拱结构及其案例分析报告
大跨度建筑案例分析

2013年12月2日,国家大剧院壳体钢结构安装完成
·网壳结构
网壳是一种与平板网架类似的空间 杆件结构,系以杆件为基础,按照一 定规律组成网格,按壳体结构布置的 空间构架,它兼具杆系和壳体的性质。 其传力特点是通过壳内两个方向的拉 力,压力或剪力逐点传力。此结构是 一种有广阔发展空间的空间构件。
建筑师利用金属网的通透性,使简单厚 重的建筑结构在视觉上形成为多维空间,轻 盈简捷又不失空间的纵深感站在壳体的公共 空间内,人们可以看到弧形的金属网从高处 垂下,将歌剧院与壳体公共空间分隔开来隐 隐透出淡黄色人们可以透过金属网看到歌剧 院环廊内人们活动的场景,若隐若现,朦胧 而神秘,激发人们的好奇、想象和思索。建 筑师充分利用了金属网的特点来提升室内的 装饰效果。
大剧院建筑屋面呈半椭圆型,由钛金属板覆盖,前后两侧有 两个类 似三角形的渐开式玻璃幕墙切面,整个建筑漂浮于人造 水面之上。
国家大剧院壳体结构呈半椭球型。 由顶环梁,梁架,斜撑和环向连系 杆件组成。其中顶环梁呈椭圆形,长轴 长约60米,短轴长约38米,由环形钢架, 箱形梁,以及H型钢焊接而成。梁架呈 中心对称辐射状布置。 连杆沿水平环向布置,上下里外共 82道,并采用铸钢连接件或套筒连接件 连接。
·结语
国家大剧院是世界上最大的剧院拥有世界上最大的穹顶,是世界上最深的建筑,拥有亚洲最大的管 风琴。整体简洁而富有美感,但又不乏活力,仿佛里面有股生命力向外爆发。堪称建筑奇观,同时又彰 显出北京这个古老的城市的现代风貌与活力。城市建筑不再关乎审美或情感,而是对社会秩序的解释, 建筑也总是超越功能的,是建筑的形式给人们以经验,赋予城市以结构。
大跨度建筑分析
Analysis of Long Span Construction
拱结构及其案例分析

拱结构及其案例分析陈阅2班76号A.拱的定义在梁端加一水平力H,就能改变各截面受力状态;如果H的大小,作用点选得合适,可使梁的各截面处于受压或受弯状态,能提高梁的承载力,这就形成了拱,如图可见,拱结构是有推力的结构。
拱结构的外形一般是抛物线,圆弧或折线,目的是使供体各截面在外荷载、支撑力和推力作用下基本上处于受力或较小偏心受压状态,从而大大提高拱结构的承载力如图拱结构的控制尺寸包括:跨度l、失高f和截面尺寸。
拱结构的适用范围很大,从1.5~2.0m跨度的地下通道顶盖到几十米甚至上百米跨度的体育馆和拱桥。
例如清华大学综合体育中心、东凯尔勃莱德游泳馆等都采用拱结构。
拱结构的支撑形式一般有四种,如下图所示,由图a到图d分别为为:a.拉杆拱,b.落地拱,c.由框架支撑的拱,d.由水平屋盖支撑的拱。
B.拱的受力分析a.如下图所示是拱在集中荷载作用下的受力图简支拱的弯矩M与简支水平梁对应截面的弯矩M0相等。
拱的剪力Q和轴力N 等于简支水平梁对应截面上剪力Q0的两个投影。
即M= M0Q= Q0cosφN=- Q0sinφ式中,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
b.如下图所示是拱在均布荷载作用设拱的轴线为抛物线,其方程为y=4fx(l-x)/l2求出相应的简支水平梁的弯矩和剪力M0=0.5qx(l-x) Q0=q(0.5l-x)因此,拱的内力为M=0.5qx(l-x)Q= q(0.5l-x)cosφN=- q(0.5l-x)sinφ其M图,Q图,N图分别如下图φ计算Q和N时,先要由轴线方程的一阶导数求出tgφ=dy/dx=4f (l-2x)/l2,再由此式求得截面的倾角φ。
C.三绞拱受力分析拱结构中一种比较合理的方式是三绞拱,如图所示内力计算M= M0-Hy,Q= Q0cosφ-HsinφN= -Q0sinφ-Hcosφ其中H=M0C/f ,M0和Q0分别是简支水平梁的弯矩和剪力,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
两铰拱建筑结构案例分析

两铰拱建筑结构案例分析
五六十年代,随着铁路的大规模修建,相继建成了一批代表性铁路拱桥。
1956年建成的宝成铁路松树坡桥全长121.4m,2到38米实腹石拱桥,位于陕西省宝鸡市境内,五十年代全路跨度最大、最高的石拱桥。
同年竣工的包兰线东岗镇黄河桥位于甘肃省兰州市市郊,为3孔53m上承式钢筋混凝土肋拱桥,全长221.9m。
拱肋采用钢拱架灌注混凝土,第1、2孔采用分段法灌注,第3孔采用加载法灌注,全桥钢筋混凝土用量1780m3,混凝土3834m3,片石圬工2180m3。
1959年建成通车的太焦线丹河铁路大桥,全桥长144.8m,主孔跨度88m、上承式钢筋混凝土空腹无铰拱桥。
当年为“亚洲第一独拱铁路桥”。
该桥在结构上有一特点,就是在设计上加强了拱肋与横撑、桥面板的连接,增强了拱肋横向强度与稳定,不取拱肋中至中等于跨度的1分之20,而取拱肋边至边为跨度的1分之20。
1961年建成的兰新线昌吉河桥位于乌鲁木齐至国境段的昌吉河上。
是中国第一座预应力混凝土刚性梁柔性拱桥。
主跨56m,桥全长155m。
该桥为拼装式结构,最大构件重218kN,在脚手钢梁上就地拼装。
拱形结构的设计与分析

拱形结构的设计与分析拱形结构是一种常见的工程结构,具有广泛的应用领域,在建筑、桥梁、地下隧道等工程中都有所体现。
它的特点在于弧状形态能够承受较大的荷载并使力分布均匀,从而提供了良好的支撑和稳定性。
本文将重点探讨拱形结构的设计和分析方面。
一、拱形结构的设计原则拱形结构的设计需要遵循一定的原则,以确保其牢固性和可靠性。
首先,设计人员需确定拱形结构所需承受的荷载,并根据荷载大小和方向来选择合适的拱形曲线。
其次,设计人员需要考虑材料的强度和刚度,以确保拱形结构能够承受所施加的力。
此外,设计人员还需要合理考虑拱形结构的支撑方式和施工工艺,以提高施工效率和降低成本。
二、拱形结构的分析方法在设计拱形结构时,分析其受力情况是必不可少的。
拱形结构的受力分析可以使用各种方法,如静力学和有限元分析等。
静力学分析是最常用的方法之一,它基于平衡条件和弹性理论,通过求解结构的平衡方程和应力应变关系来确定结构的力学响应。
有限元分析是一种更为精确的分析方法,它将结构离散为许多小单元,并对每个单元进行力学计算,以获得结构整体的受力情况。
三、拱形结构的应用案例拱形结构在建筑领域有许多重要的应用案例。
例如,中国的故宫博物院是一座采用拱形结构的宫殿建筑,其拱门和拱顶的设计既美观又实用。
另外,伦敦的斯图尔特画廊也是一座著名的拱形建筑,其拱形天花板为观众提供了独特的空间体验。
此外,一些大型体育场馆如北京的鸟巢和巴西的马拉卡纳体育场也采用了拱形结构,以提供广阔的视野和良好的声学效果。
四、拱形结构的发展趋势随着科学技术的不断发展,拱形结构的设计和分析方法也在不断改进和创新。
近年来,许多研究者提出了各种新颖的拱形结构设计,如采用新材料和新技术制造的薄壳拱形结构,具有更轻巧和高强度的特点。
同时,基于计算机仿真和模拟技术的拱形结构分析方法也得到了广泛应用,大大提高了设计和分析的效率和精度。
总之,拱形结构是一种重要的工程结构,其设计和分析过程需要合理遵循一定原则,并采用适当的分析方法。
拱结构及其案例分析

交叉梁楼盖的概念设计张鹏 080280116 16号在房屋建筑中梁的截面形式常为矩形和T 型,因为梁的主要承受的是弯矩所以更合理的截面形式应为工型和箱型。
但在房屋建筑中梁的截面尺寸一般较小,并考虑的施工支模绑扎钢筋等的方便估常采用矩形截面。
而且由于楼盖梁和板同一个上平进而形成了T 型截面的梁(图1)。
当板的长边尺寸和短边尺寸的比值不是很大时常采用交叉梁来承重。
交叉梁常用双向或三向等截面交叉梁(也称格栅),它一般有正放正交、斜放正交和三向斜交等几种。
正放正交适用于方形或矩形楼(屋)面,因此比较常见。
对于正交正放的交叉梁的概念设计我们可以从以下理论分析入手形成明确的设计概念再结合工程实践做出合理的设计。
正交正放交叉梁计算简图如下:在P 作用点处L 1和L 2的挠度f 相等,f 1=f 2,f 1=P 1L 13/48EI 1,f 2=P 2L 23/48EI 2,P 1L 13/48EI 1= P 2L 23/48EI 2 (1) P 1+P 2=PP 1L 13/I 1= P 2L 23/I 2,P 1/P 2=I 1L 23/I 2L 13,(2) 截面的惯性距为:I 1=b1h13/12,I2=b2h23/12代入(2)得:P 1/P2=b1h13L23/ b2h23L13分析:(1)当b1=b2,h1=h2时,即I1=I2,L 1和L2所分担的力与跨度的三次方成反比:P 1/P2=L23/L13如果L2/L1=0.5,则P1/P2=0.125,可见短跨梁L2所分担的力P2=8P/9。
当L1和L2的比值更大时长跨梁就几乎处于不受力状态,短跨方向梁为主梁,这样的话就可以取消长跨方向的梁的设置。
(2)当只有b1=b2时P 1/P2=(h1L2/ h2L1)3P 1/P2=[(L2/ h2)/(L1/h1)]3设L/h=γ为梁的跨高比P 1/P2=(γ2/γ1)3交叉梁分得的力与它们的跨高比的三次方成反比。
拱结构分析

拱结构及案例分析一拱结构的分析拱结构式是建筑工程中常用的结构之一,是一种主要承受轴向压力并由两端推力维持平衡的曲线或折线构件。
拱结构由拱圈及其支座组成。
支座可做成能承受垂直力、水平推力以及弯矩的支墩;也可用墙、柱或基础承受垂直力而用拉杆承受水平推力。
拱圈主要承受轴向压力,与同跨度的梁相比,弯矩和剪力较小,从而能节省材料、提高刚度、跨越较大空间。
拱的类型,按材料分:土拱、砖石拱、木拱、混凝土拱、钢筋混凝土拱、刚拱等;按拱轴线型分:圆弧拱、抛物线拱、悬链线拱等;按所含铰的数目分:三铰拱、双铰拱、无铰拱等;按拱圈截面形式分:实体拱、箱形拱、桁架拱等。
如下图为拱的分类图:拱结构的受力分析:如上图,当拱承受均布荷载时,主要靠的压力和推力支撑,由ThMx=+可知,支撑弯矩靠力臂的改变,而力臂的增加靠形态的改变。
ch因此拱的外形一般是抛物线、圆弧线或折线,目的是使拱体各截面在外荷载、支撑反力和推力作用下基本处在受压或较小偏心受压状态,从而大大提高拱结构的承载力。
当拱自身重力产生的弯矩Mx为0 时,此时称为合理拱轴线(也叫压力线),即截面产生的弯矩为0。
当选择拱轴线时,偏于合理拱轴线以上的为负弯矩,偏于合理拱轴线以下的为正弯矩,与合理拱轴线相交的点的弯矩为0 。
拱结构在设计中最重要的是水平推力的处理。
在实际工程中常用的有以下几种做法:由拉杆承受水平力——优点是结构自身平衡,使基础受力简单;可用作上部结构构件,代替大跨度屋架;由基础承受——施工设计时要注意承受水平推力的基础的做法;由侧面结构物承受——要求此结构必须有足够的抗侧力刚度;由侧面水平构件承受——一般有设置在拱脚处的水平屋盖构件承受,水平推力先由此构件作为刚性水平方向的梁承受,在传递给两端的拉杆或竖向抗侧力结构;此外还应注意当拱承受过大内力时的失稳现象;防止失稳的办法是在拱身两侧加足够的侧向支撑点。
二拱结构的案例分析阿罗丝渡槽如右图,渡槽设设计为一个124ft(37.8m)长,支撑在间隔62ft(18.9m)的支架上,两端伸臂各长31ft(9.45m)的单元。
拱结构及其标准规定样式分析
拱结构及其案例分析陈阅2班76号A.拱的定义在梁端加一水平力H,就能改变各截面受力状态;如果H的大小,作用点选得合适,可使梁的各截面处于受压或受弯状态,能提高梁的承载力,这就形成了拱,如图可见,拱结构是有推力的结构。
拱结构的外形一般是抛物线,圆弧或折线,目的是使供体各截面在外荷载、支撑力和推力作用下基本上处于受力或较小偏心受压状态,从而大大提高拱结构的承载力如图拱结构的控制尺寸包括:跨度l、失高f和截面尺寸。
拱结构的适用范围很大,从1.5~2.0m跨度的地下通道顶盖到几十米甚至上百米跨度的体育馆和拱桥。
例如清华大学综合体育中心、东凯尔勃莱德游泳馆等都采用拱结构。
拱结构的支撑形式一般有四种,如下图所示,由图a到图d分别为为:a.拉杆拱,b.落地拱,c.由框架支撑的拱,d.由水平屋盖支撑的拱。
B.拱的受力分析a.如下图所示是拱在集中荷载作用下的受力图简支拱的弯矩M与简支水平梁对应截面的弯矩M0相等。
拱的剪力Q和轴力N 等于简支水平梁对应截面上剪力Q0的两个投影。
即M= M0Q= Q0cosφN=- Q0sinφ式中,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
b.如下图所示是拱在均布荷载作用设拱的轴线为抛物线,其方程为y=4fx(l-x)/l2求出相应的简支水平梁的弯矩和剪力M0=0.5qx(l-x) Q0=q(0.5l-x) 因此,拱的内力为M=0.5qx(l-x)Q= q(0.5l-x)cosφN=- q(0.5l-x)sinφ其M图,Q图,N图分别如下图φ计算Q和N时,先要由轴线方程的一阶导数求出tgφ=dy/dx=4f (l-2x)/l2,再由此式求得截面的倾角φ。
C.三绞拱受力分析拱结构中一种比较合理的方式是三绞拱,如图所示内力计算M= M0-Hy,Q= Q0cosφ-HsinφN= -Q0sinφ-Hcosφ其中H=M0C/f , M0和Q0分别是简支水平梁的弯矩和剪力,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
拱形的力量实验报告(3篇)
第1篇一、实验背景拱形作为一种古老的建筑结构,以其独特的力学特性,在建筑、桥梁等领域有着广泛的应用。
为了探究拱形结构的力学特性,我们设计并进行了以下实验。
二、实验目的1. 了解拱形结构的力学特性。
2. 探究拱形结构在承受压力时的变形情况。
3. 分析拱形结构在承受压力时的稳定性和承重能力。
三、实验材料与工具1. 实验材料:纸、剪刀、胶带、细线、重物(如砝码)、支架等。
2. 实验工具:直尺、卷尺、测力计、记录表等。
四、实验步骤1. 准备工作:将纸剪成所需形状,并用胶带固定在支架上,形成拱形结构。
2. 实验一:拱形结构的变形情况(1)在拱形结构中心悬挂一个重物,记录下拱形结构的变形情况。
(2)逐步增加重物的重量,观察并记录拱形结构的变形情况。
3. 实验二:拱形结构的稳定性(1)将拱形结构两端固定在支架上,观察拱形结构的稳定性。
(2)逐步增加重物的重量,观察并记录拱形结构的稳定性。
4. 实验三:拱形结构的承重能力(1)在拱形结构上放置重物,记录下拱形结构的承重能力。
(2)逐步增加重物的重量,观察并记录拱形结构的承重能力。
五、实验结果与分析1. 实验一结果分析:在实验过程中,随着重物重量的增加,拱形结构的变形逐渐增大。
这说明拱形结构在承受压力时会产生变形,但变形程度与压力大小成正比。
2. 实验二结果分析:在实验过程中,拱形结构在两端固定的情况下表现出较好的稳定性。
当增加重物的重量时,拱形结构的稳定性逐渐降低。
这说明拱形结构的稳定性与其两端固定程度有关。
3. 实验三结果分析:在实验过程中,拱形结构的承重能力随着重物重量的增加而逐渐降低。
这说明拱形结构的承重能力与其承受的压力大小有关。
六、实验结论1. 拱形结构在承受压力时会产生变形,变形程度与压力大小成正比。
2. 拱形结构的稳定性与其两端固定程度有关,固定程度越高,稳定性越好。
3. 拱形结构的承重能力与其承受的压力大小有关,压力越大,承重能力越低。
七、实验拓展1. 通过改变拱形结构的形状和材料,研究其对力学特性的影响。
桥梁拱形结构
桥梁拱形结构当我们行驶在高速公路上或者穿过一道铁路桥时,或许很少有人会想过这些巨大的桥梁是如何支撑起整个结构的。
事实上,这些桥梁的背后隐藏着一种古老而优雅的建筑结构:拱形结构。
本文将以桥梁拱形结构为题,介绍拱形结构的原理、优势以及一些拱形结构桥梁的实例。
一、拱形结构的原理拱形结构是一种弯曲而稳固的结构形式,它将受力均匀地分布到支撑点上。
以桥梁为例,拱形结构通过桥墩和拱体之间的力传递来承受桥梁上的荷载。
当车辆通过桥梁时,重力会传递到桥墩,而桥墩会把这些力传递到拱体上,使得整个结构获得均衡和稳定。
拱形结构的原理可以用弧线上的压缩力来解释。
根据物理学原理,任何物体都会在受力作用下产生力的反作用。
在拱形结构中,当桥梁上的荷载通过拱体传入桥墩时,拱体会向下产生一个向内的压缩力,而桥墩则会产生一个向外的压力以抵消这个向内的压缩力。
这种力的平衡使得拱形结构能够承受更大的荷载,并且具有极高的稳定性。
二、拱形结构的优势1. 强大的承重能力:拱形结构通过合理的分布受力,能够更好地承受荷载。
相比于其他结构形式,拱形结构能够将荷载均匀地分散到桥梁或建筑物的基础上,从而减小了单点的压力,提高了整体的承重能力。
2. 灵活性和适应性:拱形结构可以适应不同的地理环境和地质条件。
在不同的地区和地形条件下,拱形结构可以根据实际情况进行调整,以确保结构的稳定性和安全性。
3. 经济性:由于拱形结构能够提供较大的承重能力,所以可以节省建筑材料的使用。
相对于其他结构形式,拱形结构所需的材料更少,从而减少了成本和建设时间。
三、拱形结构桥梁的实例1. 渡阳高架桥:位于中国广东省深圳市,该桥横跨深圳河。
渡阳高架桥采用了拱形结构,拱体呈现出优美的曲线,不仅提供了高强度和稳定性,而且也成为了城市地标。
2. 伊苏祖高架桥:位于法国巴黎西北部,该桥是一座拱形结构的公路桥梁,横跨塞纳河。
伊苏祖高架桥以其典雅的设计和高承重能力而闻名,成为了巴黎的重要交通枢纽之一。
拱结构及其案例分析
拱结构及其案例分析陈阅2班76号A.拱的定义在梁端加一水平力H,就能改变各截面受力状态;如果H的大小,作用点选得合适,可使梁的各截面处于受压或受弯状态,能提高梁的承载力,这就形成了拱,如图可见,拱结构是有推力的结构。
拱结构的外形一般是抛物线,圆弧或折线,目的是使供体各截面在外荷载、支撑力和推力作用下基本上处于受力或较小偏心受压状态,从而大大提高拱结构的承载力如图拱结构的控制尺寸包括:跨度l、失高f和截面尺寸。
拱结构的适用范围很大,从1.5~2.0m跨度的地下通道顶盖到几十米甚至上百米跨度的体育馆和拱桥。
例如清华大学综合体育中心、东凯尔勃莱德游泳馆等都采用拱结构。
拱结构的支撑形式一般有四种,如下图所示,由图a到图d分别为为:a.拉杆拱,b.落地拱,c.由框架支撑的拱,d.由水平屋盖支撑的拱。
B.拱的受力分析a.如下图所示是拱在集中荷载作用下的受力图简支拱的弯矩M与简支水平梁对应截面的弯矩M0相等。
拱的剪力Q和轴力N 等于简支水平梁对应截面上剪力Q0的两个投影。
即M= M0Q= Q0cosφN=- Q0sinφ式中,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
b.如下图所示是拱在均布荷载作用设拱的轴线为抛物线,其方程为y=4fx(l-x)/l2求出相应的简支水平梁的弯矩和剪力M0=0.5qx(l-x) Q0=q(0.5l-x)因此,拱的内力为M=0.5qx(l-x)Q= q(0.5l-x)cosφN=- q(0.5l-x)sinφ其M图,Q图,N图分别如下图φ计算Q和N时,先要由轴线方程的一阶导数求出tgφ=dy/dx=4f (l-2x)/l2,再由此式求得截面的倾角φ。
C.三绞拱受力分析拱结构中一种比较合理的方式是三绞拱,如图所示内力计算M= M0-Hy,Q= Q0cosφ-HsinφN= -Q0sinφ-Hcosφ其中H=M0C/f ,M0和Q0分别是简支水平梁的弯矩和剪力,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拱结构及其案例分析
阅
2班76号
A.拱的定义
在梁端加一水平力H,就能改变各截面受力状态;如果H的大小,作用点选得合适,可使梁的各截面处于受压或受弯状态,能提高梁的承载力,这就形成了拱,如图
可见,拱结构是有推力的结构。
拱结构的外形一般是抛物线,圆弧或折线,目的是使供体各截面在外荷载、支撑力和推力作用下基本上处于受力或较小偏心受压状态,从而大大提高拱结构的承载力如图
拱结构的控制尺寸包括:跨度l、失高f和截面尺寸。
拱结构的适用围很大,从1.5~2.0m跨度的地下通道顶盖到几十米甚至上百米跨度的体育馆和拱桥。
例
如清华大学综合体育中心、东凯尔勃莱德游泳馆等都采用拱结构。
拱结构的支撑形式一般有四种,如下图所示,由图a到图d分别为为:a.拉杆拱,b.落地拱,c.由框架支撑的拱,d.由水平屋盖支撑的拱。
B.拱的受力分析
a.如下图所示是拱在集中荷载作用下的受力图
简支拱的弯矩M与简支水平梁对应截面的弯矩M0相等。
拱的剪力Q和轴力N 等于简支水平梁对应截面上剪力Q0的两个投影。
即
M= M0
Q= Q0cosφ
N=- Q0sinφ
式中,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
b.如下图所示是拱在均布荷载作用
设拱的轴线为抛物线,其方程为
y=4fx(l-x)/l2
求出相应的简支水平梁的弯矩和剪力
M0=0.5qx(l-x) Q0=q(0.5l-x)
因此,拱的力为
M=0.5qx(l-x)
Q= q(0.5l-x)cosφ
N=- q(0.5l-x)sinφ
其M图,Q图,N图分别如下图
φ
计算Q和N时,先要由轴线方程的一阶导数求出tgφ=dy/dx=4f (l-2x)/l2,再由此式求得截面的倾角φ。
C.三绞拱受力分析
拱结构中一种比较合理的方式是三绞拱,如图所示
力计算
M= M0-Hy,
Q= Q0cosφ-Hsinφ
N= -Q0sinφ-Hcosφ
其中H=M0C/f ,M0和Q0分别是简支水平梁的弯矩和剪力,φ是拱各点切线的倾角,自水平轴至杆轴切线为逆时针方向时φ为正号。
可见,三铰拱的受力比普通的拱更合理,是一种常用结构,多用于大跨度结构。
D.拱的案例分析
1.阿罗丝渡槽
基本设计思路:采用侧双向压力的方法,消除任何可能出现的混凝土龟裂,避免渡槽槽壁漏水。
设计方案:将渡槽设计成一个37.8m长,支承在间隔18.9m的支架上,两端伸臂各长9.45m的单元。
这样,由渡槽重力(包括渡槽构件自重和渡槽中流水的重力荷载)产生的弯矩在整个渡槽长度方向都是负值,只有渡槽单元的中点和伸臂的自由端处弯矩为零,而在渡槽中间支承截面上的负弯矩最大。
如下面的弯矩图所示:
这些负弯矩使得渡槽的顶部都受有拉力。
当渡槽用后法预应力制造后,使得在预加应力和渡槽重力的共同作用下,整个渡槽截面都受着纵向压力。
这个纵向压力在渡槽底部的值最大,同时这里的水压力也是最大的,示意图如下:
为了在横向对渡槽壁施加压力,在渡槽顶部设置了很多U形槽壁
顶端的横杆。
这种横杆每隔4.6m设置一根,用花兰螺丝使其受拉。
这个拉应力使得槽壁互相靠拢,在槽壁产生横向弯矩,使渡槽侧受压,压应力愈向底部其值愈大,如下图所示:
横向钢筋渡槽槽壁的外侧布置,它们在拉紧横杆使槽壁产生的弯矩作用下受拉。
这种钢筋还能承受自渡槽伸臂端至支承架间由竖向荷载产生的沿槽壁的剪力,并且能够兜住渡槽底部承受槽底的拉力,就像U 形梁底部的受拉钢筋一样。
为了对渡槽顶部施加后预应力,要在渡槽顶的浅沟里预先放置一些钢绞线。
这些钢绞线由刚缆绳做成,其端部可简便地将各股钢绳做成弯钩并埋设在混凝土渡槽壁;一旦渡槽槽壁的混凝土凝固后,那些埋设在混凝土的缆绳端部就成为预应力钢绞线的锚固端。
其示意图如下;
在混凝土凝固后,钢绞线可以用下列方法拉:每对钢绞线都用夹具固定在渡槽浅沟里的相应位置上,然后设法将两个夹具中部的钢绞线用一对水平推力将其分离开,这样在纵向就对钢绞线进行了拉,图示如下:
高架渡槽每个单元间的连接是采用埋设在槽壁混泥土中的波形铅皮封口的。
在波形铅皮板的上面覆盖一层用金属丝或钢筋网加强的沥青层。
如图
架设渡槽的高架支承是两个倾斜交叉的杆件,形似一个巨大的双脚规。
高架支承上部具有与渡槽外形相同的形状,并有专设接缝与渡槽槽壁连接,这是由于当花兰螺丝拉时渡槽U形截面两侧槽壁有相互靠拢的倾向,设置的接缝可以保证花兰螺丝拉时支承处能与槽壁一起变形的
缘故。
渡槽使用后无任何裂缝和漏水现象,而且全部建造细节都完成的既简单又经济。
此结构的创新点在于:
a.采用悬挑的方式,使得整个结构都受负弯矩,即渡槽上部受拉,正好与水荷载相平衡。
b.利用纵向钢缆绳拉的方法来产生预加应力,以此来平衡外部荷载。
2.半英里长的渡槽
半英里长的渡槽工程有较大长度,它在建造时被要求要降低对渡槽施加预应力进行纵向拉时的造价;而这种纵向预加应力的方法对抵
消由重力荷载所产生的在槽壁上的弯曲拉应力是必要的。
此外,本工
程还要求设置尽可能少的膨胀节点。
按照这些限制条件,建议将本工
程做成一个有众多跨度的等跨连续梁,一边得到一个降低沿梁长度方
向截面最大弯矩值的有利条件。
最终,本工程确定只在沿渡槽长度的中点处设置一个连接点,其两头连接两侧长度很长的等跨连续梁。
这些连续梁在高架渡槽的两端均
设计成固定端支座。
在这个中部节点上,设置一个位于渡槽梁上端的三铰拱。
由于在重力荷载作用下,这个三铰拱每一侧拱脚处都存在一个水平推力,这个水平推力需要由渡槽壁加以承担,这样就取得了使渡槽全长上的槽壁受到压力的效果。
这种结构方案比为了同一目的的在习惯上常用的预应力钢缆体系更加便宜,而且受压构件的长度愈长,节省的造价愈多。
渡槽的支承墩要设计成具有足够的侧向刚度,以防止渡槽梁在压力作用下发生压屈;同时支撑墩还要设计成是一个两绞链杆,使得渡槽梁在因大气温度变化而伸长或缩短时,不会过多的阻止由三铰拱产生的压力传递。
渡槽节点处的防漏水做法,在渠道侧表面涂有一层橡皮薄膜,在渠道外侧表
面装有金属套筒。
它们都跨越节点缝隙,能达到允许渡槽沿长度方向胀缩的效果。
此案例所运用的力学原理有:
a.运用三铰拱产生的水平推力的原理,使得渡槽在沿全长方向产匀压。
b.渡槽支座做法是典型的“可在纵向发生水平移动的链杆”,它不影响水平
推力的传递。
本方案的巧妙之处表现在:
巧妙地应用三绞拱,运用三铰拱产生的水平推力的原理,使得渡槽在沿全长方向产匀压。
且由于其拱顶处的特殊构造,其拱顶处可以随不同气温转动,使拱底在不同温度下产生几乎相同的水平推力。
3.考特温多斯飞机棚
考温特飞机棚屋盖的纵向檩条搁放在35.1m跨度的金属拱上。
金属拱的杆件在对角线方向上相互交叉,以致安装后形成一个刚度很大的圆筒面交叉网,能够较好的承受作用在竖向投影上的风荷载和其他竖向荷载。
拱脚支撑在一系列突出于门式刚架一侧的伸臂梁上。
这些刚架除了两个端部刚架外,没有一个设计成必须用它来承受拱的侧向水平推力的。
而两侧刚架的对角线方向上则设置了足够强度和刚度的斜撑,使得端部刚架能够承受整个屋盖拱传来的推力。
屋盖拱在地面上拼装而成,屋盖拱是由一系列三铰拱组成的。
主要的弯矩发生在拱腰处。
因此,每侧拱杆件所需要的截面高度在拱脚处最小,沿拱身逐渐增大,在1/4跨度处最大,以后又逐渐减小,到拱顶处又最小。
这种做法可以将一根足够1/4拱身长度的工字钢沿腹部对角线剖开,调转180度后再沿腹部将剖缝处焊牢,形成另一根具有1/4拱身长度的一头截面尺寸大,一头截面尺寸小的工字钢,接着将两根这样的不等截面工字钢拼成半个拱身加以弯曲后完成。
本方案的巧妙之处表现在:
a.利用两侧钢构架承担拱顶的水平推力,不必在屋顶拱结构上另外再加设承受水平推力的构件;
b.裁剪工字钢的腹板,将它再焊成变截面构件,最合理的利用型钢原材料作为拱身构件。