数字信号处理实验报告格式

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。

2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容(1)在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,用DFT分析上述各信号的频谱结构,选取不同的采样频率和截取长度,试分析频谱发生的变化。

实验内容(2)设x(n)=cos(0.48*π*n)+ cos(0.52*π*n),对其进行以下频谱分析:10点DFT,64点DFT,及在10点序列后补零至64点的DFT 试分析这三种频谱的特点。

四、实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。

2.复习FFT算法原理和基本思想。

3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验程序和结果实验1内容(1)N=L/T+1;t=0:T:L;a=48;D1=2*pi/(N*T); % 求出频率分辨率k1=floor((-(N-1)/2):((N-1)/2)); % 求对称于零频率的FFT位置向量%%%%%%%%%%%%%%%%%%%%%%%%%figure(1),x1=cos(100*pi*a*t);y1=T*fftshift(fft(x1));%虽然原来是周期信号,但做了截断后,仍可当作非周期信号。

subplot(2,1,1),plot(t,x1);title('正弦信号');subplot(2,1,2),plot(k1*D1,abs(y1));title('正弦信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(2), x2=exp(-a*t);y2=T*fftshift(fft(x2));%有限长(长度为N)离散时间信号x1的dft 再乘T 来近似模拟信号的频谱,长度为Nsubplot(2,1,1),plot(t,x2);title('指数信号');subplot(2,1,2),plot(k1*D1,abs(y2));title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(3), x3=x1.*x2;y3=T*fftshift(fft(x3))subplot(2,1,1),plot(t,x3);title('两信号相乘');subplot(2,1,2),plot(k1*D1,abs(y3));title('两信号相乘频谱');0.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.140.160.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.0005 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-2000200040006000800000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51指数信号-8000-6000-4000-20000200040006000800000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-20000200040006000800000.0050.010.015两信号相乘频谱T=0.002 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-2000-1500-1000-50050010001500200000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51-2000-1500-1000-500050010001500200000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-2000-1500-1000-500050010001500200000.0050.010.015两信号相乘频谱T=0.001 L=0.180.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-1000100020003000400000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.180.51指数信号-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.001 L=0.120.020.040.060.080.10.12-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.12-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱实验1内容(2)>> N=10;n=1:NT=1x1=cos(0.48*pi*n*T)+cos(0.52*pi*n*T)X1=fft(x1,10)k=1:N;w=2*pi*k/10subplot(3,2,1);stem(n,x1);axis([0,10,-3,3]);title('信号x(n)');subplot(3,2,2);stem(w/pi,abs(X1));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2=100;n2=1:N2T=1x1=cos(0.48*pi*[1:10]*T)+cos(0.52*pi*[1:10]*T)x2=[x1,zeros(1,90)]X2=fft(x2,N2)k2=1:N2;w2=2*pi*k2/100subplot(3,2,3);stem(x2);axis([0,100,-3,3]);title('信号x(n)补零');subplot(3,2,4);plot(w2/pi,abs(X2));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N3=100;n3=1:N3T=1x3=cos(0.48*pi*n3*T)+cos(0.52*pi*n3*T)X3=fft(x3,100)k3=1:N3;w3=2*pi*k3/100subplot(3,2,5);stem(n3,x3);axis([0,100,-3,3]);title('信号x(n)');subplot(3,2,6);stem(w3/pi,abs(X3));axis([0,1,0,10]);title('DFTx(n)');n =1 2 3 4 5 6 7 8 9 10 T =1510-202信号x(n)0.510510DFTx(n)50100信号x(n)补零0.510510DFTx(n)50100信号x(n)DFTx(n)实验二 卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。

实验一 数字信号处理 实验报告

实验一 数字信号处理 实验报告

1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。

a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。

实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。

2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。

3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。

4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。

实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。

2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。

3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。

实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。

在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。

数字信号处理实验报告格式(1)(1)

《数字信号处理》实验报告实验一、系统响应与系统稳定性专业:通信工程班级:通信1204班实验一、系统响应及系统稳定性一、设计目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析,观察及检验系统的稳定性。

二、实验原理和方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。

也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。

可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。

系统的稳态输出是指当n→∞时,系统的输出。

如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。

注意在以下实验中均假设系统的初始状态为零三、实验内容和分析实验内容编程如下:(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号 x1(n)=R8(n), x2(n)=u(n)① 分别求出x 1(n)=R 8(n)和x 2(n)=u(n)的系统响应,并画出其波形。

② 求出系统的单位脉冲响应,画出其波形。

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告参考模板

数字信号处理课程实验报告书起止日期:2013 年 5 月19 日~2013 年 5 月31 日共 3 周学生姓名余晓睿班级电子技术1001学号10401701202成绩指导教师(签字)电气与信息工程学院2013年5月19 日实验一快速傅里叶变换(FFT)及其应用一、实验目的1、在理论学习的基础上,通过本次实验,加深对FFT的理解,熟悉matlab中的有关函数。

2、应用FFT对典型信号进行频谱分析。

3、了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

4、应用FFT实现序列的线性卷积和相关。

二、实验原理N点序列的DFT和IDFT变换定义式如下:FFT)。

在MATLAB中,可以用函数X=fft(x,N)和x=ifft(X,N)计算N点序列的DFT正、反变换。

三、实验内容1、观察高斯序列的时域和幅频特性,固定信号x a(n)中参数n=8,改变q的值,使q分别等于2、4、8,观察他们的时域和幅频特性,了解当q取不同值的时候,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p分别等于8、13、14,观察参数p变化对信号序列的时域及幅频特性的影响。

用MATLAB计算并作图,函数fft用于计算离散傅里叶变换DFT,程序如下:程序运行结果如下:2、观察衰减正弦序列x b(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f,使f分别等于0.4375和0.5625。

用MATLAB计算并作图,函数fft用于计算离散傅里叶变换DFT,程序如下:程序运行结果如下:3、观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT 分析信号序列x c(n)和x d(n)的幅频特性,绘出两序列及其幅频特性曲线。

在x c(n)和x d(n)末尾补零,用N=32点FFT分析者两个信号的幅频特性。

用MATLAB计算并作图,函数fft用于计算离散傅里叶变换DFT,程序如下:程序运行结果如下:4、一个连续信号含两个频率分量,经采样得x(n)=sin[2π∗0.125n]+cos[2π∗(0.125+∆f)n] n=0,1,…,N−1已知N=16,∆f分别为1/16和1/64,观察其频谱;当N=128时,∆f不变,观察其频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京理工大学电子工程专业专接本实验报告数字信号处理准考证号:姓名:联系电话:实验一 信号、系统及系统响应1.实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

2.实验原理采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示: )()()(^t p t t x x a a=其中)(^t x a为)(t xa的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a X Ω-Ω=Ω∑∞-∞= 上式表明^)(Ωj Xa为)(Ωj X a 的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:^()()j nTa a n X j x nT e ∞-Ω=-∞Ω=∑()()j j nn X e x n e ωω∞-=-∞=∑^()()|j a TX j X e ωω=ΩΩ=离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jweX 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现 )()()(ωωωj j j e H e X eY =3.实验环境应用MATLAB 6.5软件 操作系统:windows XP4. 实验结果(1) 采样序列的特性。

一般称fs/2为折叠频率,只有当信号最高频率不超过该频率时才不会发生混叠现象,否则超过了fs/2的频率会折叠回来形成混叠现象,因此频率混叠均产生在fs/2附近。

A.采样频率fs=1000Hz由图形可知,当采样频率为1000Hz 时,采样序列在折叠频率附近处,即w=π处无明显频谱混叠。

B.采样频率 fs=300HzC.采样频率fs=200Hz由图可知,当采样频率进一步降低时,主瓣宽度逐渐变宽,频率混叠现象也逐渐严重,存在较明显的失真现象。

原因是采样频率太小,使最高频率fc超过了fs/2,超过了fs/2的频率会折叠回来而形成的混叠现象。

(2)时域离散信号、系统和系统响应。

A.)()(nnxbδ=)3()2(5.2)1(5.2)()(-+-+-+=nnnnnhbδδδδ理论值一个函数与单位脉冲序列的卷积等于函数本身,卷积得到的长度等于两个函数长度和减一。

由图可知,yb(n)=xb(n),其长度13=4+10-1,所以理论与实际是一致的。

B.)()()(10nRnhnxac==判断ya(n)是否正确的方法:ya(n)的长度L等于两个被卷积函数的长度和减去一,且ya(n)是关于n=(L-1)/2对称的,峰值即为N值,对称轴左边由一逐渐按增一序列递增,右边按减一序列递减。

由图知:19=10+10-1,且图形正确,所以做出的ya(n)是正确的。

C.)()(5nRnxc当N=10时,峰值较高,且峰值很窄,变换之后图形频带主值部分比较集中,且峰值较高;当N=5时,峰值较矮,且峰值很宽,变换之后图形频带主值部分较为分散,且峰值较(3)卷积定理的验证a=0.4,Ω=2.0734,A=1,T=1Y(jw)=Xa(jw)*Hb(jw)由图可知,由yb(n)=xa(n)*hb(n)经傅氏变换所得到的|Yb(jw)|和由|Yb(jw)|=|Xa(jw)Hb(jw)|所得到的|Yb(jw)|的图像是一样的,从而验证了时域卷积定理。

5.实验代码while(s<0)clc;s = input('******信号、系统及响应******\n\n选择实验步骤(默认1):\n[1]:时域采样序列分析\n[2]:系统和响应分析\n[3]:卷积定理验证\n[0]:退出\n选择:','s');switch(s)case{'1','2','3','0'}s = str2num(s);case {''}s = 1;otherwises = -1;endendclose all;while(s)%时域采样序列分析if (s==1)A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:50-1;fs = input('输入采样频率\nfs=','s');%fs=1000,300,200fs = str2num(fs);if isempty(fs)fs = 1000;disp('输入数据格式错误,使用默认值1000');elseif(fs<1)fs = 1000;disp('输入无效数据,使用默认值1000');endendc=A*exp((-a)*n/fs).*sin(w*n/fs);subplot(2,2,1);stem(n,c,'.');xlabel('n');ylabel('xa(n)');title('xa(n)的时域序列');N=50;k=-200:200;w=k*pi/100;X=DFT(c,N);subplot(2,2,2);plot(w/pi,abs(X));xlabel('w/pi');ylabel('|X(jw)|');title('xa(n)的傅氏变换|X(jw)|');else%系统和响应分析if(s==2)l = input('系统和响应分析,请选择时域信号类型(默认1):\n[1]:内容②a\n[2]:内容②b\n[3]:内容②b中xc(n)的长度改为5\n[0]:退出\n选择:','s');switch(l)case {'1','2','3','0'}l = str2num(l);otherwisel = 1;endwhile(l)if(l==1)%hb(n)的时域序列hb=[1,2.5,2.5,1];i=0:3;subplot(2,2,1);stem(i,hb,'.');axis([0 3 0 2.5]);xlabel('n');ylabel('hb(n)');title('hb(n)的时域序列');%hb(n)的傅氏变换|Hb(jw)|N=4;k=-200:200;w=k*pi/100;Hb=DFT(hb,N);subplot(2,2,2);plot(w/pi,abs(Hb));xlabel('w/pi');ylabel('|Hb(jw)|');title('hb(n)的傅氏变换|Hb(jw)|');%xb(n)的时域序列xb=[1,0,0,0,0,0,0,0,0,0];i=0:9;subplot(2,2,3);stem(i,xb,'.');xlabel('n');ylabel('xb(n)');title('xb(n)的时域序列');%xb(n)的傅氏变换(Xb|jw|)N=10;k=-200:200;w=k*pi/100;Xb=DFT(xb,N);magXb=abs(Xb);subplot(2,2,4);plot(w/pi,magXb);xlabel('w/pi');ylabel('|Xb(jw)|');title('xb(n)的傅氏变换(Xb|jw|)');%yb(n)=xb(n)*hb(n)的时域序列yb=conv(xb,hb);figure;subplot(2,1,1);stem(0:12,yb,'.');xlabel('n');ylabel('yb(n)=xb(n)*hb(n)');title('yb(n)=xb(n)*hb(n)的时域序列');%yb(n)的傅氏变换(Yb|jw|)N=13;k=-200:200;w=k*pi/100;Yb=DFT(yb,N);subplot(2,1,2);plot(w/pi,abs(Yb));xlabel('w/pi');ylabel('|Yb(jw)|');title('yb(n)的傅氏变换|Yb(jw)|');elseif(l==2)%ya(n)=xc(n)*ha(n)的时域序列ha=[1,1,1,1,1,1,1,1,1,1];xc=ha;ya=conv(ha,xc);subplot(2,1,1);stem(0:18,ya,'.');xlabel('n');ylabel('ya(n)=xc(n)*ha(n)');title('ya(n)=xc(n)*ha(n)的时域序列');%ya(n)的傅氏变换(Ya|jw|)N=19;k=-200:200;w=k*pi/100;Ya=DFT(ya,N);subplot(2,1,2);plot(w/pi,abs(Ya));xlabel('w/pi');ylabel('|Ya(jw)|');title('ya(n)的傅氏变换|Ya(jw)|');elseif(l==3)ha=[1,1,1,1,1,1,1,1,1,1];xc=[1,1,1,1,1];%ya(n)=xc(n)*ha(n)的时域序列ya=conv(ha,xc);subplot(2,2,1);stem(0:13,ya,'.');xlabel('n');ylabel('ya(n)=xc(n)*ha(n)');title('ya(n)=xc(n)*ha(n)的时域序列');%ya(n)的傅氏变换(Ya|jw|)N=14;k=-200:200;w=k*pi/100;Ya=DFT(ya,N);subplot(2,2,2);plot(w/pi,abs(Ya));xlabel('w/pi');ylabel('|Ya(jw)|');title('ya(n)的傅氏变换(|Ya(jw)|');endendendl = input('请再选择信号类型(默认1):\n[1]:内容②a\n[2]:内容②b\n[3]:内容②b中xc(n)的长度改为5\n[0]:退出\n选择:','s');switch(l)case {'1','2','3','0'}l = str2num(l);otherwisel = 1;endend%卷积定理验证elseif(s==3)A=1;a=0.4;w=2.0374;n=0:50-1;fs=1;xa=A*exp((-a)*n/fs).*sin(w*n/fs); subplot(2,2,1);stem(n,xa,'.');xlabel('n');ylabel('xa(n)');title('xa(n)的时域序列');N=50;k=-200:200;w=k*pi/100;X=DFT(xa,N);subplot(2,2,2);plot(w/pi,abs(X));xlabel('w/pi');ylabel('|X(jw)|');title('xa(n)的傅氏变换|Xa(jw)|');hb=[1,2.5,2.5,1];yb=conv(xa,hb);subplot(2,2,3);stem(0:52,yb,'.');xlabel('n');ylabel('yb(n)=xa(n)*hb(n)');title('yb(n)=xa(n)*hb(n)的时域序列');N=53;k=-200:200;w=k*pi/100;Yb=DFT(yb,N);subplot(2,2,4);plot(w/pi,abs(Yb));xlabel('w/pi');ylabel('|Yb(jw)|');title('yb(n)的傅氏变换|Yb(jw)|');N=4;k=-200:200;w=k*pi/100;Hb=DFT(hb,N);Y=X.*Hb;figure;subplot(1,1,1);plot(w/pi,abs(Y));xlabel('w/pi');ylabel('|Y(jw)|');title('|Y(jw)|=|Xa(jw)Hb(jw)|');endendendclc;s = input('******信号、系统及响应******\n\n选择实验步骤(默认1):\n[1]:时域采样序列分析\n[2]:系统和响应分析\n[3]:卷积定理验证\n[0]:退出\n选择:','s');switch(s)case{'1','2','3','0'}s = str2num(s);otherwises = 1;endend%傅里叶变换子程序function c=DFT(x,N)n=0:N-1;k=-200:200;w=(pi/100)*k;c=x*(exp(-j*pi/100)).^(n'*k);。

相关文档
最新文档