2017-2018学年安徽省蚌埠二中高二上学期期中数学试卷与解析(文科)
2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。
2017-2018年安徽省蚌埠二中高三(上)数学期中试卷和答案(文科)

三、解答题(本大题共 5 小题,共 70 分) 17. (12 分)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且 acosC,bcosB, ccosA 成等差数列, (Ⅰ)求 B 的值; (Ⅱ)求 2sin2A+cos(A﹣C)的范围.
第 4 页(共 26 页)
18. (12 分)某校 100 位学生期中考试语文成绩的频率分布直方图如图所示,其 中成绩分组区间是:[50,60) 、[60,70) 、[70,80) 、[80,90) 、[90,100]. 分数段 x: :y [50,60) 1:1 [60,70) 2:1 [70,80) 3:4 [80,90) 4:5
D.{﹣1,0,1,2,3} )
2. (5 分)若复数 z 满足(3﹣4i)z=|4+3i|,则 z 的虚部为( A.﹣4 B. 3. (5 分)若 A. B. C. D. C.4 D. ,则 cos(π﹣2α)=( )
4. (5 分)从长度分别为 1cm,3cm,5cm,7cm,9cm 的 5 条线段中,任意取出 3 条,3 条线段能构成三角形的概率是( A.0.2 B.0.3 C.0.4 D.0.5 5. (5 分)已知 m,n 是两条不同直线,α,β 是两个不同平面,则下列命题正确 的是( ) )
A.若 α,β 垂直于同一平面,则 α 与 β 平行 B.若 m,n 平行于同一平面,则 m 与 n 平行 C.若 α,β 不平行,则在 α 内不存在与 β 平行的直线 D.若 m,n 不平行,则 m 与 n 不可能垂直于同一平面 6. (5 分)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其 数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何? ” 如图是解决该问题的程序框图,执行该程序框图,若输出的 S=1.5(单位:升) , 则输入 k 的值为( )
2017-2018学年安徽省蚌埠铁中高二(上)数学期中试卷带解析答案(文科)

2017-2018学年安徽省蚌埠铁中高二(上)期中数学试卷(文科)一.选择题(60分)1.(5分)点P在直线m上,m在平面a内可表示为()A.P∈m,m∈a B.P∈m,m⊂a C.P⊂m,m∈a D.P⊂m,m⊂a 2.(5分)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为()A.2,2B.2,2 C.4,2 D.2,43.(5分)下列说法正确的是()A.a⊂α,b⊂β,则a与b是异面直线B.a与b异面,b与c异面,则a与c异面C.a,b不同在平面α内,则a与b异面D.a,b不同在任何一个平面内,则a与b异面4.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π5.(5分)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α6.(5分)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交 B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交7.(5分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m8.(5分)直线xsin 30°+ycos 150°+1=0的斜率是()A.B.C.﹣D.﹣9.(5分)倾斜角为135°,在y轴上的截距为﹣1的直线方程是()A.x﹣y+1=0 B.x﹣y﹣1=0 C.x+y﹣1=0 D.x+y+1=010.(5分)直线x﹣2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.[﹣2,0)∪(0,2] D.(﹣∞,+∞)11.(5分)圆(x﹣1)2+(y+2)2=6与直线2x+y﹣5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交且过圆心D.相离12.(5分)已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为()A.4 B.4 C.5 D.5二.填空题(20分)13.(5分)若正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥A﹣B1DC1的体积为.14.(5分)正方体ABCD﹣A1B1C1D1的棱长为1cm,过AC作平行于对角线BD1的截面,则截面面积为.15.(5分)经过两点A(﹣m,6)、B(1,3m)的直线的斜率是12,则m的值为.16.(5分)圆C的直径的两个端点分别是A(﹣1,2),B(1,4),则圆C的标准方程为.三、解答题(共6小题,满分70分)17.(12分)如图,四棱锥PABCD中,底面ABCD为矩形,F是AB的中点,E 是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.18.(12分)如图,S是Rt△ABC所在平面外一点,且SA=SB=SC.D为斜边AC 的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.19.(12分)如图,在三棱锥ABCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥DABC的体积.20.(12分)已知点A(3,4),求满足下列条件的直线方程:(1)经过点A且在两坐标轴上截距相等;(2)经过点A且与两坐标轴围成一个等腰直角三角形.21.(12分)已知直线l1:ax+2y+6=0和直线l2:x+(a﹣1)y+a2﹣1=0.(Ⅰ)当l1∥l2时,求a的值;(Ⅱ)当l1⊥l2时,求a的值.22.(10分)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.2017-2018学年安徽省蚌埠铁中高二(上)期中数学试卷(文科)参考答案与试题解析一.选择题(60分)1.(5分)点P在直线m上,m在平面a内可表示为()A.P∈m,m∈a B.P∈m,m⊂a C.P⊂m,m∈a D.P⊂m,m⊂a 【解答】解:∵点P在直线m上,m在平面a内,∴P∈m,m⊂a,故选:B.2.(5分)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为()A.2,2B.2,2 C.4,2 D.2,4【解答】解:根据几何体的三视图,得;三棱柱的高=侧视图的高=2,底面的高=侧视图的宽=2;又底面是正三角形,所以底面边长为==4.故选:D.3.(5分)下列说法正确的是()A.a⊂α,b⊂β,则a与b是异面直线B.a与b异面,b与c异面,则a与c异面C.a,b不同在平面α内,则a与b异面D.a,b不同在任何一个平面内,则a与b异面【解答】解:若a⊂α,b⊂β,则a与b可能平行,可能相交,也可能异面,故A 错误;若a与b异面,b与c异面,则a与c可能平行,可能相交,也可能异面,故B 错误;若a,b不同在平面α内,则a与b可能平行,可能相交,也可能异面,故C错误;若a,b不同在任何一个平面内,则a与b异面,故D正确;故选:D.4.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.5.(5分)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α【解答】解:若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是:通过观察正方体,可知b与α相交或b⊂α或b∥α6.(5分)如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交 B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交【解答】解:根据线面平行的定义可知直线与平面无交点∵直线a∥平面α,∴直线a与平面α没有公共点从而直线a与平面α内任意一直线都没有公共点,则不相交故选:D.7.(5分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m【解答】解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.8.(5分)直线xsin 30°+ycos 150°+1=0的斜率是()A.B.C.﹣D.﹣【解答】解:直线xsin 30°+ycos 150°+1=0的斜率k==﹣=.故选:A.9.(5分)倾斜角为135°,在y轴上的截距为﹣1的直线方程是()A.x﹣y+1=0 B.x﹣y﹣1=0 C.x+y﹣1=0 D.x+y+1=0【解答】解:∵直线倾斜角是135°,∴直线的斜率等于﹣1,∵在y轴上的截距是﹣1,由直线方程的斜截式得:y=﹣1×x﹣1,即y=﹣x﹣1,故选:D.10.(5分)直线x﹣2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.[﹣2,0)∪(0,2] D.(﹣∞,+∞)【解答】解:令x=0,可得y=;令y=0,可得x=﹣b,∴,b≠0,解得﹣2≤b≤2,且b≠0.故选:C.11.(5分)圆(x﹣1)2+(y+2)2=6与直线2x+y﹣5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交且过圆心D.相离【解答】解:圆(x﹣1)2+(y+2)2=6的圆心为(1,﹣2)、半径为,圆心到直线2x+y﹣5=0的距离为=,小于半径,故直线和圆相交,又(1,﹣2)不在直线2x+y﹣5=0上,所以直线和圆相交但直线不过圆心,故选:B.12.(5分)已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为()A.4 B.4 C.5 D.5【解答】解:设圆心O到AC、BD的距离分别为d 1、d2,则d12+d22=OM2=3.四边形ABCD的面积为:S=AC•BD=•2•2=2•≤4﹣+4﹣=5,当且仅当d12 =d22时取等号,故选:C.二.填空题(20分)13.(5分)若正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥A﹣B1DC1的体积为1.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故答案为:1.14.(5分)正方体ABCD﹣A1B1C1D1的棱长为1cm,过AC作平行于对角线BD1的截面,则截面面积为cm2.【解答】解:如图连接BD,与AC交于O,E为DD1的中点,连接OE,则OE∥BD1,所以BD1∥平面ACE,平面ACE即为过AC平行于对角线BD1的截面,正方体的棱长为1cm,所以AC=cm,OE=BD1=cm,所以S=(cm2)△ACE故答案为:cm2.15.(5分)经过两点A(﹣m,6)、B(1,3m)的直线的斜率是12,则m的值为﹣2.【解答】解:∵A(﹣m,6)、B(1,3m)的直线的斜率是12,∴k AB==12,∴m=﹣2.故答案为:﹣2.16.(5分)圆C的直径的两个端点分别是A(﹣1,2),B(1,4),则圆C的标准方程为x2+(y﹣3)2=2.【解答】解:∵A(﹣1,2),B(1,4)是圆C的直径的两端点,∴圆心C是AB的中点,其坐标为(0,3),圆C半径|AC|=.∴圆C的方程是:x2+(y﹣3)2=2.故答案为:x2+(y﹣3)2=2.三、解答题(共6小题,满分70分)17.(12分)如图,四棱锥PABCD中,底面ABCD为矩形,F是AB的中点,E 是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.【解答】解:(1)证明:连接BD,设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)PC的中点G即为所求的点.证明如下:连接GE,FG,∵E为PD的中点,∴GE CD.又F为AB的中点,且四边形ABCD为矩形,∴FA CD.∴FA GE.∴四边形AFGE为平行四边形,∴FG∥AE.又FG⊄平面AEC,AE⊂平面AEC,∴FG∥平面AEC.18.(12分)如图,S是Rt△ABC所在平面外一点,且SA=SB=SC.D为斜边AC 的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【解答】证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D,E分别为AC,AB的中点.∴DE∥BC,∴DE⊥AB,∵SA=SB,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,又BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.19.(12分)如图,在三棱锥ABCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥DABC的体积.【解答】解:(1)证明:设BD的中点为O,连接AO,EO,∵AB=AD,∴AO⊥BD.又E为BC的中点,∴EO∥CD.∵CD⊥BD,∴EO⊥BD.又OA∩OE=O,∴BD⊥平面AOE.又AE⊂平面AOE,∴AE⊥BD.(2)由已知得三棱锥DABC与CABD的体积相等.∵CD⊥BD,平面ABD⊥平面BCD,∴CD⊥平面ABD,BD==2.=×BD×=.由已知得S△ABD∴三棱锥CABD的体积V CABD=×CD×S△ABD=.∴三棱锥DABC的体积为.20.(12分)已知点A(3,4),求满足下列条件的直线方程:(1)经过点A且在两坐标轴上截距相等;(2)经过点A且与两坐标轴围成一个等腰直角三角形.【解答】解:(1)设直线在x轴,y轴上的截距均为a.①若a=0,即直线过点(0,0)及(3,4).∴直线的方程为y=x,即4x﹣3y=0.②若a≠0,设所求直线的方程为+=1,又点(3,4)在直线上,∴+=1,∴a=7.∴直线的方程为x+y﹣7=0.综合①②可知所求直线的方程为4x﹣3y=0或x+y﹣7=0.(2)由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y﹣4=±(x﹣3).故所求直线的方程为x﹣y+1=0或x+y﹣7=0.21.(12分)已知直线l1:ax+2y+6=0和直线l2:x+(a﹣1)y+a2﹣1=0.(Ⅰ)当l1∥l2时,求a的值;(Ⅱ)当l1⊥l2时,求a的值.【解答】解:(I)由a(a﹣1)﹣2=0,解得a=2或﹣1.经过验证a=2时两条直线重合,舍去.∴a=﹣1.(II)a=1时,两条直线不垂直,舍去.a≠1时,由l1⊥l2时,∴﹣×=﹣1,解得a=.22.(10分)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.【解答】解:(1)直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x 轴上且在直线l的右上方.设圆心C(a,0),则,解得a=0或a=﹣5(舍).所以圆C:x2+y2=4.(2)如图,当直线AB⊥x轴时,x轴平分∠ANB.①当直线AB的斜率存在时,设直线AB的方程为y=k(x﹣1),N(t,0),A(x1,y1),B(x2,y2),由,得到:(k2+1)x2﹣2k2x+k2﹣4=0,所以x1+x2=,x1x2=.②若x轴平分∠ANB,k AN=﹣k BN,所以:,整理得:2x1x2﹣(t+1)(x1+x2)+2t=0,解得:t=4.所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.。
安徽省蚌埠市第二中学2017-2018学年高二月考数学试题

蚌埠二中2017-2018学年月考新高二数学试卷一、选择题(本大题共12小题,共60分)1. 已知tanα=2,tanβ=3,则tan(α+β)=()A. 1B. -1C.D.【答案】B.....................本题选择B选项.2. 在△ABC中,∠A=60°,a=,b=4,则满足条件的△ABC()A. 有两个B. 有一个C. 不存在D. 有无数多个【答案】A【解析】在△ABC中,∵∠A=60°,a=,b=4,∴由正弦定理得,则,∵b>a,∴B>60°,故B有一个为锐角,一个为钝角,满足条件的△ABC有2个。
本题选择A选项.3. 不等式ax2+bx+2>0的解集是,则a-b等于()A. -10B. 10C. -14D. 14【答案】A【解析】由题意可得方程ax2+bx+2=0的解为或,故则a=−12,b=−2,a-b=−10.本题选择A选项.4. 已知数据x1,x2,x3,…,x200是上海市普通职工的2016年的年收入,设这200个数据的平均数为x,中位数为y,方差为z,如果再加上中国首富马云的年收入x201则这201个数据中,下列说法正确的是()A. x大大增大,y一定变大,z可能不变B. x可能不变,y可能不变,z可能不变C. x大大增大,y可能不变,z也不变D. x大大增大,y可能不变,z变大【答案】D【解析】试题分析::∵数据x1,x2,x3,…,x200是上海普通职工n(n≥3,n∈N*)个人的年收入,而x201为世界首富的年收入则x201会远大于x1,x2,x3, (x200)故这21个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x201比较大的影响,而更加离散,则方差变大考点:极差、方差与标准差5. 己知α为第二象限角,cosa=-,则sin2α=()A. -B. -C.D.【答案】A【解析】∵α为第二象限角,,∴,∴.本题选择A选项.6. 一个三角形的三个内角A、B、C成等差数列,那么tan(A+C)的值是()A. B. C. D. 不确定【答案】B【解析】试题分析:因为,三角形的三个内角A、B、C成等差数列,所以,由三角形内角和定理,B=60°,A+C=120°,=,故选B。
2017-2018学年高二上学期期中数学试卷(文科) Word版含解析

2017-2018学年高二上学期期中试卷(文科数学)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .2.已知△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,a=,b=,B=60°,那么∠A 等于( )A .135°B .45°C .135°或45°D .60° 3.设a >b ,则下列不等式中恒成立的是( )A .<B .a 3>b 3C .>D .a 2>b 24.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .85.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .148.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .10.某企业生产甲、乙两种产品均需用A 、B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨) 128A .12万元B .16万元C .17万元D .18万元 11.若等差数列{a n }的公差为2,且a 5是a 2与a 6的等比中项,则该数列的前n 项和S n 取最小值时,n 的值等于( ) A .4B .5C .6D .712.定义算式⊗:x ⊗y=x (1﹣y ),若不等式(x ﹣a )⊗(x+a )<1对任意x 都成立,则实数a 的取值范围是( )A .﹣1<a <1B .0<a <2C .D .二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x 2+x ﹣2>0的解集为 .14.在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列的通项a n = .15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 .16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 .三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD 中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD 的长;(2)求∠ADC 的度数.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm 2(版心是指图中的长方形阴影部分,dm 为长度单位分米),上、下两边各空2dm ,左、右两边各空1dm .(1)若设版心的高为xdm ,求海报四周空白面积关于x 的函数S (x )的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?20.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2ccosA+a=2b .(Ⅰ)求角C 的值;(Ⅱ)若a+b=4,当c 取最小值时,求△ABC 的面积.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.2017-2018学年高二上学期期中试卷(文科数学)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.数列﹣,,,,…的一个通项公式可能是( )A .B .C .D .【考点】数列的函数特性.【分析】利用符号为(﹣1)n 与绝对值为即可得出.【解答】解:数列﹣,,,,…的一个通项公式可能是a n =(﹣1)n.故选:D .【点评】本题考查了数列的通项公式,参考老头老娘了与计算能力,属于基础题.2.已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135°B.45°C.135°或45°D.60°【考点】正弦定理.【分析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A【解答】解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【点评】本题考查正弦定理和大边对大角定理解三角形,属于容易题3.设a>b,则下列不等式中恒成立的是()A.<B.a3>b3C.>D.a2>b2【考点】不等式比较大小.【分析】A.取a=2,b=﹣1时不成立;B.利用函数y=x3在R上单调递增即可判断出正误.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.【解答】解:A.取a=2,b=﹣1时不成立;B.由于函数y=x3在R上单调递增,∵a>b,∴a3>b3,成立.C.取a=2,b=1时不成立;D.取a=1,b=﹣2时不成立.故选:B.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.若等差数列{a n }的前n 项和为S n ,且S 6=3,a 4=2,则a 5等于( )A .5B .6C .7D .8 【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d ,∵S 6=3,a 4=2,∴6a 1+d=3,a 1+3d=2,解得a 1=﹣7,d=3. 则a 5=﹣7+3×4=5, 故选:A .【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.已知变量x ,y 满足约束条件,则的取值范围是( )A .[2,5]B .(﹣∞,2]∪[5,+∞)C .(﹣∞,3]∪[5,+∞)D .[3,5]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用的几何意义是区域内的点到原点的斜率,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率, 由图象知OC 的斜率最小,OA 的斜率最大,由得,即A (1,5),此时OA 的斜率k=5,由得,即C (2,4),此时OC 的斜率k==2,即2≤≤5,则的取值范围是[2,5],故选:A .【点评】本题主要考查线性规划的应用,利用的几何意义是区域内的点到原点的斜率是解决本题的关键.6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,则角A 是( )A .B .C .D .【考点】余弦定理.【分析】直接利用余弦定理化简求解即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若a 2=b 2+c 2﹣bc ,由余弦定理可得:cosA=,解得A=.故选:A .【点评】本题考查余弦定理的应用,考查计算能力.7.设等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( )A .8B .10C .12D .14 【考点】等比数列的前n 项和.【分析】直接利用等比数列的性质,化简求解即可.【解答】解:等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,可得S 4,S 8﹣S 4,S 12﹣S 8,也是等比数列,S 12﹣S 8===8.S 12=14. 故选:D .【点评】本题考查等比数列的简单性质的应用,考查计算能力.8.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,则△ABC 的形状是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰三角形或直角三角形【考点】三角形的形状判断.【分析】利用正弦定理转化求解三角形的角的关系,判断三角形的形状即可.【解答】解:在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若,可得,可得sin2A=sin2B . 可得2A=2B 或2A+2B=π,即:A=B 或A+B=;故选:D .【点评】本题考查正弦定理的应用,三角形的形状的判断,考查计算能力.9.若两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且,则等于( )A .2B .C .D .【考点】等差数列的性质.【分析】利用===,即可得出结论.【解答】解: =====,故选C.【点评】本题考查等差数列通项的性质,考查等差数列的求和公式,比较基础.10.某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元【考点】简单线性规划的应用.【分析】设每天生产甲乙两种产品分别为x,y吨,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.【解答】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,则,目标函数为 z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z=3x+4y=6+12=18.max即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,故选:D.【点评】本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.若等差数列{an }的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于()A.4 B.5 C.6 D.7【考点】等差数列与等比数列的综合.【分析】由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值.【解答】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{an}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=﹣11,a n =a1+(n﹣1)d=﹣11+2(n﹣1)=2n﹣13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和Sn取最小值时,n=6.故选:C.【点评】等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.12.定义算式⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则实数a的取值范围是()A.﹣1<a<1 B.0<a<2 C.D.【考点】二次函数的性质.【分析】由已知中算式⊗:x⊗y=x(1﹣y),我们可得不等式(x﹣a)⊗(x+a)<1对任意x都成立,转化为一个关于x的二次不等式恒成立,进而根据二次不等式恒成立的充要条件,构造一个关于a的不等式,解不等式求出实数a的取值范围.【解答】解:∵x⊗y=x(1﹣y),∴若不等式(x﹣a)⊗(x+a)<1对任意x都成立,则(x﹣a)(1﹣x﹣a)﹣1<0恒成立即﹣x2+x+a2﹣a﹣1<0恒成立则△=1+4(a2﹣a﹣1)=4a2﹣4a﹣3<0恒成立解得故选D【点评】本题考查的知识点是二次函数的性质,其中根据二次不等式ax2+bx+c<0恒成立充要条件是a<0,△<0构造一个关于a的不等式,是解答本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1} .【考点】一元二次不等式的解法.【分析】不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解出即可得出.【解答】解:不等式x2+x﹣2>0化为:(x+2)(x﹣1)>0,解得x>1或x<﹣2.∴不等式x2+x﹣2>0的解集为{x|x<﹣2或x>1}.故答案为:{x|x<﹣2或x>1}.【点评】本题考查了一元二次不等式的解法,考查了推理能力与计算能力,属于基础题.14.在数列{an }中,若a1=1,an+1=2an(n≥1),则该数列的通项an= 2n﹣1.【考点】等比数列的通项公式.【分析】由题意可得,该数列是以1为首项,以2为公比的等比数列,由此求得它的通项公式.【解答】解:由于在数列{a n }中,若a 1=1,a n+1=2a n (n ≥1),则该数列是以1为首项,以2为公比的等比数列,故它的通项公式为 a n =1×2n ﹣1=2n ﹣1,故答案为 2n ﹣1.【点评】本题主要考查等比数列的定义和通项公式,属于基础题.15.已知△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,a=1,c=,∠A=30°,则b 等于 1或2 .【考点】正弦定理.【分析】由已知及余弦定理可得b 2﹣3b+2=0,进而可解得b 的值.【解答】解:∵a=1,c=,∠A=30°,∴由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1=b 2+3﹣2×b ×,整理可得:b 2﹣3b+2=0,∴解得:b=1或2. 故答案为:1或2.【点评】本题主要考查了余弦定理在解三角形中的应用,属于基础题.16.下列命题中:①在△ABC 中,sinA >sinB ,则A >B ;②若a >0,b >0,a+b=4,则的最大值为3;③已知函数f (x )是一次函数,若数列{a n }的通项公式为a n =f (n ),则该数列是等差数列;④数列{b n }的通项公式为b n =q n ,则数列{b n }的前n 项和S n =.正确的命题的序号是 ①②③ .【考点】命题的真假判断与应用;基本不等式;数列的函数特性;正弦定理.【分析】逐项判断.①利用正弦定理易得;②先平方在利用基本不等式即可;③由等差数列的函数特征易得;④易知当q=1时,结论不正确.【解答】解:①由正弦定理,当sinA>sinB时,由 a>b,故有A>B,所以①为真;②≤9+(a+3)+(b+2)=18,所以“=”当且仅当“”成立,故②为真;③由等差数列的通项公式的函数特征知③正确;④易知,当q=1时结论不正确.总上可得①②③正确.故答案为:①②③.【点评】本题考查了正弦定理,基本不等式,等差数列的通项以及等比数列的前n项和问题.其中第2个命题的判断是本题难点.属于中档题.三、解答题(本大题6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,平面四边形ABCD中,AB=,AD=2,CD=,∠CBD=30°,∠BCD=120°.(1)求BD的长;(2)求∠ADC的度数.【考点】余弦定理;正弦定理.【分析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.【解答】解:(1)方法一:在△BCD中,由正弦定理得:,即…解得BD=3…方法二:由已知得∠BDC=30°,故…由余弦定理得:BD2=CD2+BC2﹣2CDBCcos∠BCD= …∴BD=3…(2)在△ABD 中,由余弦定理得:…∴∠ADB=45° … 由已知∠BDC=30°…∴∠ADC=∠ADB+∠BDC=45°+30°=75°…【点评】本题考查正弦、余弦定理在解三角形中的应用,考查一题多解,化简、计算能力.18.已知等差数列{a n }中,a 1+a 4=10,a 3=6. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,求数列{b n }的前n 项和S n .【考点】数列递推式;数列的求和.【分析】(I )利用等差数列的通项公式即可得出. (II )利用“裂项求和”方法即可得出.【解答】解:(Ⅰ)设公差为d ,∵a 1+a 4=10,a 3=6.∴,解得, ∴数列{a n }的通项公式为a n =2n .(Ⅱ)由(Ⅰ)知,从而,∴.【点评】本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.连江一中第49届田径运动会提出了“我运动、我阳光、我健康、我快乐”的口号,某同学要设计一张如图所示的竖向张贴的长方形海报进行宣传,要求版心面积为162dm2(版心是指图中的长方形阴影部分,dm为长度单位分米),上、下两边各空2dm,左、右两边各空1dm.(1)若设版心的高为xdm,求海报四周空白面积关于x的函数S(x)的解析式;(2)要使海报四周空白面积最小,版心的高和宽该如何设计?【考点】函数模型的选择与应用.【分析】(1)由已知版心的高为xdm,则版心的宽为dm,求出海报四周空白面积.(2)利用基本不等式求解即可.【解答】(本小题满分12分)解:(1)由已知版心的高为xdm,则版心的宽为dm…故海报四周空白面积为,…即S(x)=2x++8,x>0…(2)由基本不等式得:…当且仅当时取等号…∴要使海报四周空白面积最小,版心的高应该为18 dm、宽为9 dm…【点评】本题考查实际问题选择函数的模型,基本不等式的应用,考查计算能力.20.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.(Ⅰ)求角C的值;(Ⅱ)若a+b=4,当c取最小值时,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】方法一:(Ⅰ)利用正弦定理、诱导公式、两角和的正弦公式化简已知的式子,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,由条件和完全平方公式化简后,利用基本不等式求出c的最小值,由面积公式求出△ABC的面积;方法二:(Ⅰ)利用余弦定理化简已知的式子得到边的关系,由余弦定理求出cosC的值,由内角的范围和特殊角的三角函数值求出角C;(Ⅱ)利用余弦定理列出方程,结合条件消元后,利用一元二次函数的性质求出c的最小值,由面积公式求出△ABC的面积.【解答】解:方法一:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∵A+B+C=π,∴2sinCcosA+sinA=2sin(A+C),…即 2sinCcosA+sinA=2sinAcosC+2cosAsinC,…∴sinA=2sinAcosC,…∵sinA≠0,∴cosC=,…又∵C是三角形的内角,∴C=.…(Ⅱ)由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2﹣ab,…∵a+b=4,故c2=a2+b2﹣ab=(a+b)2﹣3ab=16﹣3ab,…∴(当且仅当a=b=2时等号成立),…∴c的最小值为2,故.…方法二:(Ⅰ)∵2ccosA+a=2b,∴,…∴b2+c2﹣a2+ab=2b2,即 c2=a2+b2﹣ab,…∴,…又∵C是三角形的内角,∴c=.…(Ⅱ)由已知,a+b=4,即b=4﹣a,由余弦定理得,c 2=a 2+b 2﹣ab=(a+b )2﹣3ab ,…∴c 2=16﹣3a (4﹣a )=3(a ﹣2)2+4,…∴当a=2时,c 的最小值为2,故. …【点评】本题考查正弦、余弦定理,三角恒等变换中的公式,以及求最值的方法:基本不等式、一元二次函数的性质,考查一题多解,化简、变形能力.21.已知f (x )=x 2+ax+b ,a ,b ∈R ,若f (x )>0的解集为{x|x <0或x >2}.(Ⅰ)求a ,b 的值;(Ⅱ)解不等式f (x )<m 2﹣1. 【考点】二次函数的性质.【分析】(Ⅰ)利用方程的根,列出方程组,即可求解a ,b 的值;(Ⅱ)化简不等式为乘积的形式,通过因式的根的大小对m 讨论,求解不等式的解集即可.【解答】(本小题满分12分)解:(Ⅰ)根据题意可知,方程x 2+ax+b=0两根分别为0,2,…将两根代入方程得∴.…(Ⅱ)由(Ⅰ)可知不等式f (x )<m 2﹣1为x 2﹣2x <m 2﹣1, 即[x ﹣(1﹣m )][x ﹣(1+m )]<0,…∴当m=0时,1﹣m=1+m ,不等式的解集为Φ;…当m >0时,1﹣m <1+m ,不等式的解集为{x|1﹣m <x <1+m}; … 当m <0时,1+m <1﹣m ,不等式的解集为{x|1+m <x <1﹣m}.… (如上,没有“综上所述…”,不扣分)【点评】本题考查二次函数的简单性质的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.22.已知数列{a n }的前n 项和为S n =. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设T n 为数列{b n }的前n 项和,其中b n =,求T n ;(Ⅲ)若存在n ∈N *,使得T n ﹣λa n ≥3λ成立,求出实数λ的取值范围.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列的前n 项和,利用a n =S n ﹣S n ﹣1(n ≥2)求数列的通项公式;(Ⅱ)把b n =变形,利用裂项相消法化简,代入S n =得答案;(Ⅲ)把a n 、T n 代入T n ﹣λa n ≥3λ,分离参数λ,利用不等式求得最值得答案.【解答】解:(Ⅰ)当n ≥2时,a n =S n ﹣S n ﹣1==n ,当n=1时,a 1=S 1=1也符合上式,∴a n =n ;(Ⅱ)∵,∴=;(Ⅲ)∵存在n ∈N *,使得T n ﹣λa n ≥3λ成立,∴存在n ∈N *,使得成立,即有解,∴,而,当n=1或n=2时取等号,∴λ的取值范围为.【点评】本题考查数列递推式,训练了裂项相消法求数列的前n 项和,训练了利用分离参数法求解数列恒成立问题,是中档题.。
2018届安徽省蚌埠市第二中学高三上学期期中考试文科数学试题及答案

安徽省蚌埠市第二中学2018高三上学期期中考试数学(文)试题注意事项:注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用 2B 铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I 卷(选择题)1.复数()A.B.C.D.2.执行如图所示的程序框图,若输出的,则输入的整数 P的最大值为()A.7 B.15 C.31 D.633.下列说法中,正确的是()A.命题“若”,则“”的逆命题是真命题;B.命题“”的否定是“”;C.“”是的充分不必要条件;D.命题“”为真命题,则命题和命题均为真命题.4.已设变量满足约束条件,则目标函数的最大值为()A.11 B.10 C.9 D.5.设>0,函数的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3 6.从 1, 2, 3, 4中任取 2个不同的数,则取出的2个数之差的绝对值为 2的概率是()A.B.C.D.7.下列大小关系正确的是()A.B.C.D.8.一个棱锥的三视图如图所示,则该棱锥的全面积是()A.B.C.D.9.已知函数,,,则的最小值等于().A.B.C.D.10.已知函数,,设函数,且函数的零点均在区间内,则的最小值为()A.11 B.10 C.9 D.8第II 卷(非选择题)11.抛物线的准线方程为________.12.已知向量,则在 b方向上的投影等于.13.设函数,,则函数的零点有______个.14.数列的首项为 1,数列为等比数列且,若,则.15.如图,边长为的等边三角形 ABC 的中线AF 与中位线 DE交于点G,已知(平面 ABC)是绕 DE旋转过程中的一个图形,有下列命题:①平面平面 ABC;②BC//平面ADE;③三棱锥 A–DEF 的体积最大值为;④动点 A在平面 ABC上的射影在线段 AF 上;⑤直线 DF与直线 AE可能共面.其中正确的命题是(写出所有正确命题的编号).16.(本小题满分 12 分)△ABC中,角 A,B,C 所对的边分别为,已知=3,,,(1)求b 得值;(2)求△ABC 的面积.17.某市统计局就某地居民的月收入调查了 10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1500)).(1)求居民收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000 人中按分层抽样方法抽出 100 人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?18.如图,在多面体 ABCDFE 中,四边形 ABCD 是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面 ABC D.(1)若G点是 DC 中点,求证:FG∥平面 AED.(2)求证:面DAF⊥面 BAF.(3)若AE=AD=1,AB=2 求三棱锥D–AFC 的体积.19.知椭圆 C:的离心率为,定点 M(2,0)端点是,且.(1)求椭圆C的方程;(2)设过点 M 且斜率不为 0的直线交椭圆 C 于A,B 两点.试问 x 轴上是否存在异于 M的定点 P,使 PM 平分∠APB?若存在,求出点 P的坐标;若不存在,说明理由.20.已知正项数列的前 n项和为,是与的等比中项.(1)求证:数列是等差数列;(2)若,且,求数列的通项公式;(3)在(2)的条件下,若,求数列的前项和.21.(本小题满分 18 分)已知函数,(I)设函数,求函数的单调区间;(II)若在上存在一点,使得成立,求的取值范围.。
2017-2018学年安徽省蚌埠市高三(上)期中数学试卷和答案(文科)

2017-2018学年安徽省蚌埠市高三(上)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项)1.(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}2.(5分)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣ D.﹣4.(5分)已知集合A={x|lgx≥0},B={x|x≤1},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B5.(5分)已知角α的终边与单位圆x2+y2=1交于点P(,y0),则cos2α等于()A.﹣ B.C.﹣D.16.(5分)设y=x2•e x,则y′等于()A.x2e x+2x B.2xe x C.(2x+x2)e x D.(x+x2)•e x7.(5分)下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+) B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx8.(5分)已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2017)的值为()A.﹣1 B.1 C.3 D.﹣39.(5分)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=()A.﹣e B.﹣1 C.1 D.e10.(5分)若sinθ,cosθ是方程4x2+2mx+m=0的两根,则m的值为()A..B..C. D..11.(5分)函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1]B.(0,1]C.[1,+∞)D.(0,+∞)12.(5分)点P是曲线x2﹣y﹣lnx=0上的任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)函数f(x)=sin(﹣2x+)的单调递减区间为.16.(5分)已知下列四个命题:①“若x2﹣x=0,则x=0或x=1”的逆否命题为“x≠0且x≠1,则x2﹣x≠0”②“x<1”是“x2﹣3x+2>0”的充分不必要条件③命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0④若p∧q为假命题,则p,q均为假命题其中为真命题的是(填序号).三、解答题:解答应写出文字说明,证明过程或演算步骤。
2017-2018学年安徽省蚌埠二中高二(上)数学期中试卷带解析答案(文科)

2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.24.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=011.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有条.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台【解答】解:如图,三角形ABC为正三角形,以其底边AB所在的直线为旋转轴旋转一周所得的几何体是两个圆锥.故选:C.2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面【解答】解:棱柱的侧面都是平行四边形,但不一定是长方形,故A错误;棱柱的底面可能不是四边形,故B错误;棱柱的侧棱一定相等,故C错误;一个棱柱至少有五个面,故D正确,故选:D.3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.2【解答】解:根据斜二测画法规则,把直观图还原成原平面图形如图所示,则该平面图形是直角三角形,它的面积为S=O′A′•O′B′=×1×2=1.故选:A.4.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π【解答】解:综合三视图可知,几何体是一个半径r=1的半个球体.且表面积是底面积与半球面积的和,其表面积S==3π.故选:B.5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面【解答】解:对A,空间四边形不在一个平面内,故A错误.对于B,两条相交直线确定一个平面α,第三条直线与这两条直线分别相交且交点不重合,则第三条直线也在α内,∴两两相交且不共点的三条直线确定一个平面,故B正确;对于C,当三点共线时,平面不确定,故C错误;对于D,当点在直线上时,不能确定平面,故D错误;故选:B.6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【解答】解:A、m,n平行于同一个平面,故m,n可能相交,可能平行,也可能是异面直线,故A错误;B、α,β 垂直于同一个平面γ,故α,β 可能相交,可能平行,故B错误;C、α,β平行于同一条直线m,故α,β 可能相交,可能平行,故C错误;D、垂直于同一个平面的两条直线平行,故D正确.故选:D.7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.【解答】解:设圆锥的底面半径为r,母线长为l,∵圆锥的侧面展开图是一个半圆,∴2πr=πl,∴l=2r,∵圆锥的表面积为πr2+πrl=πr2+2πr2=6,∴r2=,即r=,故选:A.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.【解答】解:由已知中三棱锥的主视图与俯视图,可得三棱锥的直观图如下图所示:其顶点P在B的正上方,则该三棱锥的左视图为一个两直角边分别为和2的直角三角形,故选:B.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°【解答】解:设直线x﹣y+2=0的倾斜角为θ,直线x﹣y+2=0的方程变为y=x+2.∴tanθ=1.∵θ∈[0°,180°).∴θ=45°.故选:C.10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=0【解答】解:设直径的两个端点分别A(a,0)B(0,b).圆心C为点(2,﹣3),由中点坐标公式得,a=4,b=﹣6,∴r=|AB|==,则此圆的方程是(x﹣2)2+(y+3)2=13,即x2+y2﹣4x+6y=0.故选:A.11.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)【解答】解:设点P关于直线l的对称点坐标为Q(a,b),则+1=0,=1,联立解得a=﹣4,b=﹣2.∴点P关于直线l的对称点坐标为(﹣4,﹣2).故选:C.12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:在①中,由正方体的性质得,BD∥B1D1,∴BD∥平面CB1D1,故①正确;在②中,由正方体的性质得AC⊥BD,而AC是AC1在底面ABCD内的射影,由三垂线定理知,AC1⊥BD,故②正确;在③中,由正方体的性质得BD∥B1D1,由②知,AC1⊥BD,∴AC1⊥B1D1,同理可证AC1⊥CB1,故AC1⊥平面CB1D1内的两条相交直线,∴AC1⊥平面CB1D1,故③正确;在④中,异面直线B1D1与BC所成的角就是直线BC与BD所成的角,故∠CBD为异面直线B1D1与BC所成的角,在等腰直角△BCD中,∠CBD=45°,故直线B1D1与BC所成的角为45°,故④正确.故选:D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.【解答】解:圆C:x2+y2+2x+2y﹣2=0,配方为:(x+1)2+(y+1)2=4,可得圆心C(﹣1,﹣1).∴圆心到直线l的距离d==.故答案为:.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有4条.【解答】解:与棱AA1异面的有:BC,CD,C1D1,B1C1故答案为:4.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是0或.【解答】解:若a=0,则两直线方程为x﹣1=0,﹣x﹣1=0,满足两直线平行,当a≠0时,若两直线平行,则,得a=,故答案为:0或.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为2.【解答】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.【解答】(本小题满分10分)解:(1)k BC==2,∵AD∥BC,∴k AD=2.∴AD边所在直线的方程为:y﹣7=2(x+4),化为2x﹣y+15=0. (5)(2)k AC==﹣.∵对角线相互垂直,∴BD⊥AC,∴k BD=.而AC的中点(1,1),也是BD的中点,∴直线BD的方程为y﹣1=(x﹣1),化为5x﹣6y+1=0. (10)18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.【解答】解:(1)以线段AB为直径的圆的周长最小,则:AB中点坐标(0,1),,圆的标准方程为x2+(y﹣1)2=10,一般方程为x2+y2﹣2y﹣9=0;(2)线段AB中垂线的斜率为,中垂线方程为,联立方程,得圆心坐标(3,2),半径,标准方程为(x﹣3)2+(y﹣2)2=20.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.【解答】证明:(1)连接AC,OE,则AC经过正方形中心点O,且O是AC的中点,又E是PC的中点,∴OE∥PA,又OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PO⊥平面ABCD,BD⊂平面ABCD,∴PO⊥BD,四边形ABCD是正方形,∴BD⊥AC,又PO∩AC=O,PO⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,又PC⊂平面PAC,∴BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.【解答】证明:(1)取AB的中点H,连接MH,NH,由N是AE的中点,得NH ∥BE,又BE∥CD,得NH∥CD,NH⊄平面ACD,所以NH∥平面ACD,同理可证,MH∥平面ACD,而MH∩NH=H点,所以平面MNH∥平面ACD,从而MN∥平面ACD;(2)连接AM,DM,EM,由AB=AC,M为BC的中点,得AM⊥BC,又平面BCDE⊥平面ABC,平面BCDE∩平面ABC=BC,AM⊂平面ABC,所以AM⊥平面BCDE,则AM⊥DE,由勾股定理,在Rt△EBM中,BE=1,,得,在Rt△DCM中,CD=3,,得,在直角梯形BCDE中,由平面几何知识计算得,所以EM2+DE2=DM2,即EM⊥DE,而AM∩EM=M点,所以DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】(1)证明:由侧棱垂直于底面,即BB1⊥平面ABC,得BB1⊥AB,又AB⊥BC,BC∩BB1=B,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(2)证明:取AC中点M,连接C1M,FM,由F为BC的中点,知FM∥AB,∵FM⊄平面ABE,AB⊂平面ABE,∴FM∥平面ABE,∵AM∥C1E,AM=C1E,∴四边形AMC1E为平行四边形,则C1M∥AE,∵C 1M⊄平面ABE,AE⊂平面ABE,∴C1M∥平面ABE,又C1M∩FM=M,∴平面C1FM∥平面ABE,即存在AC中点M,使得平面C1FM∥平面ABE;(3)解:点E到底面的距离即为侧棱长AA1=2,在Rt△ABC中,AC=2,BC=1,AB⊥BC,∴,,∴.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(I)因为侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点,所以AC⊥BC(2分)又圆柱母线AA1⊥平面ABC,BC属于平面ABC,所以AA1⊥BC,又AA1∩AC=A,所以BC⊥平面A1AC,因为BC⊂平面A1BC,所以平面A1BC⊥平面A1AC;(6分)(II)设圆柱的底面半径为r,母线长度为h,当点C是弧的中点时,三角形ABC的面积为r2,三棱柱ABC﹣A1B1C1的体积为r2h,三棱锥A1﹣ABC的体积为,四棱锥A1﹣BCC1B1的体积为r2h﹣=,(10分)圆柱的体积为πr2h,四棱锥A1﹣BCC1B1与圆柱的体积比为2:3π.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.24.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=011.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有条.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.2017-2018学年安徽省蚌埠二中高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是()A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台【解答】解:如图,三角形ABC为正三角形,以其底边AB所在的直线为旋转轴旋转一周所得的几何体是两个圆锥.故选:C.2.(5分)下列命题正确的是()A.棱柱的侧面都是长方形B.棱柱的所有面都是四边形C.棱柱的侧棱不一定相等D.一个棱柱至少有五个面【解答】解:棱柱的侧面都是平行四边形,但不一定是长方形,故A错误;棱柱的底面可能不是四边形,故B错误;棱柱的侧棱一定相等,故C错误;一个棱柱至少有五个面,故D正确,故选:D.3.(5分)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中OA=OB=1,则原平面图形的面积为()A.1 B.C.D.2【解答】解:根据斜二测画法规则,把直观图还原成原平面图形如图所示,则该平面图形是直角三角形,它的面积为S=O′A′•O′B′=×1×2=1.故选:A.4.(5分)某几何体的三视图如图所示,则其表面积为()A.2πB.3πC.4πD.5π【解答】解:综合三视图可知,几何体是一个半径r=1的半个球体.且表面积是底面积与半球面积的和,其表面积S==3π.故选:B.5.(5分)下列命题正确的是()A.四边形确定一个平面B.两两相交且不共点的三条直线确定一个平面C.经过三点确定一个平面D.经过一条直线和一个点确定一个平面【解答】解:对A,空间四边形不在一个平面内,故A错误.对于B,两条相交直线确定一个平面α,第三条直线与这两条直线分别相交且交点不重合,则第三条直线也在α内,∴两两相交且不共点的三条直线确定一个平面,故B正确;对于C,当三点共线时,平面不确定,故C错误;对于D,当点在直线上时,不能确定平面,故D错误;故选:B.6.(5分)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【解答】解:A、m,n平行于同一个平面,故m,n可能相交,可能平行,也可能是异面直线,故A错误;B、α,β 垂直于同一个平面γ,故α,β 可能相交,可能平行,故B错误;C、α,β平行于同一条直线m,故α,β 可能相交,可能平行,故C错误;D、垂直于同一个平面的两条直线平行,故D正确.故选:D.7.(5分)已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为()A.B.C.D.【解答】解:设圆锥的底面半径为r,母线长为l,∵圆锥的侧面展开图是一个半圆,∴2πr=πl,∴l=2r,∵圆锥的表面积为πr2+πrl=πr2+2πr2=6,∴r2=,即r=,故选:A.8.(5分)已知三棱锥的主视图与俯视图如图,俯视图是边长是2的正三角形,那么该三棱锥的左视图可能为()A.B.C.D.【解答】解:由已知中三棱锥的主视图与俯视图,可得三棱锥的直观图如下图所示:其顶点P在B的正上方,则该三棱锥的左视图为一个两直角边分别为和2的直角三角形,故选:B.9.(5分)直线x﹣y+2=0的倾斜角为()A.60°B.120°C.45°D.135°【解答】解:设直线x﹣y+2=0的倾斜角为θ,直线x﹣y+2=0的方程变为y=x+2.∴tanθ=1.∵θ∈[0°,180°).∴θ=45°.故选:C.10.(5分)已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A.x2+y2﹣4x+6y=0 B.x2+y2﹣4x+6y﹣8=0C.x2+y2﹣4x﹣6y=0 D.x2+y2﹣4x﹣6y﹣8=0【解答】解:设直径的两个端点分别A(a,0)B(0,b).圆心C为点(2,﹣3),由中点坐标公式得,a=4,b=﹣6,∴r=|AB|==,则此圆的方程是(x﹣2)2+(y+3)2=13,即x2+y2﹣4x+6y=0.故选:A.11.(5分)已知点P(1,3)与直线l:x+y+1=0,则点P关于直线l的对称点坐标为()A.(﹣3,﹣1)B.(2,4) C.(﹣4,﹣2)D.(﹣5,﹣3)【解答】解:设点P关于直线l的对称点坐标为Q(a,b),则+1=0,=1,联立解得a=﹣4,b=﹣2.∴点P关于直线l的对称点坐标为(﹣4,﹣2).故选:C.12.(5分)如图,ABCD﹣A1B1C1D1为正方体,下面结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:在①中,由正方体的性质得,BD∥B1D1,∴BD∥平面CB1D1,故①正确;在②中,由正方体的性质得AC⊥BD,而AC是AC1在底面ABCD内的射影,由三垂线定理知,AC1⊥BD,故②正确;在③中,由正方体的性质得BD∥B1D1,由②知,AC1⊥BD,∴AC1⊥B1D1,同理可证AC1⊥CB1,故AC1⊥平面CB1D1内的两条相交直线,∴AC1⊥平面CB1D1,故③正确;在④中,异面直线B1D1与BC所成的角就是直线BC与BD所成的角,故∠CBD为异面直线B1D1与BC所成的角,在等腰直角△BCD中,∠CBD=45°,故直线B1D1与BC所成的角为45°,故④正确.故选:D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)圆C:x2+y2+2x+2y﹣2=0,l:x﹣y+2=0,求圆心到直线l的距离.【解答】解:圆C:x2+y2+2x+2y﹣2=0,配方为:(x+1)2+(y+1)2=4,可得圆心C(﹣1,﹣1).∴圆心到直线l的距离d==.故答案为:.14.(5分)在正方体ABCD﹣A1B1C1D1中,与棱AA1异面的棱有4条.【解答】解:与棱AA1异面的有:BC,CD,C1D1,B1C1故答案为:4.15.(5分)直线x+2ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a的值是0或.【解答】解:若a=0,则两直线方程为x﹣1=0,﹣x﹣1=0,满足两直线平行,当a≠0时,若两直线平行,则,得a=,故答案为:0或.16.(5分)已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为2.【解答】解:如图所示,连接A1C1,B1D1,相交于点O.则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣A1B1C1D1的体积V==2.故答案为:2.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17题10分,第18~22题每题12分)17.(10分)菱形ABCD中,A(﹣4,7),C(6,﹣5),BC边所在直线过点P(8,﹣1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.【解答】(本小题满分10分)解:(1)k BC==2,∵AD∥BC,∴k AD=2.∴AD边所在直线的方程为:y﹣7=2(x+4),化为2x﹣y+15=0. (5)(2)k AC==﹣.∵对角线相互垂直,∴BD⊥AC,∴k BD=.而AC的中点(1,1),也是BD的中点,∴直线BD的方程为y﹣1=(x﹣1),化为5x﹣6y+1=0. (10)18.(12分)已知动圆C经过点A(1,﹣2),B(﹣1,4).(1)求周长最小的圆的一般方程;(2)求圆心在直线2x﹣y﹣4=0上的圆的标准方程.【解答】解:(1)以线段AB为直径的圆的周长最小,则:AB中点坐标(0,1),,圆的标准方程为x2+(y﹣1)2=10,一般方程为x2+y2﹣2y﹣9=0;(2)线段AB中垂线的斜率为,中垂线方程为,联立方程,得圆心坐标(3,2),半径,标准方程为(x﹣3)2+(y﹣2)2=20.19.(12分)四边形ABCD是正方形,O是正方形的中心,PO⊥平面ABCD,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:BD⊥PC.【解答】证明:(1)连接AC,OE,则AC经过正方形中心点O,且O是AC的中点,又E是PC的中点,∴OE∥PA,又OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(2)∵PO⊥平面ABCD,BD⊂平面ABCD,∴PO⊥BD,四边形ABCD是正方形,∴BD⊥AC,又PO∩AC=O,PO⊂平面PAC,AC⊂平面PAC,∴BD⊥平面PAC,又PC⊂平面PAC,∴BD⊥PC.20.(12分)如图,多面体ABCDE中,BE∥CD,BE⊥BC,AB=AC,平面BCDE⊥平面ABC,M为BC的中点.(1)若N是线段AE的中点,求证:MN∥平面ACD;(2)若BE=1,BC=2,CD=3,求证:DE⊥平面AME.【解答】证明:(1)取AB的中点H,连接MH,NH,由N是AE的中点,得NH ∥BE,又BE∥CD,得NH∥CD,NH⊄平面ACD,所以NH∥平面ACD,同理可证,MH∥平面ACD,而MH∩NH=H点,所以平面MNH∥平面ACD,从而MN∥平面ACD;(2)连接AM,DM,EM,由AB=AC,M为BC的中点,得AM⊥BC,又平面BCDE⊥平面ABC,平面BCDE∩平面ABC=BC,AM⊂平面ABC,所以AM⊥平面BCDE,则AM⊥DE,由勾股定理,在Rt△EBM中,BE=1,,得,在Rt△DCM中,CD=3,,得,在直角梯形BCDE中,由平面几何知识计算得,所以EM2+DE2=DM2,即EM⊥DE,而AM∩EM=M点,所以DE⊥平面AME.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:在棱AC上存在一点M,使得平面C1FM∥平面ABE;(3)求三棱锥E﹣ABC的体积.【解答】(1)证明:由侧棱垂直于底面,即BB1⊥平面ABC,得BB1⊥AB,又AB⊥BC,BC∩BB1=B,∴AB⊥平面B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥平面B1BCC1;(2)证明:取AC中点M,连接C1M,FM,由F为BC的中点,知FM∥AB,∵FM⊄平面ABE,AB⊂平面ABE,∴FM∥平面ABE,∵AM∥C1E,AM=C1E,∴四边形AMC1E为平行四边形,则C1M∥AE,∵C 1M⊄平面ABE,AE⊂平面ABE,∴C1M∥平面ABE,又C1M∩FM=M,∴平面C1FM∥平面ABE,即存在AC中点M,使得平面C 1FM∥平面ABE;(3)解:点E到底面的距离即为侧棱长AA1=2,在Rt△ABC中,AC=2,BC=1,AB⊥BC,∴,,∴.22.(12分)如图组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(2)当C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(I)因为侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点,所以AC⊥BC(2分)又圆柱母线AA1⊥平面ABC,BC属于平面ABC,所以AA1⊥BC,又AA1∩AC=A,所以BC⊥平面A1AC,因为BC⊂平面A1BC,所以平面A1BC⊥平面A1AC;(6分)(II)设圆柱的底面半径为r,母线长度为h,当点C是弧的中点时,三角形ABC的面积为r2,三棱柱ABC﹣A1B1C1的体积为r2h,三棱锥A1﹣ABC的体积为,四棱锥A1﹣BCC1B1的体积为r2h﹣=,(10分)圆柱的体积为πr2h,四棱锥A1﹣BCC1B1与圆柱的体积比为2:3π.(12分)。