性的半导体材料。

它被广泛应用于功
率电子器件和光电子器件中,如功率开关、脉冲功率放大器和光伏逆变器等。

碳化硅材料的高击穿电场强度和低导通电阻使其在高功率应用中具有较好的性能表现。

氮化铟(InN)
氮化铟是一种新型的半导体材料,具有较大的载流子迁移率和较高的载流子浓度。

它在光电子器件领域有着广泛的应用,如激光器、光探测器和光伏电池等。

氮化铟材料的优良光电性能使其成为实现高效能源转换和光通信的重要材料之一。

第三代半导体材料的出现为电子器件的性能提升和功能拓展提供了新的可能性,将推动电子科技领域的持续发展和创新。

随着对半导体材料性能要求的不断提高,第三代半导体材料必将在未来的电子设备中发挥越来越重要的作用。

某项目第三代半导体材料(SIC)工艺流程简介及施工重难点分析

某项目第三代半导体材料(SIC)工艺流程简介及施工重难点分析

某项目第三代半导体材料(SIC)工艺流程简介及施工重难点分析发布时间:2023-05-15T13:13:47.905Z 来源:《建筑模拟》2023年第1期作者:郁亮[导读] 本文结合某项目宽禁带半导体材料产业化项目一期工程,介绍了核心工艺流程,分析了施工重难点,提出了应对措施和设想,希望通过实践总结,为同类项目施工提供参考。

郁亮中电系统建设工程有限公司北京 100141摘要:本文结合某项目宽禁带半导体材料产业化项目一期工程,介绍了核心工艺流程,分析了施工重难点,提出了应对措施和设想,希望通过实践总结,为同类项目施工提供参考。

关键词:第三代半导体材料(SIC)工艺流程长晶工艺外延工艺第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AIN)为代表的宽禁带(禁带宽度Eg>2.2eV)的半导体材料。

相对于硅,SiC的优点有很多:有高10倍的电场强度,高3倍的热导率,宽3倍的禁带宽度,高1倍的电子饱和漂移速度。

SiC的这些性能使其成为高频、大功率、耐高温、抗辐照的半导体器件的优选材料,可用于地面核反应堆系统的监控、原油勘探、环境监测及航空、航天、雷达、通讯系统和大功率的电子转换器及汽车马达等领域的极端环境中。

特别适用于电动汽车、新能源、柔性电网等领域。

本次建设为宽禁带半导体材料产业化项目一期,年产5000片Si型SiC片、25000片N型SiC片。

本项目产品生产主要有三大工序。

一是原料处理和长晶(目前主流方法是长晶设备与原料提纯/合成设备为同型设备),主要设备为长晶炉,此外还包括切磨抛加工设备和检测、包装设备等。

二是对晶体进行加工,晶体加工后得到SiC衬底片产品,检测合格后进入下一道工序。

三是SiC同质外延、SiC 基GaN异质外延。

长晶工艺和硅基GaN外延工艺是工艺核心。

1 核心工艺流程简介及施工重难点分析由于长晶工艺及外延工艺是本项目的工艺核心,以下重点围绕上述两个工艺进行分析。

第三代半导体氮化镓GaN行业剖析-5G、快充、UVC助力潮起

第三代半导体氮化镓GaN行业剖析-5G、快充、UVC助力潮起

第三代半导体氮化镓GaN行业剖析5G、快充、UVC助力潮起一、第三代半导体 GaN:射频、电源、光电子广泛运用第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。

第二代半导体材料是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb)、磷化铟(InP),以及三元化合物半导体材料,如铝砷化镓(GaAsAl)、磷砷化镓(GaAsP)等。

还有一些固溶体半导体材料,如锗硅(Ge-Si)、砷化镓-磷化镓(GaAs-GaP)等;玻璃半导体(又称非晶态半导体)材料,如非晶硅、玻璃态氧化物半导体等;有机半导体材料,如酞菁、酞菁铜、聚丙烯腈等。

第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(禁带宽度 Eg>2.3eV)的半导体材料。

与第一代和第二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和速度以及更高的抗辐射能力,更适合制作高温、高频、抗辐射及大功率器件。

1.2 GaN 优势明显,5G 时代拥有丰富的应用场景氮化镓(GaN)是极其稳定的化合物,又是坚硬和高熔点材料,熔点为1700℃。

GaN 具有出色的击穿能力、更高的电子密度和电子速度以及更高的工作温度。

GaN 的能隙很宽,为 3.4eV,且具有低导通损耗、高电流密度等优势。

氮化镓通常用于微波射频、电力电子和光电子三大领域。

具体而言,微波射频方向包含了5G 通信、雷达预警、卫星通讯等应用;电力电子方向包括了智能电网、高速轨道交通、新能源汽车、消费电子等应用;光电子方向包括了 LED、激光器、光电探测器等应用。

二、射频应用分析2.1 GaN 在高温、高频、大功率射频应用中独具优势自 20 年前出现首批商业产品以来,GaN 已成为射频功率应用中 LDMOS 和 GaAs 的重要竞争对手,其性能和可靠性不断提高且成本不断降低。

目前在射频 GaN 市场上占主导地位的 GaN-on-SiC 突破了 4G LTE 无线基础设施市场,并有望在 5G 的 Sub-6GHz 实施方案的 RRH(Remote Radio Head)中进行部署。

第三代宽禁半导体材料GaN(氮化镓)研究分析

广州创亚企业管理顾问有限公司第三代宽禁半导体材料GaN (氮化镓)研究分析目录contents一、5G应用的关键材料(一)认识第三代半导体材料1、半导体材料的由来2、第一代半导体材料3、第二代半导体材料4、第三代半导体材料(二)第三代半导体材料的特点1、碳化硅(SiC)2、氮化镓(GaN)二、氮化镓(GaN)(一)GaN技术的发展历史(二)GaN的优点1、GaN 在电力电子领域:高效率、低损耗与高频率2、GaN 在微波射频领域:高效率、大带宽与高功率3、与第二代半导体材料GaAs更具优势三、GaN市场(一)市场空间1、0~900V的低压市场空间宏大2、GaN RF 市场即将大放异彩(二)射频是主战场1、GaN 是射频器件的合适材料2、5G应用的关键技术3、GaN 电力电子器件典型应用:快充电源四、GaN产业链(一)GaN工艺与流程(二)芯片制造过程1、流程2、GaN衬底3、GaN外延片4、GaN外延使用不同衬底的区别5、GaN器件设计与制造由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。

硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。

元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。

中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%)的锗开始的。

采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。

以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。

2、第一代半导体材料第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。

氮化镓(gan)和碳化硅(sic)芯片的生产工艺流程_概述说明

氮化镓(gan)和碳化硅(sic)芯片的生产工艺流程概述说明1. 引言1.1 概述本文将对氮化镓(GaN)和碳化硅(SiC)芯片的生产工艺流程进行概述说明。

GaN和SiC是两种具有广泛应用前景的半导体材料,它们在高频功率电子器件以及光电子器件等领域有着重要的地位。

了解它们的生产工艺流程对于促进半导体行业的发展具有重要意义。

1.2 文章结构本文包括以下几个部分:引言、氮化镓芯片生产工艺流程、碳化硅芯片生产工艺流程、对比分析与讨论、结论与展望。

首先,我们将从一个总体角度介绍氮化镓和碳化硅芯片的生产工艺。

然后,我们将分别详细探讨每个芯片类型的生产过程。

接下来,我们将进行对比分析,比较它们在物理性质、生产效率以及应用领域上存在的差异。

最后,在结论与展望中,我们将总结已有的研究成果,并对未来氮化镓和碳化硅芯片发展趋势进行展望。

1.3 目的本文的目的是全面介绍氮化镓和碳化硅芯片的生产工艺流程,并通过对比分析它们在不同方面的差异来探讨其应用领域。

通过了解这些信息,读者将能够更好地理解半导体行业发展现状,并对未来的技术趋势有所了解。

此外,本文还旨在为相关领域的研究工作者提供参考和启示,促进半导体材料和器件的创新与发展。

2. 氮化镓芯片生产工艺流程:2.1 材料准备:氮化镓芯片的制备过程需要首先准备高纯度的氮化镓基板材料。

常用的氮化镓基板有非晶硅、蓝宝石和硅carb。

2.2 外延生长:在外延生长工艺中,使用金属有机化合物气相沉积(MOCVD) 或分子束外延(MBE) 等技术,在镓基板上逐层沉积氮化镓薄膜。

这些技术通过将金属有机化合物或分子束引向加热的基板表面,使其发生反应并形成晶格匹配的氮化镓晶体。

2.3 制备晶圆:在这一步骤中,利用切割和抛光等工艺对外延生长得到的氮化镓薄膜进行处理,以制备成符合特定尺寸和规格要求的圆形晶圆。

常见工艺包括锯切、打磨和抛光等步骤,以提高晶圆表面的平整度。

以上是氮化镓芯片生产工艺流程中主要的三个环节。

半导体材料Si、SiC和GaN 优势及瓶颈分析

溺于刷“帅哥美女”。

今天我们再来聊聊这三兄弟~1.厚积薄发,应运而生作为半导体材料“霸主“的Si,其性能似乎已经发展到了一个极限,而此时以SiC和GaN为主的宽禁带半导体经过一段时间的积累也正在变得很普及。

所以,出现了以Si基器件为主导,SiC和GaN为”游击”形式存在的局面。

在Si之前,锗Ge是较早用于制造半导体器件的材料,随后Si以其取材广泛、易形成SiO2绝缘层、禁带宽度比Ge大的优势取代了Ge,成为主要的半导体材料。

随着电力电子技术的飞速发展,Si基半导体器件也在飞速发展,电流、电压等级越高,芯片越薄越小、导通压降越小、开关频率越高、损耗越小等等。

任何事物的发展,除了外在力的作用,自身特性也会限制发展,Si基半导体器件似乎已经到了”寸步难行”的地步。

而此时,以碳化硅SiC和氮化镓GaN 为主的新型半导体材料,也就是我们常说的第三代宽禁带半导体(WBG)”破土而出”,以其优越的性能突破的Si的瓶颈,同时也给半导体器件应用带来了显著的提升。

相对于Si,SiC和GaN有着以下几点优势:❶禁带宽度是Si的3倍左右,击穿场强约为Si的10倍;❷更高的耐压能力以及更低的导通压降;❸更快的开关速度和更低的开关损耗;❹更高的开关频率;❺更高的允许工作温度;❻SiC具有更高的热导率;根据上面的优势,第三代宽禁带半导体器件,能够达到更高的开关频率,提高系统效率,同时增大功率密度等,但是目前推动的最大推动力还得看成本!2. SiC&GaN目前,SiC和GaN半导体器件早已进入商业化,常见的SiC半导体器件是SiCDiode、JFET、MOSFET,GaN则以HEMT(高电子迁移率晶体管)为主。

2.1 SiC半导体器件不同类型的碳化硅器件结构和工艺难度都不一样,一般都是依据其工艺难度依次推出的。

可知,SiCDiode便是较早实现商业化碳化硅半导体器件,同时也是历经内部结构和外部封装优化最多的器件,自身耐压能力、抗浪涌能力和可靠性都得到了大大提高,是目前成熟的SiC半导体器件。

国防军工深度报告:第三代半导体,能源转换链“绿芯”材料

第三代半导体,能源转换链“绿芯”材料[Table_IndNameRptType]国防军工 行业研究/深度报告行业评级:增持报告日期: 2022-05-18行业指数与沪深300走势比较[Table_Author] 分析师:郑小霞 执业证书号:S0010520080007 电话:133****1291 邮箱:**************** 联系人:邓承佯 执业证书号:S0010121030022 电话:186****6630 邮箱:*************** [Table_Report] 相关报告主要观点: ● 第三代半导体可有效降低能源损耗 第三代半导体主要是指氮化镓和碳化硅、氧化锌、氧化铝、金刚石等宽禁带半导体,它们通常都具有高击穿电场、高热导率、高迁移率、高饱和电子速度、高电子密度、可承受大功率等特点。

宽禁带半导体契合了电力电子、光电子和微波射频等领域的节能需求。

在电力电子领域,碳化硅功率器件相比硅器件可降低50%以上的能源损耗,减少75%以上的设备装置,有效提升能源转换率。

在光电子领域,氮化镓具有光电转换效率高、散热能力好的优势,适合制造低能耗、大功率的照明器件。

在射频领域,氮化镓射频器件具有效率高、功率密度高、带宽大的优势,带来高效、节能、更小体积的设备。

● 新能源及通讯市场将为第三代半导体创造百亿市场规模和Si 、GaAs 等第一、二代半导体材料相比,碳化硅(SiC )和氮化镓(GaN )拥有击穿电压高、禁带宽、导热率高、电子饱和速率高、载流子迁移率高等优点,是制作高频、高温、抗辐射器件的优异材料。

SBD 器件领域,碳化硅基SBD 器件相较硅基SBD 器件具有耐高压、高温不易失控及损耗小等特点;MOSFET 器件领域,碳化硅基MOSFET 器件相较硅基IGBT 器件具有损耗小、导通电阻低及耐高压等特点。

碳化硅衬底可以制作成半绝缘型衬底及导电型衬底,分别外延碳化硅及氮化镓制作成功率器件或微波射频器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三代宽禁带半导体材料碳化硅(SiC)与氮化镓
(GaN)
在半导体行业的发展进程中,人们通常把Si和Ge元素半导体称为第一代电子材料,把GaAs、InP、InAs等化合物半导体称为第二代半导体材料,而把Ⅲ族氮化物(主要包括GaN、相关化合物InN、AIN及其合金)、SiC、InSe、金刚石等宽带隙的化合物半导体称为第三代半导体材料。

 图1:半导体
 半导体是一种介于导体与绝缘体之间的材料,我们生活的方方面面都离不开半导体技术,电器、灯光、手机、电脑、电子设备等都需要半导体材料制造,第三代半导体材料发展较好的为碳化硅(SIC)与氮化镓(GaN),其中碳化硅的发展更早一些。

 碳化硅晶体结构具有同质多型的特点,其基本结构是Si-C四面体结构。

它是由四个Si原子形成的四面体包围一个碳原子组成,按相同的方式一个Si原子也被四个碳原子的四面体包围,属于密堆积结构。

 氮化镓是氮和镓的化合物,是一种直接能隙的半导体,该化合物结构类似纤锌矿,硬度很高。

氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中。

 我们来看看氮化镓与碳化硅两者间的关键特性有什么区别。

 碳化硅与氮化镓的关键特性对比:
 关键特性
 单位。

相关文档
最新文档