人教部编版七年级数学上册《绝对值》精品课教案_8

合集下载

(名师整理)最新部编人教版历史7年级上册第8课《百家争鸣》精品课件

(名师整理)最新部编人教版历史7年级上册第8课《百家争鸣》精品课件

垫了中华民族文化精神根基的是( A )
A.儒家思想
B.道家思想
C.墨家思想
D.法家思想
6.主张治国要顺应自然和民心,人生应追求精神自由的思想家是( D ) A.老子 B.孟子 C.韩非 D.庄子
7.阅读材料,完成下列要求。 【图说历史】
( 1 )以上图中人物为主要代表的诸子百家掀起的一次思想解放风潮是什么?这 一局面的出现产生了什么影响? 百家争鸣。影响:促进了思想和学术的繁荣,成为中国古代第一次思想文化发展的 高峰,为中国古代文化的发展奠定了基础,对后世有十分重要而深远的影响。
学习了本课后,你有哪些收获和感想? 告诉大家好吗?
学派 人物 时代
主要思想
孔子 春秋 提倡“仁” 儒家
孟子 战国 “仁政”;“民贵君轻”;反对兼并战争
墨家 墨子 战国 “兼爱”、“非攻”;节俭
老子 春秋 事物包含对立的两方面 道家
庄子 战国 人应该顺其自然
法家 韩非 战国 建立中央集权;以法治国
8.辨别下列史实的正误,在该题前的括号内正确的打“√”;错误的打“×”,并加以改正。 【 √ 】( 1 )老子的学说集中在《老子》(又称《道德经》)一书中,这部书成为道 家的经典。 改正: 【 × 】( 2 )我国古代思想家中最早主张“仁者爱人”“有教无类”的是孟子。 改正: “孟子”改为“孔子” 【 × 】( 3 )商鞅变法确立县制,严明法度,体现了墨家思想。 改正: “墨家思想”改为“法家思想”
6.战国时期的百家争鸣,促进了我国古代学术思想的发展。其中儒家学派代表人 物荀子的主张是( D ) A.“无为而治” B.“兼爱”“非攻” C.“以法治国” D.实行“礼治” 7.美国著名历史学家费正清所著《中国:传统与变迁》一书把春秋战国称为“中国 哲学思想的黄金时代”。这是因为当时出现( C ) A.竞相改革的时代风潮 B.诸侯争霸局面 C.百家争鸣的活跃局面 D.商业繁荣局面

【班海精品】部编版语文七年级上册《8.《世说新语》二则 》【优质教案】

【班海精品】部编版语文七年级上册《8.《世说新语》二则 》【优质教案】

【班海精品】部编版语文七年级上册《8.《世说新语》二则》【优质教案】一. 教材分析《世说新语》是南朝时期所作的文言志人小说集,是魏晋南北朝时期“笔记小说”的代表作,坊间基本认为由南朝宋刘义庆所撰写,也有称是由刘义庆所门客编写。

又名《世说》。

其内容主要是记载东汉后期到晋宋间一些名士的言行与轶事。

二. 学情分析学生在小学阶段已经有了一定的文言文基础,通过预习,学生能借助注释和工具书理解文言文内容。

但七年级的学生刚进入初中,对于文言文的阅读还是有一定的难度,所以教师应引导学生学会借助注释和工具书,掌握学习文言文的方法。

三. 教学目标1.知识与技能:能够正确地朗读课文,了解《世说新语》的相关文学常识。

能够理解并翻译课文,积累文言词汇。

2.过程与方法:通过自主、合作、探究的学习方式,掌握学习文言文的方法。

提高学生朗读感悟和欣赏评价的能力。

3.情感态度与价值观:感受语言运用之妙,领会作品语言的风趣幽默,激发学生学习文言文的兴趣。

四. 教学重难点重点:能够正确地朗读课文,理解课文内容,积累文言词汇。

难点:掌握学习文言文的方法,领会作品语言的风趣幽默。

五. 教学方法情境教学法、引导发现法、讨论法。

六. 教学准备课文朗读录音、课文动画、PPT。

七. 教学过程1.导入(5分钟)上课之初,教师播放课文朗读录音,让学生初步感知课文。

教师提问:“同学们,你们知道录音中朗读的是哪篇文章吗?”引导学生回顾课文内容。

2.呈现(10分钟)教师出示PPT,展示《世说新语》的相关文学常识,如作者、成书时间、体裁等。

学生自主学习,了解《世说新语》的相关知识。

3.操练(10分钟)教师引导学生分角色朗读课文,注意语气、节奏的把握。

学生朗读课文,教师点评指导。

4.巩固(10分钟)教师出示PPT,展示课文中的重点字词,如“德行”“言语”等。

学生自主学习,借助注释和工具书理解字词含义。

教师讲解重点字词,引导学生巩固记忆。

5.拓展(10分钟)教师出示PPT,展示与《世说新语》相关的故事或名言。

绝对值教案初中

绝对值教案初中

绝对值教案初中教学目标:1. 理解绝对值的定义和性质;2. 学会求一个数的绝对值;3. 能够应用绝对值解决实际问题。

教学重点:1. 绝对值的定义和性质;2. 求一个数的绝对值的方法。

教学难点:1. 绝对值的应用。

教学准备:1. 教学课件或黑板;2. 练习题。

教学过程:一、导入(5分钟)1. 引入绝对值的概念,让学生思考绝对值是什么。

2. 引导学生思考绝对值与数轴的关系。

二、讲解绝对值的定义和性质(15分钟)1. 讲解绝对值的定义:绝对值是一个数在数轴上与原点的距离。

2. 讲解绝对值的性质:a. 任何数的绝对值都是非负数;b. 正数的绝对值是它本身;c. 负数的绝对值是它的相反数;d. 零的绝对值是零。

三、练习求绝对值(15分钟)1. 让学生练习求一些数的绝对值,如:3, -5, 0,2.5等。

2. 让学生解释求绝对值的方法和步骤。

四、绝对值的应用(15分钟)1. 让学生思考绝对值在实际问题中的应用,如:距离、温度等。

2. 给出一些实际问题,让学生应用绝对值解决,如:两地之间的距离、温度差等。

五、总结和复习(10分钟)1. 让学生总结绝对值的定义和性质。

2. 让学生复习求绝对值的方法。

六、布置作业(5分钟)1. 让学生做一些练习题,巩固所学的内容。

教学反思:本节课通过讲解绝对值的定义和性质,让学生掌握了绝对值的基本概念和方法。

通过练习求绝对值和应用绝对值解决实际问题,让学生加深了对绝对值的理解和应用。

在教学中,要注意引导学生思考绝对值与数轴的关系,以及绝对值在实际问题中的应用。

同时,也要注重学生的练习和巩固,提高学生的解题能力。

人教部编版七年级数学上册《 1.5 有理数的乘方 1.5.1乘方 用计算器计算有理数的乘方》精品课教案_8

人教部编版七年级数学上册《  1.5 有理数的乘方  1.5.1乘方  用计算器计算有理数的乘方》精品课教案_8

教学设计目录一、内容和内容解析 (1)二、目标和目标解析 (1)(一) 教学目标 (1)(二)目标解析 (2)三、教学问题诊断分析 (2)四、教学方法: (3)五、教具准备: (3)六、教与学互动设计: (3)创设情境,导入新课 (3)第一环节:自学质疑 (4)第二环节:合作释疑 (5)第三环节:展示评价 (6)第四环节:问题解决 (10)七、总结反思,拓展升华 (11)八、布置作业 (11)附教学设计说明1.5.1 乘方一、内容和内容解析1、内容:人教版七年级数学(上册)P41---P42 1.5.1 《乘方》第一课时2、内容解析:《乘方》选自人教版七年级数学上册。

它是在学习了有理数的加法、减法、乘法、除法运算的基础上,继续对有理数运算的学习。

从教材编排的结构上看,共需两个课时,本课为第一课时。

乘方是有理数的一种基本运算,它既是有理数乘法的推广与延续,又是后面有理数混合运算、科学记数法和开方的基础,对学生思维能力的发展和数学思想的形成具有重要的意义。

因此本节知识起到了承前启后、铺路架桥的作用。

二、目标和目标解析1、教学目标数学新课标指出“数学教学要促进学生全面、持续和谐地发展”,在这种新课程标准理念的指导下,我制定了本节课的四维目标:知识技能: (1)让学生理解并掌握有理数的乘方,幂,底数,指数概念;(2)能够正确进行有理数的乘方运算。

数学思考: (1)在生动的问题情景中领悟知识的生成过程,培养学生观察、分析、归纳、概括的能力;(2)经历从乘法到乘方的推导过程,体验数学的转化思想。

解决问题:(1)运用乘方的意义解决相关问题。

(2)体会解决问题策略的多样性,发展实践能力与创新意识.情感态度:(1)让学生在问题的产生、发展、解决过程中,树立信心,增强学习的积极性。

(2)让学生学习乘方精神,感受乘方魅力。

根据学生的认知水平、认知能力以及教材的特点,我确定了本节课的重点难点:重点:有理数乘方的意义及运算难点:乘方的运算及意义的探究2、目标解析“知识技能”与“数学思考”目标的表述由四个部分构成:A.对象;B.行为;C.条件;D.标准。

新人教版七年级数学上册全册教案新部编本[正式用)

新人教版七年级数学上册全册教案新部编本[正式用)

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校义务教育新课程标准人教版数学教案七年级上册2012—2013学年度教师:蔡弘哈密市第五中学第一章《有理数》单元备课一、单元(成章)教材分析:1、本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

理解。

2.本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。

教学目标1.知识与技能(1)、正数与负数的概念:(2)、有理数的分类:(3)、相反数、倒数、绝对值的概念(4)、数轴:(5)、有理数大小的比较:掌握比较两个有理数的大小的哪些方法(6)、有理数的乘方:掌握(1)a n(其中n是正整数)表示什么意思?其中a、n的名称分别是什么?(2)当a、n满足什么条件时,a n的值大于0?(7)、科学记数法、近似数和有效数字运算法则及运算律(1)、有理数的加法法则①同号两数相加,和取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③一个数与零相加仍得这个数;④两个互为相反数相加和为零。

(用符号表述:)(2)、有理数的减法法则:减去一个数等于加上这个数的相反数。

(3)、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零。

相反数与绝对值-2023年新七年级数学暑假精品课(人教版)(解析版)

相反数与绝对值-2023年新七年级数学暑假精品课(人教版)(解析版)

丰富的图形世界1、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类;2、经历展开与折叠、切截以及从不同方向看等数学活动,积累数学活动经验;3、在平面图形与几何体相互转换等的活动过程中,发展空间观念;4、通过丰富的实例,进一步认识点、线、面,了解有关点、线及某些平面图形的一些简单性质;5、初步体会从不同方向看同一物体时可能看到不同的图形,能识别简单物体的三视图(主视图、俯视图、和左视图),会画立方体极其简单组合体的三种视图;6、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;7、进一步丰富数学学习的成功体验,激发对空间与图形学习的好奇心,初步形成积极参与数学活动数学活动、主动与它让人合作交流的意识。

知识点1:立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.拓展:常见的立体图形有两种分类方法:2.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)拓展:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2:展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.知识点3:截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)考点1:认识立体图形例1.(2023•西城区一模)下面几何体中,是圆柱的是()A.B.C.D.【答案】B【解答】解:A、是正方体,故A不符合题意;B、是圆柱,故B符合题意;C、是圆锥,故C不符合题意;D、是球体,故D不符合题意;故选:B.【变式1-1】(2023春•渝中区校级月考)如图所示四个几何体中,棱锥是()A.B.C.D.【答案】A【解答】解:A选项是四棱锥;B选项是圆锥;C选项是圆柱;D选项是三棱柱.故选:A.【变式1-2】(2022秋•道里区期末)如图选项中的立体图形,表面没有曲面的是()A.B.C.D.【答案】D【解答】解:A.表面是曲面,故不符合题意;B.侧面是曲面,故不符合题意;C.侧面是曲面,故不符合题意;D.6个面都是平面,没有曲面,符合题意.故选:D.【变式1-3】(2022秋•二七区期末)如图中柱体的个数是()A.3 B.4 C.5 D.6【答案】C【解答】解:柱体分为圆柱和棱柱,所以图中的柱体有①③④⑤⑥,共5个.故选:C.考点二:点、线、面、体例2.(2022秋•沅江市期末)下图所示的4个几何体中,由5个面围成的是()A.B.C.D.【答案】D【解答】解:A是由3个面围成的;B有2个面围成的;C是6个面围成的;D有5个面围成的.故选:D.【变式2-1】(2022秋•荔湾区期末)如图平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.【答案】A【解答】解:由“面动成体”可知,将直角三角形绕着一条直角边旋转一周,所得到的几何体是圆锥.故选:A.【变式2-2】(2022秋•文登区期末)几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是()A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动【答案】C【解答】解:A、打开折扇,属于线动成面,本选项不符合题意;B、流星划过夜空,属于点动成线,本选项不符合题意;C、旋转门的旋转,属于面动成体,本选项符合题意;D、汽车雨刷的转动,属于线动成面,本选项不符合题意.故选:C.【变式2-3】(2022秋•湖北期末)将最左边的图形绕直线l旋转一周后得到的图形是()A.B.C.D.【答案】D故选:D.考点三:几何体的展开图例 3.(2023•衡水三模)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【解答】解:选项A、C、D均可能是该直棱柱展开图,不符合题意,而选项B中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:B.【变式3-1】(2023•房山区一模)如图是某几何体的展开图,该几何体是()A.长方体B.四棱锥C.三棱柱D.正方体【答案】A【解答】解:由题意知,图中展开图为长方体的展开图.故选:A.【变式3-2】(2022秋•广阳区期末)如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆柱,圆锥,四棱柱,正方体B.四棱锥,圆锥,正方体,圆柱C.圆柱,圆锥,正方体,三棱锥D.圆柱,圆锥,三棱柱,正方体【答案】D【解答】解:根据图形得:圆柱,圆锥三棱柱,正方体,故选:D.【变式3-3】(2022秋•姑苏区校级期末)如图是一个几何体的侧面展开图,则该几何体是()A.三棱柱B.三棱锥C.五棱柱D.五棱锥【解答】解:由题意可知,该几何体为五棱锥,所以它的底面是五边形.故选:D.考点四:正方体相对两个面的文字例4.(2022秋•沈丘县期末)如图,是一个正方体的表面展开图,则“2”所对的面是()A.0 B.9 C.快D.乐【答案】B【解答】解:“222”这种展开图的对应面的特征是:14,25,36,也就是2与9,0与快,1与乐相对.故选:B.【变式4-1】(2023•确山县三模)“从明天起,做一个幸福的人,喂马,劈柴,周游世界”.如图所示,已知一个正方体展开图六个面依次书写“明”“天”“喂”“马”“劈”“柴”,则折叠后与“明”相对的是()A.天B.马C.劈D.柴【答案】D【解答】解:根据正方体的展开图可知:折叠后与“明”相对的是“柴”.故选:D.【变式4-2】(2023•武邑县二模)如图所示的正方体,它的展开图可能是下列四个选项中的()A.B.C.D.【答案】C【解答】解:由题意知,图形折叠后是,故选:C.考点五:判断展开图标记物的位置例5.(2023•市北区二模)如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是()A.B.C.D.【答案】B【解答】解:由题意知,图形经过折叠能围成题中正方体纸盒,故选:B.【变式5-1】(2022秋•东西湖区期末)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.【答案】C【解答】解:由立体图可知,圆、小正方形、三角形所在的正方形有公共顶点,题目中的4个答案图,只有C图中折三个小图形有公共顶点,故选:C.【变式5-2】(2022秋•黄岛区校级月考)将如图围成一个正方体,这个正方体应是()A.B.C.D.【答案】D【解答】解:观察图形可知,两个带圆圈图案的面相对,所以A,B错误;C中,黑色三角形的位置错误.所以正确的正方体是D.故选:D.【变式5-3】(2021春•民权县期末)如图图形是立方体的表面展开图,把它折叠成立方体.它会变成()A.B.C.D.【答案】C【解答】解:根据展开图中各种符号的特征和位置,可得能变成的是C.故选:C.考点六:截一个几何体例6.(2022秋•新兴县期末)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.B.C.D.【答案】D故选:D.【变式6-1】(2022秋•高新区期末)用一个平面去截一个三棱柱,截面的形状不可能是()A.B.C.D.【答案】C【解答】解:A、当截面与底面平行时,得到的截面的形状可能是该图形,故不符合题意;B、当截面与侧面平行时,截面就是长方形,故不符合题意;C、无论如何去截截面,截面的形状不可能是圆形.故符合题意;D、当截面与轴截面斜交时,得到的截面的形状可能是梯形,故不符合题意.故选:C.【变式6-2】(2022秋•锦江区期末)一个正方体的截面不可能是()A.三角形B.四边形C.五边形D.七边形【答案】见试题解答内容【解答】解:用平面去截正方体,得出截面可能为三角形、四边形、五边形、六边形,不可能为七边形,故选:D.【变式6-3】(2022秋•青白江区期末)用一个平面去截下列几何体,截面一定是圆的是()A.B.C.D.【答案】D【解答】解:球体无论怎样去截,其截面一定是圆形的.故选:D.考点七:判断正方体的个数例7.(2023•抚远市二模)在桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的最少个数为()A.5个B.8个C.10个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.【变式7-1】(2022秋•兴化市校级期末)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.5个B.6个C.7个D.8个【答案】A【解答】解:由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是5.故选:A.【变式7-2】(2023•乐东县一模)用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】B则这个几何体可能是.故选:B.考点八:由三视图判断几何体例8.(2023•邢台一模)某个几何体的三视图如图所示,该几何体是()A.B.C.D.【答案】B【解答】解:根据俯视图知第一层有3个,前面一排有2个,故排除掉A、C选项,根据主视图和左视图知第二层第一列有1个,排除掉D,故选:B.【变式8-1】(2023•灞桥区模拟)某几何体的三视图如图所示,则该几何体是()A.B.C.D.D【答案】D【解答】解:由三视图可知该几何体是.故选:D.【变式8-2】(2023•钦州一模)如图是一个几何体的主视图和俯视图,则该几何体为()A.B.C.D.【答案】B【解答】解:A.该几何体的主视图是三角形,故本选项不符合题意;B.该几何体的主视图是一行相邻的矩形,俯视图是三角形,故本选项符合题意;C.该几何体的俯视图是矩形,故本选项不符合题意;D.该几何体的主视图是等腰三角形,俯视图是圆(带圆心),故本选项不符合题意.故选:B.考点九:由几何体判断三视图例9.(2023•五华区校级模拟)下列简单几何体中,俯视图是四边形的是()A.B.C.D.【答案】D【解答】解:A.三棱柱的俯视图是三角形,因此选项A不符合题意;B.三棱锥的俯视图是三角形的,因此选项B不符合题意;C.圆锥的俯视图是圆形,因此选项C不符合题意;D.四棱锥的俯视图是矩形,因此选项D符合题意;故选:D.【变式9-1】(2023•光山县校级二模)如图放置的正六棱柱,其俯视图是()A.B.C.D.【答案】C【解答】解:由题图,可知该正六棱柱的主视图为:.故选:C.【变式9-2】(2023•武汉模拟)如图,下列几何体中,主视图、俯视图,左视图都一样的是()A.正方体B.三棱柱C.圆柱D.圆台【答案】A【解答】解:A、正方体的三视图都是正方形,故此选项符合题意;B、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;C、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故此选项不符合题意;D、圆台的主视图是等腰梯形,左视图是等腰梯形,俯视图是同心圆(内圆是虚线),故此选项不符合题意;故选:A.考点十:画几何体三个方向的图形例10.(2022秋•吉州区期末)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【答案】见试题解答内容【解答】解:主视图,左视图如图所示:【变式10-1】(2022秋•抚州期末)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.【答案】见试题解答内容【解答】解:【变式10-2】(2022秋•济南期末)如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有个小正方体.【答案】见试题解答内容【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.1.(2022•阿坝州)如图所示的几何体由3个小正方体组合而成,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上边看就是横着的2个小正方形.故选:C.2.(2022•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:由题意知,几何体的俯视图为:故选:C.3.(2022•淄博)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是()A.B.C.D.【答案】C【解答】解:A、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;B B不符合题意;C、因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;D、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意;故选:C.4.(2022•阜新)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.【答案】C【解答】解:A.俯视图是带圆心的圆,左视图是等腰三角形,故本选项不合题意;B.俯视图是圆,左视图是矩形,故本选项不合题意;C.俯视图与左视图都是正方形,故本选项符合题意;D.俯视图是三角形,左视图是矩形,故本选项不合题意.故选:C.5.(2022•襄阳)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【答案】A故选:A.6.(2022•菏泽)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.【答案】A【解答】解:这个几何体的主视图如下:故选:A.7.(2022•六盘水)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④【答案】A【解答】解:如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是①,故选:A.8.(2022•安顺)某几何体如图所示,它的俯视图是()A.B.C.D.【答案】D【解答】解:从上面看该几何体,是两个同心圆,故选:D.9.(2022•钢城区)如图是某几何体的三视图,该几何体是()【答案】A【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,故选:A.10.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.11.(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7 B.8 C.9 D.10【答案】B【解答】解:从俯视图可看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.故选:B.12.(2022•包头)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形A.3 B.4 C.6 D.9【答案】B【解答】解:由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4,故选:B.13.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.14.(2021•日照)一张水平放置的桌子上摆放着若干个碟子,其三视图如图所示,则这张桌子上共有碟子的个数为()【答案】B【解答】解:从俯视图可知该桌子共摆放着三列碟子.主视图可知左侧碟子有6个,右侧有2个,而左视图可知左侧有4个,右侧与主视图的左侧碟子相同,共计12个,故选:B.1.(2022秋•姑苏区校级期末)下列几何体中,是棱锥的为()A.B.C.D.【答案】CA.圆柱;B.圆锥;C.四棱锥;D.球;故选:C.2.(2022秋•零陵区期末)下面的立体图形按从左到右的顺序依次是()A.长方体、圆柱、圆锥、正方体B.长方体、圆柱、球、正方体C.棱柱、棱柱、球、正方体D.长方体、棱柱、圆锥、棱柱【答案】B【解答】解:下面的立体图形按从左到右的顺序依次是:长方体、圆柱、球、正方体.3.(2022秋•灵宝市期末)汽车的雨刷把玻璃上的雨雪刷干净属于以下哪项几何知识的实际应用()A.点动成线B.线动成面C.面动成体D.以上答案都正确【答案】B【解答】解:汽车的雨刷把玻璃上的雨雪刷干净,应是线动成面.故选:B.4.(2022秋•平谷区期末)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释()A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线【答案】C【解答】解:由平面图形变成立体图形的过程是面动成体,故选:C.5.(2023•湖北二模)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱【答案】D【解答】解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故选:D.6.(2022秋•文登区期末)下列图形中,不是正方体展开图的是()A.B.C.D.【答案】D【解答】解:A、B、C都可以折叠成正方体,7.(2022秋•滕州市校级期末)如图,是正方体的展开图的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:由正方体展开图的特征可知,从左数第3、4个图形可以拼成一个正方体,第1个图形有两个面重复,第2个图形是凹字格,故不是正方体的展开图.正方体的展开图的有2个.故选:B.8.(2022秋•上杭县期末)把一个立体图形展开成平面图形,其形状如图所示,则这个立体图形是()A.B.C.D.【答案】B【解答】解:展开图中三个长方形是棱柱的三个侧面;两个三角形是棱柱的两个底面,所以这个立体图形是三棱柱.故选:B.9.(2023•中原区校级三模)下面的平面展开图与图下方的立体图形名称不相符的是()A.三棱锥B.长方体C.正方体D.圆柱体【答案】A【解答】解:选项A中的图形,折叠后形成的几何体是三棱柱,不是三棱锥,因此选项A符合题意;选项B的图形折叠后成为长方体,因此选项B不符合题意;选项D的图形折叠后成为圆柱体,因此选项D不符合题意;故选:A.10.(2023•通州区一模)如图是某个几何体的表面展开图,则这个几何体是()A.长方体B.三棱柱C.三棱锥D.四棱锥【答案】B【解答】解:观察图形可知,展开图是由三个全等的矩形,和两个全等的三角形构成,符合三棱柱的展开图特征,∴这个几何体是三棱柱.故选:B.11.(2022秋•历城区期末)用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.【答案】B【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.12.(2023•川汇区二模)如图,是由7个相同的小正方体组成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】A【解答】解:从左面看易得第一层有3个正方形,第二层最右边和中间都有1个正方形.故选:A.13.(2023•上杭县模拟)下列几何体中,主视图可能是三角形的是()A.球体B.圆柱C.圆锥D.长方体【答案】C【解答】解:球的主视图是圆,故A选项不合题意;圆柱的主视图是矩形(或圆),故B选项不合题意,圆锥的主视图可能是等腰三角形,故C选项符合题意,长方体的主视图是长方形(或正方形),故D选项不合题意.故选:C.14.(2023•通许县一模)下列几何体中,左视图和俯视图都为矩形的是()A.B.C.D.【答案】D【解答】解:A、左视图与俯视图分别为,不符合题意;B、左视图与俯视图分别为,不符合题意;C、左视图与俯视图分别为,不符合题意;D、左视图与俯视图分别为,符合题意;故选:D.15.(2022秋•开江县期末)正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为cm3.(结果保留π)【答案】27π.【解答】解:根据题意可知,将正方形旋转一周,所得几何体是底面半径为3cm,高为3cm的圆柱体,所以体积为:π×32×3=27π(cm3),故答案为:27π.16.(2022秋•仙游县期末)已知正方体的一个平面展开图如图所示,则在原正方体上“庆”的对面是.【答案】年.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“庆”的对面是“年”.故答案为:年.17.(2022秋•莱州市期末)如图,一个正方体截去一个角后,截面的形状是.【答案】等边三角形.【解答】解:由题意知,截面的形状是等边三角形,18.(2022秋•市中区期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【答案】见解答.【解答】解:如图所示:。

人教版七年级数学上册:1.2.4 绝对值 说课稿

人教版七年级数学上册:1.2.4 绝对值  说课稿

绝对值说课稿这节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计6个方面进行分析,其中教学过程设计将是我阐述的重点,将从六个方面进行说明。

首先我们来分析教材,绝对值是人教版初中数学七年级上册第一章第二节第四部分的内容。

教材之所以要把它安排在此处,是基于以下两个方面的考虑,其一:学生自小学就有了距离的概念,进入初中以来,他们又相继学习了有理数、数轴、相反数,也就是说学生到此时已经具有了接受绝对值相关知识的基础。

其二:通过对绝对值知识的掌握,能为紧接其后的有理数加法法则、有理数混合运算做好铺垫,。

因此,我认为教材把绝对值安排在此处,是起到了承前启后、承上启下的作用。

学情分析:学生基础:学生已具有了数轴,相反数等相关知识,初步体会过数形结合的思想方法。

能力:掌握了一定的讨论,探究的学习方法,但知识的概括能力较弱,逻辑推理能力有待进一步提升。

基于以上的情况我确定这节课的重点是绝对值的意义和绝对值的性质。

难点是绝对值意义的理解和性质的探究。

尤其绝对值的意义是学生学习的一个难点。

因为数轴上表示一个数的点到原点的距离都为正数或者是0,它不可能为负数。

但是在引进了负数以后,学生对数轴上表示负数的点到原点的距离也为正数这一事实就会感到困惑。

因此,在理解绝对值意义的时候,就有一定的难度。

由于初一学生的抽象思维还有待发展,其思维活动在很大程度上还有赖感性材料的支持,因此根据学生的认知特征以及教材和大纲的要求我又制定了如下的教学目标。

1、认知目标:利用数形结合思想理解绝对值的意义,利用分类讨论思想掌握绝对值的性质,会求一个数的绝对值。

2、能力目标:通过教学让学生养成主动探究、获取知识的习惯,培养分析,解决问题的能力,培养发散思维,渗透数形结合、分类讨论的数学思想方法。

3、情感目标:在绝对值意义和性质的探索、完善与应用过程中体验探索、创造和成功的乐趣,增强好奇心和探索欲。

激发学生对数学问题的兴趣,使学生了解数学知识的功能和价值,形成主动学习的态度。

【人教部编版】七年级上语文8《世说新语二则》优质精品课课堂教学教案

【人教部编版】七年级上语文8《世说新语二则》优质精品课课堂教学教案

【人教部编版】七年级上语文8《世说新语二则》优质精品课课堂教学教案一. 教材分析《世说新语二则》是人教部编版七年级上册语文教材中的一篇课文,主要包括了两则古代笑话故事,分别是《杨氏之子》和《咏雪》。

这两则故事以幽默诙谐的方式,展示了古代人物的性格特点和智慧。

通过学习这两则故事,学生可以了解到古代社会的风貌,提高自己的文学素养,同时也能够锻炼自己的阅读理解和写作能力。

二. 学情分析七年级的学生已经具备了一定的阅读理解能力,但对于古代文学作品的理解可能还存在一定的困难。

因此,在教学过程中,需要注重对文言文语言的解读,帮助学生理解课文内容。

同时,学生对于幽默诙谐的故事具有较强的兴趣,可以通过引导学生分析故事中的幽默元素,激发学生的学习兴趣。

三. 教学目标1.知识与技能:能够正确地朗读和背诵课文,掌握课文中的重点词语和句式,理解课文的大意。

2.过程与方法:通过分析课文中的幽默元素,培养学生欣赏幽默文学作品的能力。

3.情感态度与价值观:通过学习课文,使学生了解古代社会的风貌,提高自己的文学素养,培养积极向上的人生态度。

四. 教学重难点1.重点:正确地朗读和背诵课文,掌握课文中的重点词语和句式。

2.难点:理解课文的大意,欣赏课文中的幽默元素。

五. 教学方法1.情境教学法:通过设置相关的情境,让学生更好地理解和感受课文内容。

2.引导发现法:引导学生通过自主学习,发现课文中的重点词语和句式。

3.幽默教学法:通过幽默诙谐的方式,激发学生的学习兴趣。

六. 教学准备1.课文朗读录音:用于引导学生正确地朗读课文。

2.课文翻译和解析:用于帮助学生理解课文内容。

3.教学PPT:用于呈现课文中的重点词语和句式。

七. 教学过程1.导入(5分钟)利用幽默的故事或者笑话,引发学生的兴趣,然后引入今天要学习的《世说新语二则》。

2.呈现(10分钟)教师朗读课文,学生跟读。

在朗读过程中,教师引导学生注意停顿和语气。

然后,教师呈现课文的翻译和解析,帮助学生理解课文内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《绝对值》教学设计
学习目标:
1、理解、掌握绝对值概念.体会绝对值的作用与意义
2、掌握求一个已知数的绝对值和有理数大小比较的方法.
3、体验运用直观知识解决数学问题的成功.
学习重点:绝对值的概念
学习难点:绝对值的概念与两个负数的大小比较
教学过程
一、学前准备
问题:如下图
小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线 (填相同或不相同),他们行走的距离(即路程远近)
二、合作探究、归纳
1、由上问题可以知道,10到原点的距离是 ,-10到原点的距离也是
到原点的距离等于10的数有个,它们的关系是一对 .
这时我们就说10的绝对值是10,-10的绝对值也是10.
例如,-3.8的绝对值是3.8;17的绝对值是17;-6 的绝对值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣
2、练习
1)、式子∣-5.7∣表示的意义是 .
2)、-2的绝对值表示它离开原点的距离是个单位,记作 .
3)、∣24∣= . ∣-3.1∣= ,∣- ∣= ,∣0∣= .
3、思考、交流、归纳
由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 .
用式子表示就是:
1)、当a是正数(即a>0)时,∣a∣= ;
2)、当a是负数(即a<0)时,∣a∣= ;
3)、当a=0时,∣a∣= .
4、随堂练习 P12第1、2大题(直接做在课本上)
5、阅读思考,发现新知
阅读P12问题-P13第12行,你有什么发现吗?
在数轴上表示的两个数,右边的数总要左边的数。

(1页) 也就是:1)、正数 0,负数 0,正数大于负数.
2)、两个负数,绝对值大的 .
三、巩固新知,灵活应用
1、例题 P13
2、比较下列各对数的大小:-3和-5; -2.5和-∣-2.25∣
四、学习体会
1、怎样求一个数的绝对值?
2、怎样比较有理数的大小?
五、自我测试
1. ; ; .
2. ; ; .
3. ; .
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是 ,那么这个数为______.
6.绝对值等于4的数是______.
7、比较大小; 0.3 -564;- -
8.绝对值等于其相反数的数一定是…………………………………( )
A.负数
B.正数
C.负数或零
D.正数或零
9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.
其中正确的有…………………………………………………( )
A.0个
B.1个
C.2个
D.3个
拓展练习(有困难同学可以不做)
1.如果 ,则的取值范围是…………………………( )
A. >O
B. ≥O
C. ≤O
D. <O
2. ,则 ; ,则 .
3.如果 ,则 , .
4.绝对值不大于11.1的整数有……………………………………( )
A.11个
B.12个
C.22个
D.23个
六、P15第4、5题。

相关文档
最新文档