高中物理 必修2 万有引力与航天习题课

合集下载

2017-2018学年高中物理第六章万有引力与航天习题课2变轨问题双星问题教学案新人教版必修2

2017-2018学年高中物理第六章万有引力与航天习题课2变轨问题双星问题教学案新人教版必修2

习题课2 变轨问题双星问题[学习目标] 1.理解赤道物体、同步卫星和近地卫星的区别.2.会分析卫星(或飞船)的变轨问题.3.掌握双星的运动特点及其问题的分析方法.一、“赤道上物体”“同步卫星”和“近地卫星”的比较例1如图1所示,A为地面上的待发射卫星,B为近地圆轨道卫星,C为地球同步卫星.三颗卫星质量相同,三颗卫星的线速度大小分别为v A、v B、v C,角速度大小分别为ωA、ωB、ωC,周期分别为T A、T B、T C,向心加速度分别为a A、a B、a C,则( )图1A.ωA=ωC<ωBB.T A=T C<T BC.v A=v C<v BD.a A=a C>a B答案 A解析同步卫星与地球自转同步,故T A=T C,ωA=ωC,由v=ωr及a=ω2r得v C>v A,a C>a A同步卫星和近地卫星,根据GMmr2=mv2r=mω2r=m4π2T2r=ma,知v B>v C,ωB>ωC,T B<T C,a B>a C.故可知v B>v C>v A,ωB>ωC=ωA,T B<T C=T A,a B >a C >a A .选项A 正确,B 、C 、D 错误.同步卫星、近地卫星、赤道上物体的比较1.同步卫星和近地卫星相同点:都是万有引力提供向心力即都满足GMm r 2=m v 2r =mω2r =m 4π2T2r =ma n .由上式比较各运动量的大小关系,即r 越大,v 、ω、a n 越小,T 越大. 2.同步卫星和赤道上物体 相同点:周期和角速度相同 不同点:向心力来源不同 对于同步卫星,有GMm r2=ma n =mω2r 对于赤道上物体,有GMm r2=mg +mω2r , 因此要通过v =ωr ,a n =ω2r 比较两者的线速度和向心加速度的大小.针对训练1 (多选)关于近地卫星、同步卫星、赤道上的物体,以下说法正确的是( ) A.都是万有引力等于向心力B.赤道上的物体和同步卫星的周期、线速度、角速度都相等C.赤道上的物体和近地卫星的线速度、周期不同D.同步卫星的周期大于近地卫星的周期 答案 CD解析 赤道上的物体是由万有引力的一个分力提供向心力,A 项错误;赤道上的物体和同步卫星有相同周期和角速度,但线速度不同,B 项错误;同步卫星和近地卫星有相同的中心天体,根据GMm r 2=m v 2r =m 4π2T 2r 得v =GMr ,T =2π r 3GM,由于r 同>r 近,故v 同<v 近,T 同>T 近,D 项正确;赤道上物体、近地卫星、同步卫星三者间的周期关系为T 赤=T 同>T 近,根据v =ωr 可知v 赤<v 同,则线速度关系为v 赤<v 同<v 近,故C 项正确. 二、人造卫星的变轨问题 1.卫星的变轨问题卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.(1)当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.(2)当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.以上两点是比较椭圆和圆轨道切点速度的依据. 2.飞船对接问题(1)低轨道飞船与高轨道空间站对接如图2甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.图2(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例2 如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B解析 卫星在圆轨道上做匀速圆周运动时有:G Mm r 2=m v 2r ,v = GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度,D 项错误.判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断.(2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小.(3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析.(4)判断卫星的加速度大小时,可根据a =Fm =G M r2判断.针对训练2 (多选)如图4所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P 点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P 点,远地点为同步圆轨道上的Q 点),到达远地点Q 时再次变轨,进入同步轨道.设卫星在近地圆轨道上运行的速率为v 1,在椭圆形转移轨道的近地点P 点的速率为v 2,沿转移轨道刚到达远地点Q 时的速率为v 3,在同步轨道上的速率为v 4,三个轨道上运动的周期分别为T 1、T 2、T 3, 则下列说法正确的是( )图4A.在P 点变轨时需要加速,Q 点变轨时要减速B.在P 点变轨时需要减速,Q 点变轨时要加速C.T 1<T 2<T 3D.v 2>v 1>v 4>v 3 答案 CD解析 卫星在椭圆形转移轨道的近地点P 时做离心运动,所受的万有引力小于所需要的向心力,即G Mm r 1 2<m v 2 2r 1,而在圆轨道时万有引力等于向心力,即G Mm r 1 2=m v 12r 1,所以v 2>v 1;同理,由于卫星在转移轨道上Q 点做离心运动,可知v 3<v 4,故选项A 、B 错误;又由人造卫星的线速度v =GMr可知v 1>v 4,由以上所述可知选项D 正确;由于轨道半径r 1<r 2<r 3,由开普勒第三定律r 3T2=k (k 为常量)得T 1<T 2<T 3,故选项C 正确.三、双星问题例3 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图5所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,求双星的运行轨道半径r 1和r 2及运行周期T .图5答案 r 1=Lm 2m 1+m 2 r 2=Lm 1m 1+m 2 T =4π2L3G (m 1+m 2)解析 双星间的引力提供了各自做圆周运动的向心力 对m 1:Gm 1m 2L2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L , 解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2. 由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L3G (m 1+m 2).1.双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点. (2)两星的向心力大小相等,由它们间的万有引力提供. (3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .2.双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2.针对训练 3 如图6所示,两个星球A 、B 组成双星系统,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.已知A 、B 星球质量分别为m A 、m B ,万有引力常量为G ,求L 3T2(其中L 为两星中心距离,T 为两星的运动周期).图6答案G (m A +m B )4π2解析 设A 、B 两个星球做圆周运动的半径分别为r A 、r B .则r A +r B =L ,对星球A :G m A m B L 2=m A r A 4π2T 2,对星球B :G m A m B L 2=m B r B 4π2T 2,联立以上三式求得L 3T 2=G (m A +m B )4π2.1.(“同步卫星”与“赤道物体”及近地卫星的比较)(多选)如图7所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )图7A.a 1a 2=rR B.a 1a 2=(R r)2C.v 1v 2=r RD.v 1v 2=R r答案 AD解析 地球同步卫星:轨道半径为r ,运行速率为v 1,向心加速度为a 1; 地球赤道上的物体:轨道半径为R ,随地球自转的向心加速度为a 2; 以第一宇宙速度运行的卫星为近地卫星,其轨道半径为R . 对于卫星,其共同特点是万有引力提供向心力,则G Mm r 2=m v 2r ,故 v 1v 2=Rr. 对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,则a =ω2r ,故 a 1a 2=r R.2.(卫星的变轨问题) (多选)肩负着“落月”和“勘察”重任的“嫦娥三号”沿地月转移轨道直奔月球,如图8所示,在距月球表面100 km 的P 点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P 点又经过第二次“刹车制动”,进入距月球表面100 km 的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P 点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是( )图8A.“嫦娥三号”在轨道Ⅰ上运动的周期最长B.“嫦娥三号”在轨道Ⅲ上运动的周期最长C.“嫦娥三号”经过P 点时在轨道Ⅱ上运动的线速度最大D.“嫦娥三号”经过P 点时,在三个轨道上的加速度相等 答案 AD解析 由于“嫦娥三号”在轨道Ⅰ上运动的半长轴大于在轨道Ⅱ上运动的半径,也大于轨道Ⅲ的半长轴,根据开普勒第三定律可知,“嫦娥三号”在各轨道上稳定运行时的周期关系为T Ⅰ>T Ⅱ>T Ⅲ,故A 正确,B 错误;“嫦娥三号”在由高轨道降到低轨道时,都要在P 点进行“刹车制动”,所以经过P 点时,在三个轨道上的线速度关系为v Ⅰ>v Ⅱ>v Ⅲ,所以C 错误;由于“嫦娥三号”在P 点时的加速度只与所受到的月球引力有关,故D 正确.3.(双星问题) 如图9所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图9A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度为ω,据万有引力定律和牛顿第二定律得Gm 1m 2L2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2 所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω,故v 1∶v 2=r 1∶r 2=2∶3. 综上所述,选项C 正确.课时作业一、选择题(1~6为单项选择题,7~10为多项选择题)1.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知万有引力常量为G ,由此可求出S 2的质量为( ) A.4π2r 2(r -r 1)GT2B.4π2r 13GT 2C.4π2r3GT 2D.4π2r 2r 1GT2答案 D解析 设S 1和S 2的质量分别为m 1、m 2,对于S 1有G m 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1,得m 2=4π2r 2r 1GT 2.2.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2 其中:r 1+r 2=L 故r 1=m 2m 1+m 2L r 2=m 1m 1+m 2L故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误.3. 如图1所示,地球赤道上的山丘e 、近地卫星p 和同步卫星q 均在赤道平面上绕地心做匀速圆周运动.设e 、p 、q 的线速度大小分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则( )图1A.v 1>v 2>v 3B.v 1<v 2<v 3C.a 1>a 2>a 3D.a 1<a 3<a 2答案 D解析 卫星的速度v =GMr,可见卫星距离地心越远,即r 越大,则线速度越小,所以v 3<v 2.q 是同步卫星,其角速度ω与地球自转角速度相同,所以其线速度v 3=ωr 3>v 1=ωr 1,选项A 、B 均错误.由G Mm r 2=ma n ,得a n =GM r2,同步卫星q 的轨道半径大于近地卫星p 的轨道半径,可知向心加速度a 3<a 2.由于同步卫星q 的角速度ω与地球自转的角速度相同,即与地球赤道上的山丘e 的角速度相同,但q 的轨道半径大于e 的轨道半径,根据a =ω2r 可知a 1<a 3.根据以上分析可知,选项D 正确,选项C 错误.4.设地球半径为R ,a 为静止在地球赤道上的一个物体,b 为一颗近地绕地球做匀速圆周运动的人造卫星,c 为地球的一颗同步卫星,其轨道半径为r .下列说法中正确的是( ) A.a 与c 的线速度大小之比为r R B.a 与c 的线速度大小之比为R rC.b 与c 的周期之比为r RD.b 与c 的周期之比为R rR r答案 D解析 物体a 与同步卫星c 角速度相等,由v =rω可得,二者线速度大小之比为R r,选项A 、B 均错误;而b 、c 均为卫星,由T =2πr 3GM 可得,二者周期之比为R r Rr,选项C 错误,D 正确.5.如图2所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是( )图2A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 3 答案 D解析 根据万有引力提供向心力,即GMm r 2=ma n 得:a n =GMr2,由图可知r 1<r 2=r 3,所以a 1>a 2=a 3;当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,所以v 3>v 2,根据GMm r 2=mv 2r得:v =GMr,又因为r 1<r 3,所以v 1>v 3,故v 1>v 3>v 2.故选D.6.如图3,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1、a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的是( )图3A.a 2>a 3>a 1B.a 2>a 1>a 3C.a 3>a 1>a 2D.a 3>a 2>a 1答案 D7.如图4,航天飞机在完成太空任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有( )图4A.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的向心加速度小于在轨道Ⅰ上经过A 的向心加速度 答案 ABC8.我国发射的“北斗系列”卫星中同步卫星到地心距离为r ,运行速率为v 1,向心加速度为a 1;在地球赤道上的观测站的向心加速度为a 2,近地卫星做圆周运动的速率为v 2,向心加速度为a 3,地球的半径为R ,则下列比值正确的是( )A.a 1a 2=r RB.a 2a 3=R 3r 3C.a 1a 3=r RD.a 1a 2=R 2r2 答案 AB解析 由于在地球赤道上的观测站的运动和同步卫星的运动具有相同的角速度,根据a n =rω2可知a 1a 2=rR ,A 项正确,D 项错误;再根据近地卫星做圆周运动的向心加速度为a 3,由万有引力定律和牛顿第二定律F =GMm r 2=ma n 可知a 1a 3=R 2r 2,由a 1a 3=R 2r 2,a 1a 2=r R 知a 2a 3=R 3r3,因此B 项正确,C 项错误.9.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起.如图5所示,某双星系统中A 、B 两颗天体绕O 点做匀速圆周运动,它们的轨道半径之比r A ∶r B =1∶2,则两颗天体的( )图5A.质量之比m A ∶m B =2∶1B.角速度之比ωA ∶ωB =1∶2C.线速度大小之比v A ∶v B =1∶2D.向心力大小之比F A ∶F B =2∶1 答案 AC解析 双星都绕O 点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A 星:G m A m B L2=m A ω2r A ① 对B 星:Gm A m B L2=m B ω2r B ② 联立①②得m A ∶m B =r B ∶r A =2∶1.根据双星的条件有:角速度之比ωA ∶ωB =1∶1,由v =ωr 得线速度大小之比v A ∶v B =r A ∶r B =1∶2,向心力大小之比F A ∶F B =1∶1,选项A 、C 正确,B 、D 错误.10. 如图6所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )图6A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c2r c ,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b2r b,它将偏离原轨道,做向心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 二、非选择题11.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图7所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,求:图7(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面重力提供向心力,有mg =GMm R 2① 根据牛顿第二定律有:GMm(R +h 1)2=ma A ② 由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)飞船在预定圆轨道上飞行时由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③ 由题意可知,飞船在预定圆轨道上运行的周期为T =tn④由①③④式联立解得h 2=3gR 2t 24n 2π2-R . 12.太阳系以外存在着许多恒星与行星组成的双星系统,它们运行的原理可以理解为:质量为M 的恒星和质量为m 的行星(M >m )在它们之间的万有引力作用下有规律地运动着.如图8所示,我们可认为行星在以某一定点C 为中心、半径为a 的圆周上做匀速圆周运动(图中没有表示出恒星).设万有引力常量为G ,恒星和行星的大小可忽略不计.图8(1)试在图中粗略画出恒星运动的轨道和位置; (2)试计算恒星与点C 间的距离和恒星的运行速率v . 答案 见解析解析 (1)恒星运动的轨道和位置大致如图.(2)对行星m :F =mω2a ① 对恒星M :F ′=Mω2R M ②根据牛顿第三定律,F 与F ′大小相等 由①②得:R M =mMa对恒星M :Mv 2R M =G Mm(a +R M )2代入数据得:v =mM +mGMa.。

【单元练】2021年高中物理必修2第七章【万有引力与宇宙航行】习题(答案解析)

【单元练】2021年高中物理必修2第七章【万有引力与宇宙航行】习题(答案解析)

一、选择题1.下列说法中错误的是( )A .在同一均匀介质中,红光的传播速度比紫光的传播速度大B .蜻蜓的翅膀在阳光下呈现彩色是由于薄膜干涉C .应用多普勒效应可以计算出宇宙中某星球靠近或远离我们的速度D .狭义相对性原理指出,在不同的参考系中,一切物理规律都是相同的D 解析:DA .对于同一介质,红光比紫光的折射率小,即n n <红紫由c v n=可知红光的传播速度比紫光的传播速度大,故A 正确,不符合题意; B .蜻蜓的翅膀在阳光下呈现彩色是由于薄膜干涉,故B 正确,不符合题意;C .宇宙中的星球都在不停地运动,测量星球上某些元素发出的光波的频率,然后与地球上这些元素静止时发出的光波的频率对照,就可以算出星球靠近或远离我们的速度,故C 正确,不符合题意;D .狭义相对性原理指出,在不同的惯性参考系中,一切物理规律都是相同的,故D 错误,符合题意。

故选D 。

2.假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G ,则地球的半径为( )A .202()4g g T π- B .202()4g g T π+ C .2024g T πD .224gT π A解析:A在地球两极,物体所受重力等于万有引力,即有02GMmmg R =在赤道处,物体所受万有引力和支持力的合力提供向心力,其中支持力的大小等于物体的重力,则有2224GMm mg m R R Tπ-= 联立解得202()4g g T R π-= 故选A 。

3.下列叙述正确的是( )A .牛顿提出了万有引力定律,并用实验测量了万有引力常量B .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫建立物理模型法C .伽利略提出行星运动三定律D .伽利略在研究力和运动的关系时,得出了力不是维持物体运动的原因,采用了控制变量的方法B 解析:BA .牛顿提出了万有引力定律,卡文迪许用实验测量了万有引力常量,故A 错误;B .在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法叫建立物理模型法,故B 正确;C .开普勒提出行星运动三定律,故C 错误;D .伽利略在研究力和运动的关系时,得出了力不是维持物体运动的原因,采用的是理想斜面实验法,故D 错误。

高一物理必修二-第六章《万有引力与航天》复习练习题及参考答案

高一物理必修二-第六章《万有引力与航天》复习练习题及参考答案

高一物理 期中考复习三(万有引力与航天)第一类问题:涉及重力加速度“g ”的问题解题思路:天体表面重力(或“轨道重力”)等于万有引力,即2RMmGmg = 【题型一】两星球表面重力加速度的比较1、一个行星的质量是地球质量的8倍,半径是地球半径的4倍,这颗行星表面的重力加速度是地球表面重力加速度的多少倍?解:忽略天体自转的影响,则物体在天体表面附近的重力等于万有引力,即有2RMmGmg =,因此: 对地球:2地地地R m M Gmg =……①对行星:2行行行R m M Gmg =……②则由②/①可得,2141182222=⨯=•=行地地行地行R R M M g g ,即地行g g 21=【题型二】轨道重力加速度的计算2、地球半径为R ,地球表面重力加速度为0g ,则离地高度为h 处的重力加速度是( )A .202)(h R g h +B .202)(h R g R + C .20)(h R Rg + D .20)(h R hg +【题型三】求天体的质量或密度3、已知下面的数据,可以求出地球质量M 的是(引力常数G 是已知的)( )A .月球绕地球运行的周期T 1及月球到地球中心的距离R 1B .地球“同步卫星”离地面的高度C .地球绕太阳运行的周期T 2及地球到太阳中心的距离R 2D .人造地球卫星在地面附近的运行速度v 和运行周期T 3 4、若有一艘宇宙飞船在某一行星表面做匀速圆周运动,已知其周期为T ,引力常量为G ,那么该行星的平均密度为( )A.π32GTB.24GT πC.π42GT D.23GT π第二类问题:圆周运动类的问题解题思路:万有引力提供向心力,即r m rv mr T m ma r Mm G n 222224ωπ==== 【题型四】求天体的质量或密度5、继神秘的火星之后,今年土星也成了全世界关注的焦点!经过近7年35.2亿公里在太空中风尘仆仆的穿行后,美航空航天局和欧航空航天局合作研究的“卡西尼”号土星探测器于美国东部时间6月30日(时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族。

2020_2021学年高中物理第六章万有引力与航天习题课万有引力定律的应用课件新人教版必修22021

2020_2021学年高中物理第六章万有引力与航天习题课万有引力定律的应用课件新人教版必修22021

【加固训练】 (多选)天文学家发现某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星 的轨道半径和运行周期,万有引力常量为G,由此可推算出 ( ) A.行星的质量 B.行星的加速度 C.恒星的质量 D.恒星的密度
知识点三 卫星速度问题
v GM r
【典例示范】
【典例】我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航
由以上信息我们可以推知
()
A.这颗行星的质量等于地球的质量
B.这颗行星的密度等于地球的密度
C.这颗行星的公转周期与地球公转周期相等
D.这颗行星的自转周期与地球自转周期相等
2.地球表面重力加速度为g地、地球的半径为R地、地球的质量为M地,某飞船飞
到火星上测得火星表面的重力加速度为g火、火星的半径为R火,由此可得火星
4802
C.向心加速度之比约为 3 604802
D.向心加速度之比约为 3 60480
5.月球绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天,应用开 普勒定律计算:在赤道平面内离地多高时,人造地球卫星随地球一起运动,就像 停留在天空中不动一样(地球同步卫星)?(R地=6 400 km)
GMT 2
GMT2 B.GMT2+ 42R3 D.GMT2+ 42R3
GMT2
知识点二 卫星问题
卫星运行参量的分析
M m v2
GM
Gr2
m v r
r
GM mm2r GM
r2
r3
GM r2 mm (2 T )2r T2G rM 3 GM r2 mma aG rM 2
【典例示范】 【典例】一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,只 需要 ( ) A.测定飞船的运行周期 B.测定飞船的环绕半径 C.测定行星的体积 D.测定飞船的运行速度

2020年春人教版高一物理必修二第六章 万有引力和航天练习及答案

2020年春人教版高一物理必修二第六章 万有引力和航天练习及答案

2020春人教版物理必修二第六章 万有引力与航天练习含答案 必修二第6章 万有引力与航天一、选择题1、一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量为G ,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为( ) A.⎝⎛⎭⎪⎫4π3G ρ12 B.⎝ ⎛⎭⎪⎫34πG ρ12 C.⎝⎛⎭⎪⎫πG ρ12 D.⎝⎛⎭⎪⎫3πG ρ12 2、如图2所示,火星和地球都在围绕太阳旋转,其运行轨道是椭圆,根据开普勒行星运动定律可知( )图2A .火星绕太阳运动过程中,速率不变B .火星绕太阳运行一周的时间比地球的长C .地球靠近太阳的过程中,运行速率将减小D .火星远离太阳的过程中,它与太阳的连线在相等时间内扫过的面积逐渐增大3、两个行星的质量分别为m 1和m 2,它们绕太阳运行的轨道半径分别是r 1和r 2,若它们只受太阳引力的作用,那么这两个行星的向心加速度之比为( ) A .1B.m 2r 1m 1r 2 C.m 1r 2m 2r 1D.r 22r 124、第谷、开普勒等人对行星运动的研究漫长而曲折,牛顿在他们研究的基础上,得出了科学史上最伟大的定律之一——万有引力定律。

下列有关万有引力定律的说法中不正确的是 ( )A.开普勒通过研究观测记录发现行星绕太阳运行的轨道是椭圆B.太阳与行星之间引力的规律不适用于行星与它的卫星C.卡文迪许利用实验较为准确地测出了引力常量G的数值D.牛顿在发现万有引力定律的过程中应用了牛顿第三定律的知识5、地球的质量是月球质量的81倍,若地球吸引月球的力为F,则月球吸引地球的力的大小为( )A. B.F C.9F D.81F6、一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的()A. 0.25倍B. 0.5倍C. 2.0倍D. 4.0倍7、通过观察冥王星的卫星,可以推算出冥王星的质量。

2019人教版物理必修二:第六章 习题课 万有引力与航天

2019人教版物理必修二:第六章 习题课 万有引力与航天
2 C. m1 做圆周运动的半径为5L 2 D. m2 做圆周运动的半径为5L
1
2
3
解析:设双星m1、m2距转动中心O的距离分别为r1、r2,双星绕O点 转动的角速度为ω,据万有引力定律和牛顿第二定律得
G
������ 1 ������ 2 ������2
=m1r1ω2=m2r2ω2,又 r1+r2=L,m1∶m2=3∶2
A.在P点由a轨道转变到b轨道时,速度必须变小 B.在Q点由d轨道转变到c轨道时,要加速才能实现(不计嫦娥一号 的质量变化) C.在b轨道上,P点速度比R点速度大 D.嫦娥一号在a、b轨道上正常运行时,通过同一点P时,加速度相 等
探究一
探究二
解析:卫星在轨道a上的P点进入轨道b,需加速,使万有引力小于需 要的向心力而做离心运动,选项A错误;在Q点由d轨道转移到c轨道 时,必须减速,使万有引力大于需要的向心力而做近心运动,选项B错 误;根据开普勒第二定律知在b轨道上,P点速度比R点速度大,选项C ������������������ 正确;根据牛顿第二定律得 ������2 =ma ,卫星在a、b轨道上正常运行时, 通过同一点P时加速度相等,选项D正确。 答案:CD
要点提示从绕地球运动的轨道上加速,使飞船做离心运动,飞船转 移到奔月轨道;要进入月球轨道,飞船应减速。
探究一
探究二
知识归纳 1.速度问题 卫星变轨时,先是线速度v发生变化导致需要的向心力发生变化, 进而使轨道半径r发生变化。
所需的向心力,卫星将做近心运动,向低轨道变迁。
������ 2
(1)当卫星减速时,卫星所需的向心力 F 向=m ������ 减小,万有引力大于 (2)当卫星加速时,卫星所需的向心力 F 向=m ������ 增大,万有引力不足

人教版高中物理必修2第六章 万有引力与航天5. 宇宙航行 习题(2)

【成才之路】高中物理第六章万有引力与航天第五节宇宙航行练习新人教版必修2基础夯实1.(广东滨河中学08~09学年高一下学期期中)地球同步卫星与静止在地赤道上的物体比较,下列物理量相同的是()A.线速度B.角速度C.向心加速度D.周期答案:BD2.随着“天宫”计划的实施,我国的航天员人数及航天员在太空中停留的时间逐渐增加,体育锻炼成了一个必不可少的环节.下列器材最适合航天员在轨道舱中锻炼时使用的是()A.哑铃B.弹簧拉力器C.单杠D.徒手跑步机答案:B解析:跳出思维定势是解决本题的关键.大多数的运动器材是靠自身或运动者的“重量”发挥作用的,一到“失重”的环境它们就完全派不上用场,而“太空”正是这样一个环境——在太空中的一切物体处于完全失重状态.3.(蚌埠二中09~10学年高一下学期期中)2008年9月25日至28日,我国成功实施了“神舟”七号载人飞船航天飞行.在刘伯明、景海鹏的配合下,翟志刚顺利完成了中国人的第一次太空行走.9月27日19时24分,“神舟”七号飞行到31圈时,成功释放了伴飞小卫星,通过伴飞小卫星可以拍摄“神舟”七号的运行情况.若在无牵连情况下伴飞小卫星与“神舟”七号保持相对静止,下列说法中正确的是()A.伴飞小卫星与“神舟”七号飞船绕地球运动的角速度相同B.伴飞小卫星绕地球沿圆轨道运动的速度比第一宇宙速度大C.霍志刚在太空行走时的加速度和地面上的重力加速度大小相等D.霍志刚在太空行走时不受地球的万有引力作用,处于完全失重状态答案:A4.(2009年青岛模拟)据美国媒体报道,美国和俄罗斯的两颗通信卫星于2009年2月11日在西伯利亚上空相撞,这是人类有史以来的首次卫星在轨碰撞事件.碰撞发生的地点位于西伯利亚上空490英里(约790公里),比国际空间站的轨道高270英里(约434公里).若两颗卫星的运行轨道均可视为圆轨道,下列说法正确的是()A.碰撞后的碎片若受到大气层的阻力作用,轨道半径将变小,则有可能与国际空间站相撞B.在碰撞轨道上运行的卫星,其周期比国际空间站的周期小C.美国卫星的运行周期大于俄罗斯卫星的运行周期D.在同步轨道上,若后面的卫星一旦加速,将有可能与前面的卫星相撞答案:A5.(山东平度一中08~09学年高一下学期模块检测)2009年美国航天局成功发射了开普勒探测器,以完成寻找太阳系外类地可居住行星的任务.已知它围绕太阳做匀速圆周运动的周期约为372.5天,则开普勒探测器与地球相比()A.离太阳的距离较近B.围绕太阳运行的线速度较小C.围绕太阳运行的角速度较大D.围绕太阳运行的向心加速度较大答案:B解析:因为探测器的周期比地球大,所以它离太阳的距离较远,其角速度、向心加速度、线速度较地球小.6.在地面附近发射飞行器,如果发射速度大于7.9km/s,而小于11.2km/s,它绕地球运行的轨迹就不是圆,而是________.当飞行器的速度等于或大于________km/s时,它就会克服地球的引力,永远离开地球.在地面附近发射一个飞行器,要使它挣脱太阳引力的束缚,飞到太阳系外,必须使它的速度等于或________km/s,这个速度叫做________.答案:椭圆11.2大于16.7第三宇宙速度(逃逸速度)7.我国已启动月球探测计划“嫦娥工程”,如图为设想中的“嫦娥1号”月球探测器飞行路线示意图.(1)在探测器飞离地球的过程中,地球对它的引力________(选填“增大”“减小”或“不变”).(2)结合图中信息,通过推理,可以得出的结论是( )①探测器飞离地球时速度方向指向月球②探测器经过多次轨道修正,进入预定绕月轨道③探测器绕地球的旋转方向与绕月球的旋转方向一致④探测器进入绕月轨道后,运行半径逐渐减小,直至到达预定轨道A .①③B .①④C .②③D .②④答案:(1)减小 (2)D解析:(1)根据万有引力定律F =G Mm r 2,当距离增大时,引力减小; (2)由探测器的飞行路线可以看出:探测器飞离地球时指向月球的前方,当到达月球轨道时与月球“相遇”,①错误;探测器经多次轨道修正后,才进入预定绕月轨道,②正确;探测器绕地球旋转方向为逆时针方向,绕月球旋转方向为顺时针方向,③错误;探测器进入绕月轨道后,运行半径逐渐减小,直至到达预定轨道,④正确.8.(上海市交大附中08~09高一下学期期中)2009年4月5日,朝鲜中央通讯社发表声明宣布,朝鲜当天上午在位于舞水端里的卫星发射基地成功发射了一枚火箭,顺利将“光明星2号”试验通信卫星送入轨道.国际社会对此广泛关注.美国军方5日说,朝鲜当天发射的“卫星”未能进入轨道,发射物各节全部坠海;韩国政府方向作类似表述;俄罗斯外交部发言人涅斯捷连科5日表示,俄方已确认朝鲜发射卫星的事实,并呼吁有关方面在这一问题的评价上保持克制.假如该卫星绕地球运行且轨道接近圆形,卫星运行周期为T ,试求卫星距离地面的高度.(已知地球半径为R ,地球表面的重力加速度为g )答案:h =(gR 2T 2/4π2)13-R 解析:对地球上的物体m 1,m 1g =Gm 1M /R 2对卫星m 2,Gm 2M /(R +h )2=4π2m 2(R +h )/T 2解之得:h =(gR 2T 2/4π2)13-R 能力提升1.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案:D解析:从G Mm r 2=m v 2r 得r =GM v2轨道半径与卫星质量无关.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,第一宇宙速度是卫星在最低圆道上运行的速度,而同步卫星是在高轨道上运行,其运行速度小于第一宇宙速度.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同.2.2001年3月23日“和平”号空间站完成了它的历史使命,坠落在浩瀚的南太平洋.“和平”号空间站是20世纪质量最大,寿命最长,载人最多,技术最先进的航天器,它在空间运行长达15年,下面有关“和平”号空间站坠落过程的说明正确的是( )A .“和平”号空间站进入较稠密大气层时,将与空气摩擦,空气阻力大大增加B .“和平”号空间站在整个坠落过程中的运动轨迹是直线C .“和平”号空间站在整个坠落过程中的运动轨迹是曲线D .“和平”号空间站在进入大气层前,高度降低,速度变大答案:ACD解析:由F 引=F 向得v =GM r则高度降低,运动轨道半径减小,速度变大,进入大气层,空间站所受空气阻力大大增加,将沿着曲线坠落,不可能沿直线行进.3.(江西金溪一中08~09学年高一下学期期中)几十亿年来,月球总是以同一面对着地球,人们只能看到月貌的59%,由于在地球上看不到月球的背面,所以月球的背面蒙上了一层十分神秘的色彩.试通过对月球运动的分析,说明人们在地球上看不到月球背面的原因是( )A .月球的自转周期与地球的自转周期相同B .月球的自转周期与地球的公转周期相同C .月球的公转周期与地球的自转周期相同D .月球的公转周期与月球的自转周期相同答案:D4.(四川绵阳南山中学08~09学年高一下学期期中)如图所示,卫星A 、B 、C 在相隔不远的不同轨道上,以地球为中心做匀速圆周运动,且运动方向相同.若在某时刻恰好在同一直线上,则当卫星B 经过一个周期时,下列关于三个卫星的位置说法中正确的是( )A .三个卫星的位置仍在一条直线上B .卫星A 位置超前于B ,卫星C 位置滞后于BC .卫星A 位置滞后于B ,卫星C 位置超前于BD .由于缺少条件,无法比较它们的位置答案:B解析:卫星的轨道半径越大,其周期越长所以B 项正确.5.(安徽潜山中学08~09学年高一下学期期中)2006年2月10日,如图所示的图形最终被确定为中国月球探测工程形象标志,它以中国书法的笔触,抽象地勾勒出一轮明月,一双脚印踏在其上,象征着月球探测的终极梦想,一位敢于思考的同学,为探月宇航员设计了测量一颗卫星绕某星球表面做圆周运动的最小周期的方法:在某星球表面以初速度v 0竖直上抛一个物体,若物体只受该星球引力作用,忽略其他力的影响,物体上升的最大高度为h ,已知该星球的直径为d ,如果在这个星球上发射一颗绕它运行的卫星,其做圆周运动的最小周期为( )A.πv 0dh B.2πv 0dh C.πv 0d h D.2πv 0d h答案:B解析:v 20=2g ′h ,∴g ′=v 202h, 又mg ′=m 4π2T 2·d 2,∴T =2πv 0dh . 6.随着科学技术的发展,人类已经实现了载人航天飞行,试回答下列问题:(1)载人航天飞船做近地飞行时的速度约为________km/s(已知地球半径R 地=6400km ,地球表面重力加速度g =10m/s 2).(2)为了使飞船达到上述速度需有一个加速过程,在加速过程中,宇航员处于________状态.人们把这种状态下的视重与静止在地球表面时的重力的比值用k 表示,则k =________(设宇航员的质量为m ,加速过程的加速度为a )选择宇航员时,要求他对这种状态的耐受力值为4≤k ≤12,说明飞船发射时的加速度值的变化范围为________.(3)航天飞船进入距地球表面3R 地的轨道绕地球做圆周运动时,质量为64kg 的宇航员处于______状态,他的视重为________N ;实际所受重力为________N.答案:(1)8 (2)超重 g +a g3g ~11g (3)完全失重 0 40 解析:(1)载人飞船近地飞行时,轨道半径近似等于地球半径,万有引力近似等于在地面表面的重力,提供其运行的向心力,mg =m v 2R 地,故v =gR 地=10×6.4km/s =8km/s. (2)设在飞船向上加速过程中宇航员受支持力F N ,由牛顿第二定律F N -mg =ma ,得F N=m (g +a )>mg ,宇航员处于超重状态,k =F N mg =a +g g,由题意4≤k ≤12,所以有3g ≤a ≤11g . (3)航天飞船在绕地球做匀速圆周运动时,重力完全用来提供向心力,宇航员处于完全失重状态,视重(对座椅的压力)为零,其实际所受重力也因离地高度增加而减少,为G ′=mg (R R +h)2=116mg =40N. 7.(2009·潍坊)我国的“嫦娥奔月”月球探测工程已经启动,分“绕、落、回”三个发展阶段:在2007年发射一颗绕月球飞行的卫星在2012年前后发射一颗月球软着陆器;在2017年前后发射一颗返回式月球软着陆器,进行首次月球样品自动取样并安全返回地球,设想着陆器完成了对月球表面的考察任务后,由月球表面回到围绕月球做圆周运动的轨道舱,其过程如图所示.设轨道舱的质量为m ,月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,则试求:(1)月球的质量;(2)轨道舱的速度和周期.答案:(1)gR 2G (2)R g r 2πr R r g解析:(1)设月球的质量为M ,则在月球表面G Mm ′R 2=m ′g 得月球质量M =gR 2G. (2)设轨道舱的速度为v ,周期为T ,则G Mm r 2=m v 2r ,得v =R g rG Mm r 2=m 4π2T 2r ,T =2πr R r g.。

人教版高中物理必修二《第六章万有引力与航天》第2节太阳与行星间的引力课时练案.docx

高中物理学习材料第2节 太阳与行星间的引力一、太阳对行星的引力1.关于太阳对行星的引力,下列说法正确的是( )A.太阳对行星的引力提供行星做圆周运动的向心力B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比C.太阳对行星的引力公式是由实验得出的D.太阳对行星的引力公式是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的2.行星之所以绕太阳运行,是因为( )A.行星运动时的惯性作用B.太阳是宇宙的控制中心,所有星体都绕太阳旋转C.太阳对行星有约束运动的引力作用D.行星对太阳有排斥力作用,所以不会落向太阳3.下列说法正确的是( )A.在探究太阳对行星的引力规律时,我们引用了公式F=mv 2r ,这个关系式实际上是牛顿第二定律,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了公式v=2πr T ,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得来的C.在探究太阳对行星的引力规律时,我们引用了公式r 3T 2=k ,这个关系式是开普勒第三定律,是可以在实验室中得到证明的D.在探究太阳对行星的引力规律时,使用的三个公式都可以在实验室中得以验证二、太阳与行星间的引力4.关于太阳与行星间的引力,下列说法中正确的是( )A.由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大B.行星绕太阳沿椭圆轨道运动时,在近日点所受引力大,在远日点所受引力小C.由F=G Mmr 2可知,G=Fr 2Mm ,由此可见G 与F 和r 2的乘积成正比,与M 和m 的乘积成反比D.行星绕太阳运动的椭圆轨道可近似看成圆形轨道,其向心力来源于太阳对行星的引力5.地球对月球具有相当大的万有引力,可它们没有靠在一起,这是因为( )A.不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相抵消了B.不仅地球对月球有万有引力,而且太阳系中的其他星球对月球也有万有引力,这些力的合力为零C.地球对月球的引力还不算大D.地球对月球的万有引力不断改变月球的运动方向,使得月球围绕地球运动6.下列关于太阳与行星间引力F=G Mmr 2的说法中正确的是( )A.公式中的G 是比例系数,是人为规定的B.太阳与行星间的引力是一对平衡力C.公式中的G是一与太阳和行星都无关的物理量D以上说法都不对7.陨石落向地球是因为()A.陨石对地球的引力远小于地球对陨石的引力B.陨石对地球的引力和地球对陨石的引力大小相等,但陨石的质量小,加速度大,所以改变运动方向落向地球C.地球对陨石有引力,陨石对地球无引力D.陨石是在受到其他星球斥力作用后落向地球的8.人造卫星绕地球做匀速圆周运动,卫星所受地球的引力F与轨道半径r的关系是()A.F与r成正比B.F与r成反比C.F与r2成正比D.F与r2成反比9.两个行星的质量分别为m1和m2,它们绕太阳运行的轨道半径分别是r1和r2,若它们只受太阳引力的作用,那么这两个行星的向心加速度之比为多少?10.一颗小行星绕太阳做匀速圆周运动的半径是地球绕太阳做匀速圆周运动的半径的4倍,则这颗小行星运转的周期是多少年?参考答案1.AD 解析:太阳对行星的引力提供了行星做圆周运动的向心力,选项A 正确;太阳对行星的引力大小应与“太阳和行星间距离的二次方”成反比,故选项B 错误;太阳对行星的引力公式不是直接由实验得出的,它是在实验观察的基础上,利用开普勒定律和匀速圆周运动的规律推导出来的,故选项C 错误,选项D 正确。

人教版高中物理必修二万有引力与航天课后习题讲解课件

6.1行星的运动
课后习题讲解
问题与练习解答:
1、地球公转轨道的半径在天文学上常用来作为长度单位,叫做天
文单位 ,用来量度太阳系内天体与太阳的距离。已知火星公转的
轨道半径是 1.5 天文单位,根据开普勒第三定律,火星公转的周
期是多少个地球日?
解:根据开普勒第三定律,有:R3地 T2

R3 T2
解得:T
6.4万有引力理论的成就
课后习题讲解
问题与练习解答: 人教版高中物理必修二 第六章万有引力与航天课后习题讲解课件(共27张PPT)
1、已知月球的质量是7.3·×1022kg,半径是1.7×103km,月 球表面的自由落体加速度有多大?这对宇航员在月球表面的行 动会产生什么影响?
解: 在月球表面有
问题与练习解答: 人教版高中物理必修二 第六章万有引力与航天课后习题讲解课件(共27张PPT)
1、在力学中,有的问题是根据物体的运动探究它受的力,另一些问题则是根据物 体所受的力推测它的运动。 这一节的讨论属于哪一种情况?你能从过去学过的内容 或做过的练习中各找出一个例子吗?
解:这节的讨论属于根据物体的运动探究它受的力。前 一章平抛运动的研究属于已知受力探究它的运动。而圆 周运动的研究属于根据物体的运动探究它的受力。
R ( R地
3
) 2 T地
1.84365
671日
2、开普勒行星运动三定律不仅适用于行星绕太阳的运动,也适用 于卫星绕行星的运动。如果一颗人造地球卫星沿椭圆轨道运动, 它在离地球最近的位置(近地点) 和最远的位置(远地点),哪点 的速度比较大?
解:
卫星从远地点到近地点运动过程中,万有引力做正 功,速度变大,高度减小,重力势能减小,动能变大, 重力势能转化为动能。所以卫星在近地点的速度大。

人教版高中物理必修二《第六章万有引力与航天》第3节万有引力定律课时练案.docx

高中物理学习材料桑水制作第3节万有引力定律一、月—地检验1.下面关于行星对太阳的引力的说法中正确的是()A.行星对太阳的引力和太阳对行星的引力是同一性质的力B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比,一个质量为600 kg的飞行器到达月球后()2.月球表面的重力加速度为地球表面上重力加速度的16A.在月球上的质量仍为600 kgB.在月球表面上的重力为980 NC.在月球表面上的重力小于980 ND.在月球上的质量将小于600 kg二、万有引力定律3.下列关于万有引力定律的说法正确的是()A.万有引力定律仅对质量较大的天体适用,对质量较小的一般物体不适用B.开普勒等科学家对天体运动规律的研究为万有引力定律的发现作了准备C.太阳对所有围绕它运动的行星的万有引力都是一样大的D.两物体间相互吸引的一对万有引力是一对平衡力4.地球可近似看成球形,由于地球表面上物体都随地球自转,所以有()A.物体在赤道处受的地球引力与两极处受的引力大小相等,但物体在赤道处的重力小于在两极处的重力B.物体在赤道处的角速度比南纬30°大C.地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D.地面上的物体随地球自转时提供向心力的一定是重力5.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是它在地球上所受的万有引力大小的()A.14B.12C.2.0倍D.4.0倍6.假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是( )A.赤道地面上的物体所受的万有引力不变B.两极地面上的物体的重力不变C.赤道地面上物体的重力减小D.两极地面上物体的重力增加7.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重力为600 N 的人在这个行星表面的重力将变为960 N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天 习题课
题型1 题型1:开普勒三定律 某行星绕太阳运行的椭圆轨道如图所示,F 例:某行星绕太阳运行的椭圆轨道如图所示,F1、 是椭圆轨道的两个焦点,太阳在焦点F ,A、 F2是椭圆轨道的两个焦点,太阳在焦点F1上,A、B 两点是F 连线与椭圆的交点.已知A点到F 两点是F1、F2连线与椭圆的交点.已知A点到F1的 距离为a,B点到F 的距离为b,则行星在A a,B点到 b,则行星在 距离为a,B点到F1的距离为b,则行星在A、B两点处 的速率之比多大? 的速率之比多大?
题型6:同步卫星问题 题型6 设同步卫星离地心的距离为r, r,运行速率为 例:设同步卫星离地心的距离为r,运行速率为 加速度为a v1,加速度为a1;地球赤道上的物体随地球自转 的向心加速度为a 第一宇宙速度为v 的向心加速度为a2,第一宇宙速度为v2,地球的 半径为R,则下列比值正确的是( R,则下列比值正确的是 半径为R,则下列比值正确的是( B )
题型3: 题型 :万有引力定律的应用 设想“嫦娥号” 例:设想“嫦娥号”登月飞船贴近月球表面做匀速 圆周运动,测得其周期为 飞船在月球上着陆后,自动 测得其周期为T,飞船在月球上着陆后 圆周运动 测得其周期为 飞船在月球上着陆后 自动 机器人用测力计测得质量为m的仪器重力为 的仪器重力为P.已知 机器人用测力计测得质量为 的仪器重力为 已知 引力常量为G,由以上数据可以求出的量有 ( 引力常量为 由以上数据可以求出的量有AB ) A.月球的半径 月球的半径 B.月球的质量 B.月球的质量 C.仪器随月球自转的加速度 仪器随月球自转的加速度 D.月球绕地球做匀速圆周运动的向心加速度 月球绕地球做匀速圆周运动的向心加速度
v1 r A. = v2 R
a1 R 2 C. = a2 r 2
B. a1 = r
a2
R
r R
D.
v1 = v2
题型: 题型:科技物理 例1:我国“神舟”七号载人飞船发射升空 进入预定轨道 :我国“神舟”七号载人飞船发射升空,进入预定轨道 后绕地球自西向东做匀速圆周运动,每 转一圈.航天 后绕地球自西向东做匀速圆周运动 每90 min转一圈 航天 转一圈 员在轨道舱做了许多科学实验,着地前 着地前1.5 m返回舱底座发 员在轨道舱做了许多科学实验 着地前 返回舱底座发 动机开始向下喷气,使返回舱减速下降 实现软着陆,“神舟” 动机开始向下喷气 使返回舱减速下降,实现软着陆 神舟” 使返回舱减速下降 实现软着陆 神舟 七号航天实验圆满完成.下列关于 神舟” 下列关于“ 七号航天实验圆满完成 下列关于“神舟”七号的说法正 ) 确的是 ( AB A.航天员在 h内可以见到日出的次数应为 次 航天员在24 内可以见到日出的次数应为 内可以见到日出的次数应为16次 航天员在 B.“神舟”七号的轨道高度小于地球同步卫星的轨道高度 神舟” 神舟 C.“神舟”七号绕地球做匀速圆周运动的速度略大于第一 神舟” 神舟 宇宙速度 D.在着地前 在着地前1.5 m内宇航员处于失重状态 在着地前 内宇航员处于失重状态
b a
题型2:万有引力定律 题型2 两个质量均为M的星体, 例:两个质量均为M的星体,其连线的垂直平分线为 HN,O为其连线的中点 如图所示,一个质量为m 为其连线的中点, HN,O为其连线的中点,如图所示,一个质量为m的物体 OH方向运动 方向运动, 从O沿OH方向运动,则它受到的万有引力大小变化情况 是( D ) A.一直增大 A.一直增大 B.一直减小 B.一直减小 C.先减小 先减小, C.先减小,后增大 D.先增大 先增大, D.先增大,后减小
日成功发射了“ 例2:我国于 :我国于2007年10月24日成功发射了“嫦娥一号” 年 月 日成功发射了 嫦娥一号” 探月卫星,卫星由地面发射后 由发射轨道进入停泊轨道, 卫星由地面发射后,由发射轨道进入停泊轨道 探月卫星 卫星由地面发射后 由发射轨道进入停泊轨道 然后再由停泊轨道调速后进入地月转移轨道,再次调速 然后再由停泊轨道调速后进入地月转移轨道 再次调速 后进入工作轨道,开始绕 月做匀速圆周运动,对月球进 后进入工作轨道 开始绕 月做匀速圆周运动 对月球进 行探测,其奔月路线简化后如图所示 其奔月路线简化后如图所示. 行探测 其奔月路线简化后如图所示 (1)卫星从停泊轨道进入地月转移轨道时速度应增加还 卫星从停泊轨道进入地月转移轨道时速度应增加还 是减小? 是减小 (2)若月球半径为 卫星工作轨道距月球表面高度为 若月球半径为R,卫星工作轨道距月球表面高度为 若月球半径为 卫星工作轨道距月球表面高度为H. 为地球表面的重力加速度), 月球表面的重力加速度为 (g为地球表面的重力加速度 为地球表面的重力加速度 试求:卫星在工作轨道上运行的线速度和周期 卫星在工作轨道上运行的线速度和周期. 试求 卫星在工作轨道上运行的线速度和周期 速度增加
题型4: 题型 :重力加速度问题 例1:某星球的质量约为地球的 倍,半径约为地球 :某星球的质量约为地球的9倍 半径约为地球 半径的一半,若从地球表面高 处平抛一物体,射程为 若从地球表面高h处平抛一物体 半径的一半 若从地球表面高 处平抛一物体 射程为 60 m,则在该星球上 从同样的高度以同样的初速度 则在该星球上,从同样的高度以同样的初速度 则在该星球上 平抛同一物体,射程应为 平抛同一物体 射程应为 ( A ) A.10 m B.15 m C.90 m D.360 m
例2:一物体在地球表面重 :一物体在地球表面重16N,它在以 , 5m/s2的加速度加速上升的火箭中的视重为 9N,取地表 =10m/s2,则此火箭离地球 ,取地表g= 表面的距离为地球半径的多少倍? 表面的距离为地球半径的多少倍?
3倍 倍
例3:假设地球自转速度达到使赤道上的物体 : 起来(完全失重)。试估算一下, )。试估算一下 能“飘”起来(完全失重)。试估算一下,此 时地球上的一天等于多少小时?( ?(地球半径取 时地球上的一天等于多少小时?(地球半径取 6400km,g取10m/s2) , 取
4小时 小时
题型5:人造卫星的运行规律 题型 人造卫星的运行规律 如图所示A、 、 是在地球大气层外 是在地球大气层外,圆形轨道上 例:如图所示 、B、C是在地球大气层外 圆形轨道上 运行的三颗人造卫星,B、 离地面的高度小于 离地面的高度小于A离地面 运行的三颗人造卫星 、C离地面的高度小于 离地面 的高度,A、 的质量相等且大于 的质量.下列说法中正 的质量相等且大于C的质量 的高度 、B的质量相等且大于 的质量 下列说法中正 确的是( 确的是 ACD ) A.B、C的线速度大小相等 且大于 的线速度 的线速度大小相等,且大于 、 的线速度大小相等 且大于A的线速度 B.B、C的向心加速度大小相等 且小于A的向心加速度 B.B、C的向心加速度大小相等,且小于A的向心加速度 的向心加速度大小相等,且小于 C.B、C运行周期相同 且小于 的运行周期 运行周期相同,且小于 、 运行周期相同 且小于A的运行周期 D.B的向心力大于 和C的向心力 的向心力大于A和 的向心力 的向心力大于
R2 g 6( R + H )
2 π 6( R + H ) 3 R g
相关文档
最新文档