2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)
2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)

2023中考数学考试试卷试题中考数学初中学业水平考试 初三真题及答案解析(含答案和解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是( )A. 2−B.13C. 0D.【答案】A 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2. 故选:A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A. 51.6410−⨯B. 61.6410−⨯C. 716.410−⨯D.50.16410−⨯【答案】B 【解析】 【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n ,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000164=1.64×10-6, 故选:B .【点睛】本题考查用科学记数法表示较小数的方法,写成a×10n 的形式是关键. 3.下列运算正确的是( )A. 236a a a ⋅=B. 33a a a ÷=C. ()325a a =D.()2242a b a b =【答案】D 【解析】 【分析】根据幂的运算法则逐一计算可得.【详解】解: A 、235a a a ⋅=,此选项错误; B 、32a a a ÷=,此选项错误; C 、()326a a =,此选项错误;D 、()2242a ba b =,此选项正确;故选:D .【点睛】本题主要考查幂的运算,解题的关键是掌握幂的运算法则. 4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案. 【详解】组合体从上往下看是横着放的三个正方形. 故选C .【点睛】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.5.不等式213x −≤的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】 【分析】先求出不等式的解集,再在数轴上表示出来即可. 【详解】解:移项得,2x≤3+1, 合并同类项得,2x≤4, 系数化为1得,x≤2, 在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键. 6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s ):则这10只手表的平均日走时误差(单位:s )是( ) A. 0 B. 0.6C. 0.8D. 1.1【答案】D 【解析】 【分析】根据加权平均数的概念,列出算式,即可求解. 【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s ) 故选D .【点睛】本题主要考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键. 7.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A. tan a b α+B. sin a b α+C. tan ba α+D.sin b a α+【答案】A 【解析】 【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形, ∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b , tan ∠ACF=AFCF∴AF=tan tan CF ACF b α∠=, AB=AF+BF=tan a b α+, 故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.8.如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π−B.12π−C.12π−D.122π−【答案】B 【解析】 【分析】连接OC ,易证CDO CEO ≅△△,进一步可得出四边形CDOE 为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB 的面积,最后根据阴影部分的面积等于扇形AOB 的面积剪去正方形CDOE 的面积就可得出答案. 【详解】连接OC 点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴== =11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOBSππ⨯扇形==12CDOE AOB S S S π∴−−阴影正方形扇形故选B .【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.9.如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A. 18︒B. 20︒C. 24︒D. 28︒【答案】C 【解析】 【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案. 【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB. ∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°. ∴∠'AB B =∠C+∠CA 'B =2x°. ∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒, ∴x+2x+108=180. 解得x=24.∴C '∠的度数为24°. 故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质. 10.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意求出反比例函数解析式,设出点C 坐标6,a a ⎛⎫⎪⎝⎭,得到点B 纵坐标,利用相似三角形性质,用a 表示求出OA ,再利用平行四边形OABC 的面积是152构造方程求a 即可. 【详解】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形OABC 是平行四边形 ∴易得CH=AF∵点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ∴236k =⨯= 即反比例函数解析式为6y x= ∴设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭∵DEBF∴ODE OBF △△∴DE OEBF OF=∴236OF a=∴6392a OF a⨯== ∴9OA OF AF OF HC a a =−=−=−,点B 坐标为96,a a ⎛⎫⎪⎝⎭∵平行四边形OABC 的面积是152∴96152a a a ⎛⎫−⋅=⎪⎝⎭ 解得122,2a a ==−(舍去) ∴点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B【点睛】本题是反比例函数与几何图形的综合问题,涉及到相似三角形的的性质、反比例函数的性质,解答关键是根据题意构造方程求解. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)计算:﹣2﹣1= ﹣3 .【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可. 【解答】解:﹣2﹣1 =﹣3 故答案为:﹣3 12.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案. 【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ⊥CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt △OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种, 则两次摸出的球都是红球的概率为; 故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4×k=2+2+k,∴k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE⊥AC于E,根据等腰三角形的性质得到∠OAC=∠OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE⊥AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.(10分)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。
2023年江苏省南通市九年级数学中考复习模拟卷+答案解析

2023年江苏省南通市九年级数学中考复习模拟卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A. B. C. D.32.太阳中心的温度可达,这个数用科学记数法表示正确的是()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.如图,直线a、b被直线c所截,,若,则的度数为()A. B. C. D.5.一个几何体从不同方向看到的图形如图所示,这个几何体是()A.球B.圆柱C.圆锥D.立方体6.某学校为了了解学生对“禁止学生带手机进入校园”这一规定的意见,随机抽取100名学生进行调查,这一问题中的样本是()A.100B.被抽取的100名学生的意见C.被抽取的100名学生D.全校学生的意见7.《孙子算经》是中国古代最重要的数学著作,约成书于四、五世纪.其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还余尺,将绳子对折再量长木,长木还剩余1尺,问长木多少尺?”设绳子长x尺,木长y尺,可列方程组为()A. B. C. D.8.如图,在中,,,,则的值是()A. B. C. D.9.如图,AB为的一条弦,C为上一点,将劣弧AB沿弦AB翻折,交翻折后的弧AB交AC于点若D为翻折后弧AB的中点,则()A. B. C. D.10.如图,抛物线与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在上,连接OP,若OP的最小值为3,则C点坐标是()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.分解因式:_______.12.已知一个正多边形的一个外角为,则这个正多边形的边数是________.13.在函数中,自变量x的取值范围是_____.14.若圆锥的侧面积是,母线长是5,则该圆锥底面圆的半径是__________15.如果关于x的不等式组无解,则常数a的取值范围是16.已知,m,n是一元二次方程的两个实数根,则代数式的值等于_______________.17.如图,正方形ABCD的边长为2,E为边AD上一动点,连接CE,以CE为边向右侧作正方形CEFG,连接DF,DG,则面积的最小值为_________.18.平面直角坐标系xOy中,直线与相交于A,B两点,其中点A在第一象限,设点为双曲线上一点,直线AM,BM分别交x轴与C,D两点,则的值为____________.三、解答题:本题共8小题,共64分。
2023年中考数学选择题专项复习:数与式(附答案解析)

2023年中考数学选择题专项复习:数与式1.(2021•河池)下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a﹣b)2C.a2﹣a=a(a+1)D.a2﹣b2=(a+b)(a﹣b)2.(2021•攀枝花)2021年5月,由中国航天科技集团研制的天问一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.中国航天器首次奔赴火星,就“毫发未损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举.火星与地球的最近距离约为5500万千米,该数据用科学记数法可表示为()千米.A.5.5×108B.5.5×107C.0.55×109D.0.55×108 3.(2021•日照)下列运算正确的是()A.x2+x2=x4B.(xy2)2=xy4C.y6÷y2=y3D.﹣(x﹣y)2=﹣x2+2xy﹣y2 4.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.﹣a>b C.a﹣b<0D.﹣b<a 5.(2021•日照)数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于7×1011的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m,按照上述规则,恰好实施5次运算结果为1的m所有可能取值的个数为()A.8B.6C.4D.2 6.(2021•镇江)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为()A.1840B.1921C.1949D.2021 7.(2021•兴安盟)用四舍五入法把某数取近似值为5.2×10﹣2,精确度正确的是()A.精确到万分位B.精确到千分位C.精确到0.01D.精确到0.18.(2021•百色)当x=﹣2时,分式的值是()A.﹣15B.﹣3C.3D.15 9.(2021•陕西)计算:﹣a2b•(ab)﹣1=()A.a B.a3b2C.﹣a D.﹣a3b2 10.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B32023年中考数学选择题专项复习:数与式参考答案与试题解析1.(2021•河池)下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a﹣b)2C.a2﹣a=a(a+1)D.a2﹣b2=(a+b)(a﹣b)【考点】提公因式法与公式法的综合运用.【专题】整式;符号意识.【分析】直接利用完全平方公式以及平方差公式结合提取公因式法分解因式分别判断得出答案.【解答】解:A.a2+b2无法分解因式,故此选项不合题意;B.a2+2ab+b2=(a+b)2,故此选项不合题意;C.a2﹣a=a(a﹣1),故此选项不合题意;D.a2﹣b2=(a+b)(a﹣b),故此选项符合题意.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式法分解因式是解题关键.2.(2021•攀枝花)2021年5月,由中国航天科技集团研制的天问一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区.中国航天器首次奔赴火星,就“毫发未损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举.火星与地球的最近距离约为5500万千米,该数据用科学记数法可表示为()千米.A.5.5×108B.5.5×107C.0.55×109D.0.55×108【考点】科学记数法—表示较大的数.【专题】实数;数感;应用意识.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2021•日照)下列运算正确的是()A.x2+x2=x4B.(xy2)2=xy4C.y6÷y2=y3D.﹣(x﹣y)2=﹣x2+2xy﹣y2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【专题】整式;运算能力.【分析】根据合并同类项、积的乘方、幂的乘方、同底数幂的除法以及完全平方公式解决此题.【解答】解:A.由合并同类项的法则,得x2+x2=2x2,故A不符合题意.B.由积的乘方以及幂的乘方,得(xy2)2=x2y4,故B不符合题意.C.由同底数幂的除法,得y6÷y2=y4,故C不符合题意.D.由完全平方公式,得﹣(x﹣y)2=﹣x2﹣y2+2xy,故D符合题意.故选:D.【点评】本题主要考查合并同类项、积的乘方、幂的乘方、同底数幂的除法以及完全平方公式,熟练掌握合并同类项、积的乘方、幂的乘方、同底数幂的除法以及完全平方公式是解决本题的关键.4.(2021•济南)实数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.﹣a>b C.a﹣b<0D.﹣b<a【考点】相反数;实数与数轴.【专题】实数;几何直观;运算能力.【分析】根据数轴上点的位置判断出a与b的正负,以及绝对值的大小,利用有理数的加减和相反数的意义判断即可.【解答】解:∵b<0<a,且|b|>|a|∴a+b<0,选项A错误;﹣a>b,选项B正确;a﹣b>0,选项C错误;﹣b>a,选项D错误;故选:B.【点评】此题考查了数轴,根据数轴确定出a与b的正负及绝对值大小是解本题的关键.5.(2021•日照)数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于7×1011的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m,按照上述规则,恰好实施5次运算结果为1的m所有可能取值的个数为()A.8B.6C.4D.2【考点】有理数的混合运算.【专题】实数;推理能力.【分析】利用第5次运算结果为1出发,按照规则,逆向逐项计算即可求出m的所有可能的取值.【解答】解:如果实施5次运算结果为1,则变换中的第6项一定是1,则变换中的第5项一定是2,则变换中的第4项一定是4,则变换中的第3项可能是1,也可能是8.则变换中的第2项可能是2,也可能是16.当变换中的第2项是2时,第1项是4;当变换中的第2项是16时,第1项是32或5,则m的所有可能取值为32或5,一共2个,故选:D.【点评】本题考查有理数的混合运算,进行逆向验证是解决本题的关键.6.(2021•镇江)如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为()A.1840B.1921C.1949D.2021【考点】有理数的混合运算.【专题】实数;运算能力.【分析】把1921代入程序中计算,判断即可得到结果.【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故选:D.【点评】此题考查了有理数的混合运算,弄清程序中的运算过程是解本题的关键.7.(2021•兴安盟)用四舍五入法把某数取近似值为5.2×10﹣2,精确度正确的是()A.精确到万分位B.精确到千分位C.精确到0.01D.精确到0.1【考点】负整数指数幂.【专题】实数;数感.【分析】根据近似数的精确度求解.【解答】解:5.2×10﹣2=0.052,近似数5.2×10﹣2精确到千分位.故选:B.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.8.(2021•百色)当x=﹣2时,分式的值是()A.﹣15B.﹣3C.3D.15【考点】分式的值.【专题】分式;运算能力.【分析】根据平方差公式以及完全平方公式即可求出答案.【解答】解:原式===,当x=﹣2时,原式===﹣15.故选:A.【点评】本题考查分式的值,解题的关键是熟练运用平方差公式、完全平方公式以及分式的基本性质,本题属于基础题型.9.(2021•陕西)计算:﹣a2b•(ab)﹣1=()A.a B.a3b2C.﹣a D.﹣a3b2【考点】幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.【专题】计算题;整式;运算能力.【分析】先算乘方,再利用乘法的交换律,把底数相同的相乘.【解答】解:原式=﹣a2b•a﹣1b﹣1=﹣a2•a﹣1•b•b﹣1=﹣a2﹣1b1﹣1=﹣a.故选:C.【点评】本题考查了单项式乘单项式,掌握同底数幂的乘法法则、负整数指数幂的意义是解决本题的关键.10.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【考点】规律型:数字的变化类.【专题】规律型;推理能力.【分析】把A1,A2,B1,B3的式子表示出来,再结合值等于789,可求相应的n的值,即可判断.【解答】解:由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.【点评】本题主要考查规律型:数字变化类,解答的关键是理解清楚题意,得出相应的式子.。
专题01数与式的计算-2023年中考数学大题(解析版)

2023年中考数学大题高分秘籍(江苏专用)专题01数与式的计算【方法揭秘】揭示思想方法,提升解题效率1.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(3)实数运算的“三个关键”①运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.②运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.③运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.2.整式的混合运算及化简求值(1)有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(2)“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.(3)整式的化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.3.分式的混合运算及化解求值(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.(2)分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.4.二次根式的计算二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.③二次根式的运算结果要化为最简二次根式.④在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【真题再现】直面中考真题,实战培优提升一.解答题(共14小题)1.(2022•淮安)(1)计算:|﹣5|+(3−√2)0﹣2tan45°;(2)化简:ᵄᵄ2−9÷(1+3ᵄ−3). 【分析】(1)先计算零次幂、代入特殊角的函数值,再化简绝对值,最后算加法;(2)先通分计算括号里面的,再把除法转化为乘法.【解析】(1)原式=5+1﹣2×1=5+1﹣2=4;(2)原式=ᵄ(ᵄ+3)(ᵄ−3)÷ᵄᵄ−3=ᵄ(ᵄ+3)(ᵄ−3)×ᵄ−3ᵄ =1ᵄ+3.2.(2022•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9;(2)(1+2ᵆ)÷ᵆ2+4ᵆ+4ᵆ2. 【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9 =1+3−√3−3+3 =4−√3;(2)(1+2ᵆ)÷ᵆ2+4ᵆ+4ᵆ2=ᵆ+2ᵆ•ᵆ2(ᵆ+2)2 =ᵆᵆ+2.3.(2022•镇江)(1)计算:(12)﹣1﹣tan45°+|√2−1|;(2)化简:(1−1ᵄ)÷(a −1ᵄ).【分析】(1)利用负整数指数幂的运算、特殊角的三角函数值、去绝对值的法则计算即可;(2)利用分式的混合运算来做即可.【解析】(1)原式=2﹣1+√2−1=√2;(2)原式=(ᵄᵄ−1ᵄ)÷(ᵄ2ᵄ−1ᵄ) =ᵄ−1ᵄ×ᵄᵄ2−1=ᵄ−1(ᵄ−1)(ᵄ+1)=1ᵄ+1.4.(2022•南通)(1)计算:2ᵄᵄ2−4⋅ᵄ−2ᵄ+ᵄᵄ+2;(2)解不等式组:{2ᵆ−1>ᵆ+14ᵆ−1≥ᵆ+8. 【分析】(1)利用分式的混合运算法则运算即可;(2)分别求得不等式组中两个不等式的解集,取它们的公共部分即可得出结论.【解析】(1)原式=2ᵄ(ᵄ+2)(ᵄ−2)⋅ᵄ−2ᵄ+ᵄᵄ+2=2ᵄ+2+ᵄᵄ+2=ᵄ+2ᵄ+2 =1;(2)不等式2x ﹣1>x +1的解集为:x >2,不等式4x ﹣1≥x +8的解集为:x ≥3,它们的解集在数轴上表示为:∴不等式组的解集为:x ≥3.5.(2022•常州)计算:(1)(√2)2﹣(π﹣3)0+3﹣1;(2)(x +1)2﹣(x ﹣1)(x +1).【分析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【解析】(1)原式=2﹣1+13=43; (2)原式=(x 2+2x +1)﹣(x 2﹣1)=x 2+2x +1﹣x 2+1=2x +2.6.(2022•无锡)计算:(1)|−12|×(−√3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1)根据绝对值,二次根式的性质,特殊角的三角函数值计算即可;(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解析】(1)原式=12×3−12 =32−12=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .7.(2022•扬州)计算:(1)2cos45°+(π−√3)0−√8;(2)(2ᵅ−1+1)÷2ᵅ+2ᵅ2−2ᵅ+1. 【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式的性质计算即可;(2)根据分式的混合运算法则计算.【解析】(1)原式=2×√22+1﹣2√2=√2+1﹣2√2=1−√2;(2)原式=(2ᵅ−1+ᵅ−1ᵅ−1)•(ᵅ−1)22(ᵅ+1)=ᵅ+1ᵅ−1•(ᵅ−1)22(ᵅ+1)=ᵅ−12.8.(2021•无锡)计算:(1)(13)﹣2+√27−|﹣4|; (2)ᵆ+1ᵆ2−2ᵆ+1÷(1−21−ᵆ). 【分析】(1)根据负整数指数幂的、二次根式的性质以及绝对值的性质即可求出答案.(2)根据分式的加减运算以及分式的乘除运算即可求出答案.【解析】(1)原式=9+3√3−4=5+3√3.(2)原式=ᵆ+1(ᵆ−1)2÷1−ᵆ−21−ᵆ =ᵆ+1(ᵆ−1)2÷ᵆ+1ᵆ−1 =ᵆ+1(ᵆ−1)2•ᵆ−1ᵆ+1=1ᵆ−1. 9.(2021•镇江)(1)计算:(1−√2)0﹣2sin45°+√2;(2)化简:(x 2﹣1)÷(1−1ᵆ)﹣x . 【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数值即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【解析】(1)原式=1﹣2×√22+√2=1. (2)原式=(x +1)(x ﹣1)÷ᵆ−1ᵆ−x=(x +1)(x ﹣1)•ᵆᵆ−1−x =x (x +1)﹣x=x (x +1﹣1)=x 2.10.(2021•南通)(1)化简求值:(2x ﹣1)2+(x +6)(x ﹣2),其中x =−√3;(2)解方程2ᵆ−3−3ᵆ=0.【分析】(1)根据整式的加减运算以及乘除运算法则进行化简,然后将x 的值代入原式即可求出答案.(2)根据分式的方程的解法即可求出答案.【解析】(1)原式=4x 2﹣4x +1+x 2+4x ﹣12=5x 2﹣11,当x =−√3时,原式=5×3﹣11=15﹣11=4.(2)2ᵆ−3−3ᵆ=0, 2ᵆ−3=3ᵆ,2x =3x ﹣9,x =9,检验:将x =9代入x (x ﹣3)≠0,∴x =9是原方程的解.11.(2021•徐州)计算:(1)|﹣2|﹣20210+√83−(12)﹣1; (2)(1+2ᵄ+1ᵄ2)÷ᵄ+1ᵄ. 【分析】(1)先分别化简绝对值,零指数幂,立方根,负整数指数幂,然后再计算;(2)分式的混合运算,先算小括号里面的,然后算括号外面的.【解析】(1)原式=2﹣1+2﹣2=1;(2)原式=ᵄ2+2ᵄ+1ᵄ2÷ᵄ+1ᵄ =(ᵄ+1)2ᵄ2⋅ᵄᵄ+1 =ᵄ+1ᵄ.12.(2021•无锡)计算:(1)|−12|﹣(﹣2)3+sin30°;(2)4ᵄ−ᵄ+82ᵄ.【分析】(1)根据绝对值的意义,乘方的意义以及特殊角的锐角三角函数的值即可求出答案.(2)根据分式的加减运算法则即可求出答案.【解析】(1)原式=12+8+12=1+8=9.(2)原式=82ᵄ−ᵄ+82ᵄ=−ᵄ2ᵄ=−12.13.(2021•扬州)计算或化简:(1)(−13)0+|√3−3|+tan60°.(2)(a+b)÷(1ᵄ+1ᵄ).【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【解析】(1)原式=1+3−√3+√3=4;(2)原式=(ᵄ+ᵄ)÷ᵄ+ᵄᵄᵄ=(ᵄ+ᵄ)×ᵄᵄᵄ+ᵄ=ab.14.(2022•泰州)(1)计算:√18−√3×√2 3;(2)按要求填空:小王计算2ᵆᵆ2−4−1ᵆ+2的过程如下:解:2ᵆᵆ2−4−1ᵆ+2=2ᵆ(ᵆ+2)(ᵆ−2)−1ᵆ+2⋯⋯第一步=2ᵆ(ᵆ+2)(ᵆ−2)−ᵆ−2(ᵆ+2)(ᵆ−2)⋯⋯第二步=2ᵆ−ᵆ−2(ᵆ+2)(ᵆ−2)⋯⋯第三步=ᵆ−2(ᵆ+2)(ᵆ−2)⋯⋯第四步=1ᵆ+2.……第五步小王计算的第一步是因式分解 (填“整式乘法”或“因式分解”),计算过程的第三步出现错误.直接写出正确的计算结果是1ᵆ−2.【分析】(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.【解析】(1)原式=3√2−√3×2 3=3√2−√2=2√2;(2)2ᵆᵆ2−4−1ᵆ+2 =2ᵆ(ᵆ+2)(ᵆ−2)−1ᵆ+2=2ᵆ(ᵆ+2)(ᵆ−2)−ᵆ−2(ᵆ+2)(ᵆ−2)=2ᵆ−(ᵆ−2)(ᵆ+2)(ᵆ−2)=2ᵆ−ᵆ+2(ᵆ+2)(ᵆ−2) =ᵆ+2(ᵆ+2)(ᵆ−2) =1ᵆ−2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1ᵆ−2.故答案为:因式分解,三,1ᵆ−2.【专项突破】深挖考点考向,揭示内涵实质1.(2022•靖江市校级模拟)计算与化简: (1)√27−2cos30°+(12)﹣2﹣|1−√3|. (2)先化简,再求值:ᵅ2−4ᵅ+4ᵅ−1÷(3ᵅ−1−ᵅ−1),其中m =√3−2.【分析】(1)先算二次根式的化简,特殊角的三角函数值,负整数指数幂,绝对值,再算加减即可;(2)先通分,再把除法转为乘法,把能进行分解的因式进行分解,最后约分,把相应的值代入运算即可. 【解析】(1)√27−2cos30°+(12)﹣2﹣|1−√3| =3√3−2×√32+4﹣(√3−1) =3√3−√3+4−√3+1=√3+5;(2)ᵅ2−4ᵅ+4ᵅ−1÷(3ᵅ−1−ᵅ−1)=(ᵅ−2)2ᵅ−1÷(3ᵅ−1−ᵅ2−1ᵅ−1)=(ᵅ−2)2ᵅ−1÷4−ᵅ2ᵅ−1=(2−ᵅ)2ᵅ−1⋅ᵅ−1(2−ᵅ)(2+ᵅ)=2−ᵅ2+ᵅ,当m=√3−2时,原式=2−(√3−2) 2+√3−2=4−√3√3=4√3−33.2.(2022•海陵区校级三模)(1)计算:(2+√3)0+3tan30°﹣|√3−2|+(12)﹣1;(2)先化简,再求值:(1+1ᵆ+1)÷ᵆ2−42ᵆ+2,其中x=1.【分析】(1)先算零指数幂,特殊角的三角函数值,绝对值,负整数指数幂,再算加减即可;(2)先通分,把除法转为乘法,把能分解的因式进行分解,最后约分,再把相应的值代入运算即可.【解析】(1)(2+√3)0+3tan30°﹣|√3−2|+(12)﹣1=1+3×√33−(2−√3)+2=1+√3−2+√3+2=2√3+1;(2)(1+1ᵆ+1)÷ᵆ2−42ᵆ+2=ᵆ+2ᵆ+1⋅2(ᵆ+1) (ᵆ−2)(ᵆ+2)=2ᵆ−2,当x=1时,原式=2 1−2=﹣2.3.(2022•亭湖区校级三模)计算:(1)2sin30°+|﹣2|+(√2−1)0−√4;(2)(x﹣1)(x+1)﹣(x﹣2)2.【分析】(1)根据特殊锐角三角函数值,代入计算即可;(2)根据平方差公式、完全平方公式进行计算即可.【解析】(1)原式=2×12+2+1﹣2=1+2+1﹣2=2;(2)原式=x2﹣1﹣x2+4x﹣4=4x﹣5.4.(2022•泉山区校级三模)(1)计算(ᵰ−3.14)0+(13)−2−(−2)3;(2)化简:(1ᵄ+1−1ᵄ2−1)÷ᵄ−3ᵄ+1.【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解析】(1)(ᵰ−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1ᵄ+1−1ᵄ2−1)÷ᵄ−3ᵄ+1=ᵄ−1−1 (ᵄ+1)(ᵄ−1)•ᵄ+1ᵄ−3=ᵄ−2(ᵄ−1)(ᵄ−3)=ᵄ−2ᵄ2−4ᵄ+3.5.(2022•天宁区校级二模)计算:(1)(−2)2+3×(−2)−(14)−2;(2)化简,再求值(x﹣2)(x+2)﹣(﹣x+2)2,其中x=3.【分析】1)先根据乘方、负整数次幂进行计算,然后再进行计算即可;(2)先用平方差公式和完全平方公式进行计算,然后再合并同类项即可.【解答】((1)解:(−2)2+3×(−2)−(14)−2=4+3×(﹣2)﹣16=4﹣6﹣16=﹣18.(2)解:(x﹣2)(x+2)﹣(﹣x+2)2=x2﹣4﹣(x2﹣4x+4)=x2﹣4﹣x2+4x﹣4=4x﹣8当x=3时,原式=4x﹣8=4×3﹣8=4.6.(2022•丹徒区模拟)(1)计算:|3﹣π|﹣2sin45°+(1−√2)0;(2)化简:x﹣(x2﹣1)÷(1−1ᵆ).【分析】(1)根据绝对值的性质,特殊角的锐角三角函数,零指数幂的意义即可求出答案.(2)根据分式的加减运算法则以及乘除运算法则即可求出答案.【解析】(1)原式=π﹣3﹣2×√22+1=π﹣3−√2+1=π﹣2−√2.(2)原式=x ﹣(x +1)(x ﹣1)•ᵆᵆ−1 =x ﹣x (x +1)=x ﹣x 2﹣x=﹣x 2.7.(2022•邗江区二模)(1)计算:2ᵅᵅᵆ45°+|2−√2|−(2022)0;(2)化简:ᵆ2−1ᵆ÷(1ᵆ+1). 【分析】(1)先计算零指数幂,并把特殊角的三角函数值代入,化简绝对值符号,再计算加减即可;(2)先按分式加法计算括号内的式子,再按分式除法法则计算即可.【解析】(1)原式=2×√22+2−√2−1=√2+2−√2−1=1;(2)原式=(ᵆ+1)(ᵆ−1)ᵆ÷1+ᵆᵆ =(ᵆ+1)(ᵆ−1)ᵆ⋅ᵆᵆ+1=x ﹣1.8.(2022•海门市二模)(1)先化简,再求值:(a +1)(2﹣a )+(a +3)2,其中a =﹣1;(2)解方程:ᵆ+1ᵆ−1−4ᵆ2−1=1.【分析】(1)先根据多项式乘多项式和完全平方公式进行计算,再合并同类项,最后代入求出答案即可;(2)方程两边都乘(x +1)(x ﹣1)得出(x +1)2﹣4=(x +1)(x ﹣1),求出方程的解,再进行检验即可.【解析】(1)(a +1)(2﹣a )+(a +3)2=2a ﹣a 2+2﹣a +a 2+6a +9=7a +11,当a =﹣1时,原式=7×(﹣1)+11=﹣7+11=4;(2)ᵆ+1ᵆ−1−4ᵆ2−1=1,方程两边都乘(x +1)(x ﹣1),得(x +1)2﹣4=(x +1)(x ﹣1),解得:x =1,检验:当x =1时,(x +1)(x ﹣1)=0,所以x =1是增根,即原方程无解.9.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1; (2)(ᵄ+2ᵄ+1ᵄ)÷ᵄ2−1ᵄ.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解析】(1)|−4|−20220+√273−(13)−1 =4﹣1+3﹣3=3;(2)(ᵄ+2ᵄ+1ᵄ)÷ᵄ2−1ᵄ=ᵄ2+2ᵄ+1ᵄ•ᵄ(ᵄ+1)(ᵄ−1)=(ᵄ+1)2ᵄ•ᵄ(ᵄ+1)(ᵄ−1) =ᵄ+1ᵄ−1.10.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1ᵆ−2)÷ᵆ−1ᵆ−2.【分析】(1)先算零指数幂,负整数指数幂,绝对值,再算加减即可;(2)先通分,把能分解的进行分解,除法转为乘法,最后约分即可.【解析】(1)20220﹣(−12)﹣1﹣|3−√8| =1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1ᵆ−2)÷ᵆ−1ᵆ−2=ᵆ−1ᵆ−2⋅ᵆ−2ᵆ−1 =1.11.(2022•淮安模拟)(1)计算:√4−(√2−1)0﹣|√3−2|+4cos60°;(2)化简:ᵅᵅ2−9÷(1+3ᵅ−3). 【分析】(1)应用算术平方根,零指数幂,绝对值,特殊角三角函数值进行计算即可得出答案;(2)应用分式的混合运算法则进行计算即可得出答案.【解析】(1)原式=2﹣1﹣(2−√3)+4×12=1﹣2+√3+2=1+√3;(2)原式=ᵅ(ᵅ+3)(ᵅ−3)÷(ᵅ−3ᵅ−3+3ᵅ−3) =ᵅ(ᵅ+3)(ᵅ−3)×ᵅ−3ᵅ =1ᵅ+3.12.(2022•高邮市模拟)(1)计算:cos60°+(﹣2)﹣1−|1−√13|;(2)化简:(ᵄ−1−ᵄ−1ᵄ)÷ᵄ2−1ᵄ.【分析】(1)应用特殊角三角函数值,负整数指数幂,绝对值的运算法则进行计算即可得出答案;(2)应用分式的混合运算法则进行计算即可得出答案.【解析】(1)原式=12+1(−2)−(1−√33) =12−12−1+√33=﹣1+√33;(2)原式=(ᵄ(ᵄ−1)ᵄ−ᵄ−1ᵄ]×ᵄ(ᵄ+1)(ᵄ−1) =ᵄ2−2ᵄ+1ᵄ×ᵄ(ᵄ+1)(ᵄ−1)=(ᵄ−1)2ᵄ×ᵄ(ᵄ+1)(ᵄ−1)=ᵄ−1ᵄ+1.13.(2022•江都区二模)计算或化简:(1)−16×(34−18)+(−2)3÷4; (2)(ᵄ−1ᵄ)×ᵄ2ᵄ−1.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算括号里,再算括号外,即可解答.【解析】(1)−16×(34−18)+(−2)3÷4=﹣16×58+(﹣8)÷4=﹣10+(﹣2)=﹣12;(2)(ᵄ−1ᵄ)×ᵄ2ᵄ−1=ᵄ2−1ᵄ•ᵄ2ᵄ−1=(ᵄ+1)(ᵄ−1)ᵄ•ᵄ2ᵄ−1 =a (a +1)=a 2+a .14.(2022•启东市二模)(1)计算:(ᵄ−1+2ᵄ+1)÷(ᵄ2+1);(2)解不等式组:{ᵆ2+1>02(ᵆ−1)+3≥3ᵆ. 【分析】(1)先算括号内的式子,然后计算括号外的除法即可;(2)先解出每个不等式的解集,即可得到不等式组的解集.【解析】(1)(ᵄ−1+2ᵄ+1)÷(ᵄ2+1)=(ᵄ−1)(ᵄ+1)+2ᵄ+1•1ᵄ2+1=ᵄ2−1+2ᵄ+1•1ᵄ2+1=ᵄ2+1ᵄ+1•1ᵄ2+1=1ᵄ+1;(2){ᵆ2+1>0①2(ᵆ−1)+3≥3ᵆ②, 解不等式①,得:x >﹣2,解不等式②,得:x ≤1,故原不等式组的解集是﹣2<x ≤1.15.(2022•如皋市二模)(1)解方程:1ᵆ−4=2ᵆ−2;(2)先化简,再求值:(4ab 3﹣8a 2b 2)÷4ab +(2a +b )(2a ﹣b ),其中a =2,b =﹣1.【分析】(1)根据分式方程的解法即可求出答案.(2)根据整式的乘除运算以及加减运算进行化简,然后将a 与b 的值代入原式即可求出答案.【解析】(1)1ᵆ−4=2ᵆ−2,x ﹣2=2(x ﹣4),x ﹣2=2x ﹣8,x ﹣2x =2﹣8,x =6,经检验:x =6是原分式方程的解.(2)原式=b 2﹣2ab +4a 2﹣b 2=4a 2﹣2ab ,当a =2,b =﹣1时,原式=4×4﹣2×2×(﹣1)=16+4=20.16.(2022•海陵区二模)(1)计算:(4﹣π)0+(13)﹣1﹣2cos45°;(2)化简:(1+1ᵆ−1)÷ᵆᵆ2−1. 【分析】(1)根据零指数幂的意义、负整数指数幂的意义以及特殊角的锐角三角函数值即可求出答案(2)根据分式的加减运算以及乘除运算即可求出答案.【解析】(1)原式=1+3﹣2×√22=4−√2.(2)原式=ᵆ−1+1ᵆ−1•(ᵆ+1)(ᵆ−1)ᵆ=ᵆᵆ−1•(ᵆ+1)(ᵆ−1)ᵆ =x +1.17.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273; (2)(1−1ᵄ)÷ᵄ2−2ᵄ+1ᵄ. 【分析】(1)根据有理数的乘方、绝对值、负整数指数幂和立方很可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1ᵄ)÷ᵄ2−2ᵄ+1ᵄ=ᵄ−1ᵄ⋅ᵄ(ᵄ−1)2 =1ᵄ−1.18.(2022•淮阴区模拟)先化简,再求值:ᵆ2ᵆ2−4ᵆ+4÷(1+2ᵆ−2),其中x =12. 【分析】先算括号内的加法,再算括号外的除法,然后将x 的值代入化简后的式子计算即可.【解析】ᵆ2ᵆ2−4ᵆ+4÷(1+2ᵆ−2) =ᵆ2(ᵆ−2)2÷ᵆ−2+2ᵆ−2 =ᵆ2(ᵆ−2)2⋅ᵆ−2ᵆ =ᵆᵆ−2,当x =12时,原式=1212−2=−13. 19.(2022•常州一模)计算与化简.(1)计第:ᵰ0+(12)−1−(√3)2; (2)先化简,再求值:(x +1)2﹣x (x +1),其中x =2.【分析】(1)根据零指数幂的意义、负整数指数幂的意义以及二次根式的性质即可求出答案.(2)先根据整式的加减运算以及乘除运算法则,然后将x 的值代入原式即可求出答案.【解析】(1)原式=1+2﹣3=3﹣3=0.(2)原式=x 2+2x +1﹣x 2﹣x=x +1,当x =2时,原式=2+1=3.20.(2022•仪征市二模)计算:(1)|√2−2|+2sin45°−(12)−1;(2)ᵅᵅ−ᵅ+ᵅᵅ−ᵅ.【分析】(1)原式利用绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值;(2)原式变形后,利用同分母分式的减法法则计算即可求出值.【解析】(1)原式=2−√2+2×√22−2=2−√2+√2−2=0;(2)原式=ᵅᵅ−ᵅ−ᵅᵅ−ᵅ=ᵅ−ᵅᵅ−ᵅ=1.21.(2022•天宁区校级二模)计算:√9+(13)−1−2ᵅᵅᵆ45°+|1−√2|.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解析】原式=3+3﹣2×√22+√2−1=3+3−√2+√2−1=5.22.(2022•盐城一模)如果m 2﹣4m ﹣7=0,求代数式(ᵅ2−ᵅ−4ᵅ+3+1)÷ᵅ+1ᵅ2−9的值.【分析】先通分算括号内的,把除化为乘,把分式化简后再整体代入求值.【解析】原式=ᵅ2−ᵅ−4+ᵅ+3ᵅ+3•(ᵅ+3)(ᵅ−3)ᵅ+1=(ᵅ+1)(ᵅ−1)ᵅ+3•(ᵅ+3)(ᵅ−3)ᵅ+1=(m ﹣1)(m ﹣3)=m 2﹣4m +3,∵m 2﹣4m ﹣7=0,∴m 2﹣4m =7,∴原式=7+3=10.23.(2022•盐城一模)计算:√−273+|1−ᵆᵄᵅ60°|+(−12)−2.【分析】直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值、立方根的性质分别化简,进而合并得出答案.【解析】原式=﹣3+|1−√3|+4=﹣3+√3−1+4=√3.24.(2022•广陵区一模)(1)计算:√12−3ᵆᵄᵅ30°−(12)−2;(2)化简:ᵆ−3ᵆ−2÷(ᵆ+2−5ᵆ−2).【分析】(1)根据算术平方根、特殊角的三角函数值、负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解析】(1)√12−3ᵆᵄᵅ30°−(12)−2=2√3−3×√33−4=2√3−√3−4=√3−4;(2)ᵆ−3ᵆ−2÷(ᵆ+2−5ᵆ−2)=ᵆ−3ᵆ−2÷(ᵆ+2)(ᵆ−2)−5ᵆ−2=ᵆ−3ᵆ−2•ᵆ−2ᵆ2−9=ᵆ−3ᵆ−2•ᵆ−2(ᵆ+3)(ᵆ−3)=1ᵆ+3.25.(2022•江都区校级模拟)计算或化简:(1)(ᵰ−3.14)0+2ᵅᵅᵆ30°+|√3−2|;(2)ᵆ+3ᵆ+1÷ᵆ2+6ᵆ+9ᵆ2−1.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数值、绝对值的性质即可求出答案.(2)根据分式的乘除运算法则即可求出答案.【解析】(1)原式=1+2×√32+2−√3=1+√3+2−√3=3.(2)原式=ᵆ+3ᵆ+1÷(ᵆ+3)2(ᵆ+1)(ᵆ−1)=ᵆ+3ᵆ+1•(ᵆ+1)(ᵆ−1)(ᵆ+3)2=ᵆ−1ᵆ+3.26.(2022•姜堰区二模)(1)计算:2a 2b 2•ab 4+(﹣3ab 2)3;(2)化简:1−ᵅ−2ᵅ÷ᵅ2−4ᵅ2+ᵅ. 【分析】(1)先算乘方,再算单项式乘单项式,然后合并同类项即可;(2)先算除法,再算减法即可.【解析】(1)2a 2b 2•ab 4+(﹣3ab 2)3=2a 2b 2•ab 4+(﹣27a 3b 6)=2a 3b 6+(﹣27a 3b 6)=﹣25a 3b 6;(2)1−ᵅ−2ᵅ÷ᵅ2−4ᵅ2+ᵅ=1−ᵅ−2ᵅ⋅ᵅ(ᵅ+1)(ᵅ+2)(ᵅ−2)=1−ᵅ+1ᵅ+2=ᵅ+2−ᵅ−1ᵅ+2=1ᵅ+2. 27.(2022•泰兴市一模)(1)计算:(12)−1−(√2+1)0+ᵅᵅᵆ60°;(2)先化简:(ᵆ+1ᵆ−1−11−ᵆ)÷2+ᵆᵆ2−ᵆ,然后从﹣3<x <0的范围内选取一个合适的整数作为x 的值代入求值.【分析】(1)先根据负整数指数幂,零指数幂和特殊角的三角函数值进行计算,再算加减即可;(2)先变形,再根据分式的加法法则算括号里面的,再根据分式的除法法则把除法变成乘法,算乘法,根据分式有意义的条件求出x 不能为1,﹣2,0,根据x 满足﹣3<x <0取x =﹣1,最后代入求出答案即可.【解析】(1)(12)−1−(√2+1)0+ᵅᵅᵆ60°=2﹣1+12 =32;(2)(ᵆ+1ᵆ−1−11−ᵆ)÷2+ᵆᵆ2−ᵆ =(ᵆ+1ᵆ−1+1ᵆ−1)÷ᵆ+2ᵆ(ᵆ−1) =ᵆ+1+1ᵆ−1•ᵆ(ᵆ−1)ᵆ+2=ᵆ+2ᵆ−1•ᵆ(ᵆ−1)ᵆ+2=x,要使分式(ᵆ+1ᵆ−1−11−ᵆ)÷2+ᵆᵆ2−ᵆ有意义,x﹣1≠0且x+2≠0且x≠0,即x不能为1,﹣2,0,∵x满足﹣3<x<0,∴取x=﹣1,当x=﹣1时,原式=﹣1.28.(2022•新吴区二模)计算:(1)|−3|−(12)−2+(√3−ᵰ)0;(2)(x﹣1)2﹣2(x+1).【分析】(1)先化简绝对值,计算负指数幂和零指数幂,再进行有理数加减混合运算;(2)先利用完全平方公式和单项式乘以多项式法则计算,再合并同类项即可解答.【解析】(1))|−3|−(12)−2+(√3−ᵰ)0=3﹣4+1=0;(2))(x﹣1)2﹣2(x+1)=x2﹣2x+1﹣2x﹣2=x2﹣4x﹣1.29.(2022•江阴市模拟)计算:(1)2﹣1+|﹣1|﹣(√3−π)0;(2)ᵄ2ᵄ−1+11−ᵄ.【分析】(1)根据负整数指数幂,绝对值,零指数幂的定义计算即可.(2)根据同分母分式加减法法法则计算即可.【解析】(1)原式=12+1−1=1 2.(2)原式=ᵄ2ᵄ−1−1ᵄ−1=ᵄ2−1ᵄ−1=(ᵄ−1)(ᵄ+1)ᵄ−1=a+1.30.(2022•徐州二模)(1)计算:(12)−2−ᵆᵄᵅ45°−(ᵰ−3)0+√4;(2)化简:(1−1ᵆ+2)÷ᵆ2−1ᵆ+2.【分析】(1)先算负整数指数幂,零指数幂,算术平方根,把特殊角三角函数值代入,再合并即可;(2)先通分算括号内的,把除化为乘,再约分即可.【解析】(1)原式=4﹣1﹣1+2=4;(2)原式=ᵆ+2−1ᵆ+2•ᵆ+2(ᵆ+1)(ᵆ−1)=ᵆ+1ᵆ+2•ᵆ+2 (ᵆ+1)(ᵆ−1)=1ᵆ−1.。
2023年山东省济南市中考数学真题(解析版)

济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为()A. B.C. D.【答案】A 【解析】【分析】分别判断出各选项中的几何体的主视图,即可得出答案.【详解】解:A 、圆锥的主视图是三角形,故本选项符合题意;B 、球的主视图是圆,故本选项不符合题意;C 、长方体的主视图是长方形,故本选项不符合题意;D 、三棱柱的主视图是长方形,故本选项不符合题意;故选:A .【点睛】本题考查了简单几何体的三视图,熟知常见几何体的主视图是解本题的关键.2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为()A.80.6865310B.86.865310C.76.865310 D.768.65310【答案】B 【解析】【分析】科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10 时,n 是正数;当原数的绝对值1 时,n 是负数.【详解】解:866.68360503000851 ,故选:B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果170 ∠,那么2 的度数是()A.20B.25C.30D.45【答案】A 【解析】【分析】根据两直线平行,同位角相等可得13 ,再结合三角板的特征利用平角定义即可算出2 的度数.【详解】解:如下图进行标注,AB CD ∥∵,1370 ,2180903907020 ,故选:A .【点睛】本题考查了平行线性质,三角形平角的定义,利用三角板的特点求出结果是解答本题的关键.4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是()A.0abB.0a bC.33a bD.33a b【答案】D 【解析】【分析】根据题意可得32,2b a ,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a ,所以b a ,∴,30,033,3a b ab a b a b ,观察四个选项可知:只有选项D 的结论是正确的;故选:D .【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出32,2b a 是解题的关键.5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】A 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.将一个图形沿着一条直线翻折后,直线两侧能完全重合的图形是轴对称图形,将一个图形绕一点旋转180度后能与自身重合的图形是中心对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.下列运算正确的是()A.248a a aB.43a a aC.325a a D.422a a a 【答案】D 【解析】【分析】根据同底数幂的乘除法、合并同类项、幂的乘方等运算法则逐项判断即得答案.【详解】解:A 、246a a a ,故本选项运算错误,不符合题意;B 、4a 与3a 不是同类项,不能合并,故本选项运算错误,不符合题意;C 、326a a ,故本选项运算错误,不符合题意;D 、422a a a ,故本选项运算正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方等知识,熟练掌握相关运算法则是解题的关键.7.已知点 14,A y , 22,B y , 33,C y 都在反比例函数 0ky k x的图象上,则1y ,2y ,3y 的大小关系为()A.321y y yB.132y y yC.312y y y D.231y y y 【答案】C 【解析】【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:∵在反比例函数(0)ky k x中,0k , 此函数图象在二、四象限,420 ∵,点 14,A y ,2(2,)B y 在第二象限,10y ,20y ,∵函数图象在第二象限内为增函数,420 ,120y y .30 ∵,3(3,)C y 点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y .故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.8.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A.13B.12C.23D.34【答案】B 【解析】【分析】根据题意画树状图,再利用概率公式,即可得到答案.【详解】解:根据题意,画树状图如下:一共有12种情况,被抽到的2名同学都是男生的情况有6种,61122P,故选:B .【点睛】本题考查了列表法或画树状图法求概率,熟练掌握概率公式是解题关键.9.如图,在ABC 中,AB AC ,36BAC ,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12B D 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是()A.36BCEB.BC AEC.512BE AC D.512AEC BEC S S △△【答案】C 【解析】【分析】由题意得,BC DC ,CE 平分ABC ,根据三角形内角和及角平分线判断A 即可;由角平分线求出36ACE A ,得到AE CE ,根据三角形内角和求出72BEC B ,得到CE BC ,即可判断B ;证明ABC CBE △∽△,得到AB BCBC BE,设1,AB BC x ,则1BE x ,求出x ,即可判断C ;过点E 作EG BC 于G ,EH AC 于H ,由角平分线的性质定理推出EG EH ,即可根据三角形面积公式判断D .【详解】解:由题意得,BC DC ,CE 平分ABC ,∵在ABC 中,AB AC ,36BAC ,∴72ABC ACB ∵CE 平分ABC ,∴36BCE ,故A 正确;∵CE 平分ABC ,72ACB ∴36ACE A ,∴AE CE ,∵72ABC ,36BCE ,∴72BEC B ,∴CE BC ,∴BC AE ,故B 正确;∵,A BCE ABC CBE ,∴ABC CBE △∽△,∴AB BCBC BE,设1,AB BC x ,则1BE x ,∴11x x x,∴21x x ,解得12x,∴13122BE,∴352BE AC,故C 错误;过点E 作EG BC 于G ,EH AC 于H,∵CE 平分ACB ,EG BC ,EH AC ,∴EG EH∴112122AEC BECAC EHS ACS BC BC EG △△,故D 正确;故选:C .【点睛】此题考查了等腰三角形等边对等角,相似三角形的判定和性质,角平分线的作图及性质,解一元二次方程,熟练掌握各知识点是解题的关键.10.定义:在平面直角坐标系中,对于点 11,P x y ,当点 22,Q x y 满足 12122x x y y 时,称点22,Q x y 是点 11,P x y 的“倍增点”,已知点 11,0P ,有下列结论:①点 13,8Q , 22,2Q 都是点1P 的“倍增点”;②若直线2y x 上的点A 是点1P 的“倍增点”,则点A 的坐标为 2,4;③抛物线223y x x 上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB 的最小值是5.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C 【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点 ,2A a a ,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点 ,B m n ,根据“倍增点”定义可得 21m n ,根据两点间距离公式可得 22211PB m n ,把 21n m 代入化简并配方,即可得出21PB 的最小值为165,即可判断.【详解】解:①∵ 11,0P , 13,8Q ,∴ 121282288103,x x y y ,∴ 12122x x y y ,则 13,8Q 是点1P 的“倍增点”;∵ 11,0P , 22,2Q ,∴ 121222212202,x x y y ,∴ 12122x x y y ,则 22,2Q 是点1P 的“倍增点”;故①正确,符合题意;②设点 ,2A a a ,∵点A 是点1P 的“倍增点”,∴ 2102a a ,解得:0a ,∴ 0,2A ,故②不正确,不符合题意;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,∴ 22123t t t ,整理得:2450t t ,∵ 24415360 ,∴方程有两个不相等实根,即抛物线223y x x 上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点 ,B m n ,∵点B 是点1P 的“倍增点”,∴ 21m n ,∵ ,B m n , 11,0P ,∴ 22211PB m n 22121m m2565m m 2316555m,∵50 ,∴21PB 的最小值为165,∴1PB 5,故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:216x =__________.【答案】(x+4)(x-4)【解析】【分析】【详解】x 2-16=(x+4)(x-4),故答案为:(x+4)(x-4)12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒子中棋子的总个数是_________.【答案】12【解析】【分析】利用概率公式,得出黑色棋子的数量除以对应概率,即可算出棋子的总数.【详解】解:13124,∴盒子中棋子的总个数是12.故答案为:12.【点睛】本题考查了简单随机事件概率的相关计算,事件出现的概率等于出现的情况数与总情况数之比.13.关于x 的一元二次方程2420x x a 有实数根,则a 的值可以是_________(写出一个即可).【答案】2(答案不唯一)【解析】【分析】由于方程有实数根,则其根的判别式0 ,由此可以得到关于a 的不等式,解不等式就可以求出a 的取值范围,进而得出答案.【详解】解:∵关于x 的一元二次方程2420x x a 有实数根,∴ 22444120b ac a ,即1680a ,解得:2a ,∴a 的值可以是2.故答案为:2(答案不唯一).【点睛】本题考查一元二次方程 200ax bx c a 的根与判别式的关系,当0a 时,方程有两个不相等的实数根;当0a 时,方程有两个相等的实数根;当a<0时,方程没有实数根.14.如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留 ).【答案】65【解析】【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A 的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和 52180540 ,5401085A ,2108263605ABES 扇形,故答案为:65.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键.15.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离 km s 和时间 h t 的关系,则出发__________h 后两人相遇.【答案】0.35【解析】【分析】根据题意和函数图象中的数据可以计算出小明和小亮的速度,从而可以解答本题.【详解】解:由题意和图象可得,小明0.5小时行驶了 6 3.5 2.5km ,∴小明的速度为: 2.55km/h 0.5,小亮0.4小时行驶了6km ,∴小明的速度为:615km/h 0.4 ,设两人出发h x 后两人相遇,∴ 155 3.5x 解得0.35x ,∴两人出发0.35后两人相遇,故答案为:0.35【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ,2AP ,则PE 的长等于__________.【答案】26【解析】【分析】过点A 作AQ PE 于点Q ,根据菱形性质可得75DAC ,根据折叠所得30E D ,结合三角形的外角定理得出45EAP ,最后根据cos 45PQ AP tan 30AQ EQ 求解.【详解】解:过点A 作AQ PE 于点Q ,∵四边形ABCD 为菱形,30ABC ,∴AB BC CD AC ,30ABC D ,∴ 118030752DAC ,∵CPE △由CPD △沿CP 折叠所得,∴30E D ,∴753045EAP ,∵AQ PE ,2AP ,∴cos 45PQ AP AQ PQ ,∴tan 30AQ EQ∴PE EQ PQ.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.计算: 1011tan 602 .【答案】3【解析】【分析】根据绝对值的意义、负整数指数幂、零指数幂以及特殊角的三角函数值分别计算后,再根据二次根式加减运算法则求解即可得到答案.【详解】解: 1011tan 60221 3 .【点睛】本题考查了绝对值的意义、负整数指数幂运算、零指数幂运算、特殊角的三角函数值、二次根式加减运算,熟练掌握相关运算法则是解本题的关键.18.解不等式组: 223235x x x x①②,并写出它的所有整数解.【答案】13x ,整数解为0,1,2【解析】【分析】分别求解两个不等式,再写出解集,最后求出满足条件的整数解即可.【详解】解:解不等式①,得1x ,解不等式②,得3x ,在同一条数轴上表示不等式①②的解集,原不等式组的解集是13x ,∴整数解为0,1,2.【点睛】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.19.已知:如图,点O 为ABCD Y 对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F .求证:DE BF.【答案】详见解析【解析】【分析】根据平行四边形的性质得出AD BC ,AD BC ∥,进而得出EAO FCO ,OEA OFC ,再证明AOE COF ≌△△,根据全等三角形的性质得出AE CF ,再利用线段的差得出AD AE BC CF ,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ,AD BC ∥,∴EAO FCO ,OEA OFC ,∵点O 为对角线AC 的中点,∴AO CO ,∴AOE COF ≌△△,∴AE CF ,∴AD AE BC CF ,∴DE BF .【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,正确理解题意是解题的关键.20.图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m AB ,0.6m BC ,123ABC ,该车的高度 1.7m AO .如图2,打开后备箱,车后盖ABC 落在AB C 处,AB 与水平面的夹角27B AD .(1)求打开后备箱后,车后盖最高点B 到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C 处经过,有没有碰头的危险?请说明理由.(结果精确到.....001m .,参考数据:sin 270.454 ,cos 270.891 ,tan 270.510 1.732 )【答案】(1)车后盖最高点B 到地面的距离为2.15m(2)没有危险,详见解析【解析】【分析】(1)作B E AD ,垂足为点E ,先求出B E 的长,再求出B E AO 的长即可;(2)过C 作C F B E ,垂足为点F ,先求得63AB E ,再得到60C B F AB C AB E ,再求得cos600.3B F B C ,从而得出C 到地面的距离为2.150.3 1.85 ,最后比较即可.【小问1详解】如图,作B E AD ,垂足为点E在Rt AB E △中∵27B AD ,1AB AB ∴sin 27B EAB∴sin 2710.4540.454B E AB ∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO 答:车后盖最高点B 到地面的距离为2.15m .【小问2详解】没有危险,理由如下:过C 作C F B E ,垂足为点F∵27B AD ,90B EA∴63AB E∵123AB C ABC∴60C B F AB C AB E在Rt B FC 中,0.6B C BC ∴cos600.3B F B C .∵平行线间的距离处处相等∴C 到地面的距离为2.150.3 1.85 .∵1.85 1.8∴没有危险.【点睛】本题主要考查了解直角三角形的应用,掌握直角三角形的边角关系是解题的关键.21.2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ;B 组:1223m ;C 组:2334m ;D 组:3445m ;E 组:4556m .下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期的平均出游人数如下表:组别A 112m B 1223m C 2334m D 3445m E 4556m 平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36(2)详见解析(3)15.5(4)20百万【解析】【分析】(1)由E 组的个数除以总个数,再乘以360 即可;(2)先用D 组所占百分比乘以总个数得出其个数,再用总个数减去A 、B 、D 、E 组的个数得出C 组个数,最后画图即可;(3)根据中位数的定义可得出中位数为第15和16个数的平均数,第15和16个数均在B 组,求解即可;(4)根据加权平均数的求解方法计算即可.【小问1详解】33603630,故答案为:36;【小问2详解】D 组个数:3010%3 个,C 组个数:30128334 个,补全频数分布直方图如下:【小问3详解】共30个数,中位数为第15和16个数的平均数,第15和16个数均在B 组,∴中位数为151615.52百万,故答案为:15.5;【小问4详解】5.51216832.544235032030(百万),答:这30个地区“五一”假期的平均出游人数是20百万.【点睛】本题考查了扇形统计图和频数分布直方图的相关知识,涉及求扇形所对的圆心角的度数,画频数分布直方图,求中位数,求加权平均数,熟练掌握知识点,并能够从题目中获取信息是解题的关键.22.如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ,点E 是 BD的中点,弦CE ,BD 相交于点E .(1)求OCB 的度数;(2)若3EF ,求O 直径的长.【答案】(1)60(2)【解析】【分析】(1)根据切线的性质,得出OC PC ,再根据直角三角形两锐角互余,得出90OCB BCP ,再根据等边对等角,得出OCB OBC ,再根据等量代换,得出2OCB BCP ,再根据90OCB BCP ,得出290BCP BCP ,即390BCP ,得出30BCP ,进而计算即可得出答案;(2)连接DE ,根据圆周角定理,得出90DEC ,再根据中点的定义,得出 DEEB ,再根据同弧或同弦所对的圆周角相等,得出1302DCE ECB FDE DCB ,再根据正切的定义,得出DE ,再根据30 角所对的直角边等于斜边的一半,得出2CD DE 【小问1详解】解:∵PC 与O 相切于点C ,∴OC PC ,∴90OCB BCP ,∵OB OC ,∴OCB OBC ,∵2ABC BCP ,∴2OCB BCP ,∴290BCP BCP ,即390BCP ,∴30BCP ,∴260OCB BCP ;【小问2详解】解:如图,连接DE ,∵CD 是O 直径,∴90DEC ,∵点E 是 BD的中点,∴ DEEB ,∴1302DCE ECB FDE DCB,在Rt FDE △中,∵3EF ,30FDE ,∴tan 30EF DE,在Rt DEC △中,∵30DCE ,∴2CD DE∴O 的直径的长为.【点睛】本题考查了切线的性质、直角三角形两锐角互余、等边对等角、圆周角定理及其推论、锐角三角函数、含30 角的直角三角形的性质,解本题的关键在熟练掌握相关的性质定理.23.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元(2)购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元【解析】【分析】(1)设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元,根据:用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同即可列出关于x 的分式方程,解方程并检验后即可求解;(2)设购买A 型编程机器人模型m 台,购买A 型和B 型编程机器人模型共花费w 元,根据题意可求出m 的范围和W 关于m 的函数关系式,再结合一次函数的性质即可求出最小值【小问1详解】解:设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元.根据题意,得20001200200x x 解这个方程,得500x 经检验,500x 是原方程的根.200300x 答:A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元.【小问2详解】设购买A 型编程机器人模型m 台,购买B 型编程机器人模型 40m 台,购买A 型和B 型编程机器人模型共花费w 元,由题意得:403m m ,解得10m .∴5000.83000.840w m m 即1609600w m ,∵1600 ,∴w 随m 的增大而增大.∴当10m 时,w 取得最小值11200,此时4030m ;答:购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元.【点睛】本题考查了分式方程的应用、一元一次不等式的应用和一次函数的性质,正确理解题意、找准相等与不等关系、得出分式方程与不等式是解题的关键.24.综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a ,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy ,满足条件的 ,x y 可看成是反比例函数8y x的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y ,满足条件的 ,x y 可看成一次函数210y x 的图象在第一象限内点的坐标,同时满足这两个条件的 ,x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数 80y x x的图象与直线1l :210y x 的交点坐标为 1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或AB ___________m ,BC __________m .(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a ,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a .发现直线2y x a 可以看成是直线2y x 通过平移得到的,在平移过程中,当过点 2,4时,直线2y x a 与反比例函数 80y x x的图象有唯一交点.(3)请在图2中画出直线2y x a 过点 2,4时的图象,并求出a 的值.【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a 与8y x图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.【答案】(1) 4,2;4;2;(2)不能围出,理由见解析;(3)图见解析,8a ;(4)817a 【解析】【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;(2)根据6a 得出,26y x ,在图中画出26y x 的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;(3)过点 2,4作1l 的平行线,即可作出直线2y x a 的图象,将点 2,4代入2y x a ,即可求出a 的值;(4)根据存在交点,得出方程 820x a a x有实数根,根据根的判别式得出8a ,再得出反比例函数图象经过点 1,8, 8,1,则当2y x a 与8y x 图象在点 1,8左边,点 8,1右边存在交点时,满足题意;根据图象,即可写出取值范围.【详解】解:(1)∵反比例函数 80y x x,直线1l :210y x ,∴联立得:8210y x y x ,解得:1118x y ,2242x y ,∴反比例函与直线1l :210y x 的交点坐标为 1,8和 4,2,当木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或4m AB ,2m BC .故答案为: 4,24;2.(2)不能围出.∵木栏总长为6m ,∴26x y ,则26y x ,画出直线26y x 的图象,如图中2l 所示:∵2l 与函数8y x图象没有交点,∴不能围出面积为28m 的矩形;(3)如图中直线3l 所示,3l 即为2y x a 图象,将点 2,4代入2y x a ,得:422a ,解得8a ;(4)根据题意可得∶若要围出满足条件的矩形地块,2y x a 与8y x图象在第一象限内交点的存在问题,即方程 820x a a x有实数根,整理得:2280x ax ,∴ 24280a ,解得:8a ,把1x 代入8y x 得:188y ,∴反比例函数图象经过点 1,8,把1y 代入8y x 得:81x ,解得:8x ,∴反比例函数图象经过点 8,1,令 1,8A , 8,1B ,过点 1,8A , 8,1B 分别作直线3l 的平行线,由图可知,当2y x a 与8y x图象在点A 左边,点B 右边存在交点时,满足题意;把 8,1代入2y x a 得:116a ,解得:17a ,∴817a .【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.25.在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上, 2,3C , 1,3D .抛物线 220y ax ax c a 与x 轴交于点 2,0E 和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线 220y ax ax c a 与正方形ABCD 恰有两个交点,求a 的取值范围.【答案】(1)233384y x x, 4,0F ;(2) 4,6 ;(3)103a 或3358a 【解析】【分析】(1)将点 2,3C , 2,0E 代入抛物线22y ax ax c ,利用待定系数法求出抛物线的表达式,再令0y ,求出x 值,即可得到点F 的坐标;(2)设直线CE 的表达式为y kx b ,将点 2,3C , 2,0E 代入解析式,利用待定系数法求出直线CE 的表达式为:33y x 42,设点233,384Q t t t ,根据平移的性质,得到点2332,684P t t t ,将点P 代入33y x 42,求出t 的值,即可得到点Q 的坐标;(3)根据正方形和点C 的坐标,得出3BC ,2OB ,1OA ,将 2,0E 代入22y ax ax c ,求得 222819y ax ax a a x a ,进而得到顶点坐标 1,9a ,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,分别列出不等式组求解,即可得到答案.【小问1详解】解:∵抛物线22y ax ax c 过点 2,3C ,2,0E 443440a a c a a c ,解得:383a c , 抛物线表达式为233384y x x,当0y 时,2333084x x ,解得:12x (舍去),24x ,4,0F ;【小问2详解】解:设直线CE 的表达式为y kx b ,∵直线过点 2,3C , 2,0E ,2320k b k b ,解得:3432k b,直线CE 的表达式为:33y x 42,∵点Q 在抛物线233384y x x 上,设点233,384Q t t t ,2,3C ∵, 4,0F ,且PQ 由CF 平移得到,点Q 向左平移2个单位,向上平移3个单位得到点2332,684P t t t,∵点P 在直线CE 上,将2332,684P t t t 代入33y x 42 ,23333642428t t t ,整理得:216t ,解得:14t ,24t (舍去),当4x 时, 233443684y Q 点坐标为 4,6 ;【小问3详解】解:∵四边形ABCD 是正方形, 2,3C ,3BC AB ,2OB ,1OA AB OB ,点A 和点D 的横坐标为1 ,点B 和点C 的横坐标为2,将 2,0E 代入22y ax ax c ,得:8c a ,222819y ax ax a a x a , 顶点坐标为 1,9a ,①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,9390a a ,解得:103a ;②如图,当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D下方时,与正方形有两个交点,222228312183a a a a a a ,解得:3358a ,综上所述,a 的取值范围为103a 或3358a .【点睛】本题是二次函数综合题,考查了二次函数的图象和性质,待定系数法求函数解析式,平移的性质,函数图像上点的坐标特征,抛物线与直线交点问题,解一元二次方程,解一元一次不等式组等知识,利用。
河北省2023届九年级中考一模数学试卷(含解析)

2023年河北省中考数学模拟试题注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将学校、班级、姓名、准考证号填写在试卷和答题卡相应位置上.3.答选择题时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,考生务必将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若,则()内应填的数是().A. 4B. 5C. 7D. 82. 如图,在三角形纸片中,,把沿翻折,若点B落在点C的位置,则线段().A. 是边上的中线B. 是边上的高C. 是的平分线D. 以上三种都成立3. 下列式子中计算结果与相等的是().A. B.C. D.4. 下列等式正确是( )A. B.C. D.5. 如图,已知在中,,若沿图中虚线剪去,则度数是().A. B. C. D.6. 5G是第五代移动通信技术,应用5G网络下载一个1000的文件只需要,下载5个1000的文件需要的时间用科学记数法表示应为().A. B.C. D.7. 如图,该长方体是由下面四个小几何体粘成的,那么图中第四部分对应的几何体是().A. B.C. D.8. 根据图中所给的边长及角度,下列四边形中,一定可以判定为平行四边形的是().A. B.C. D.9. 已知两个不等于0的实数、满足,则等于( )AB.C. 1D. 210. 如图是个一不倒的主视图,不倒翁的圆形脸恰好与帽子边沿,分别相切于点A ,B ,不倒翁的鼻尖正好是圆心O ,若,则的度数为( ).A.B.C.D.11. 已知等腰三角形纸片,,.现要将其剪成三张小纸片,使每张小纸片都是等腰三角形(不能有剩余).两名同学提供了如下方案:方案Ⅰ方案Ⅱ如图1,①分别作,的垂直平分线,交于点P ;②选择,,.如图2,①以点B为圆心,长为半径画弧,交于点D ,交于点E ;②连接,.对于方案Ⅰ、Ⅱ,说法正确的是( ).A. Ⅰ可行、Ⅱ不可行 B. Ⅰ不可行、Ⅱ可行C. Ⅰ、Ⅱ都可行D. Ⅰ、Ⅱ都不可行12. 初三年级甲、乙、丙、丁四个级部举行了知识竞赛,如图,平面直角坐标系中,x轴表示级部参赛人数,y轴表示竞赛成绩的优秀率(该级部优秀人数与该级部参加竞赛人数的比值),其中描述甲、丁两个级部情况的点恰好在同一个反比例函数的图象上,则这四个级部在这次知识竞赛中成绩优秀人数的多少正确的是()A. 甲乙丙丁B. 丙甲丁乙C. 甲丁乙丙D. 乙甲丁丙13. 用四个螺丝将四条不可弯曲的本条围成一个木框(形状不限),不记螺丝大小,其中相邻两螺丝之间的距离依次为3,4,5,7.且相邻两本条的夹角均可调整,若调整木条的夹角时不破坏此木框,则任意两个螺丝之间的最大距离是()A. 6B. 7C. 8D. 914. 已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a 的值可能是()A 7 B. 8 C. 9 D. 1015. 《算法统宗》中记载了一个“李白沽酒”的故事,诗云:“今携一壶酒,游春郊外走,逢朋加一倍,入店饮半斗,相逢三处店,饮尽壶中酒.试问能算士,如何知原有.”(注:古代一斗是10升)译文:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友后,李白正好喝光了壶中的酒,请问各位,壶中原有()升酒.A. 5B.C.D.16. 如图,在中,,,,,动点在边上,点关于,的对称点分别为点,,连接,交,分别为点,.甲:我发现线段的最大值为2,最小值为;乙:我连接,,发现一定为钝角三角形.则下列判断正确的是()A. 甲对乙对B. 甲对乙错C. 甲错乙对D. 甲错乙错二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分,19小题每空1分)17. 如图,在水平地面上的甲、乙两个区域分别由若干个大小完全相同的正三角形瓷砖组成,琪琪在甲、乙两个区域内分别随意抛一个小球,P(甲)表示小球停留在甲区域中灰色部分的概率,P(乙)表示小球停留在乙区域中灰色部分的概率,则P(甲)______P(乙).(选镇“>”“<”或“=”)18. 如图,在正方形中,P,H分别为和上的点,与交于点E,.(1)判断与是否互相垂直______;(选填“是”或“否”)(2)若正方形的边长为4,,则线段的长为______.19. 《乌鸦喝水》的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,喝到了水.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高______,放入一个大球水面升高______;(2)如果放入个球且使水面恰好上升到,应放入大球______个.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20. 已知两个数和a(a为负整数).(1)设整式的值为P.当时,求P的值;(2)已知,a,5的和的取值范围如图所示,求a的值.21. 某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树情况,并分为四种类型:A:3棵;B:4棵;C:5棵;D:6棵.根据各类型对应的人数绘制了如图所示的扇形统计图和尚来完成的条形统计图.请解答下列问题:植树人数扇形统计图植树人数条形统计图(1)将条形统计图补充完整;(2)在求这20名学生每人植树量的平均数时,嘉琪是这样分析的:第一步:求平均数的公式是;第二步:在该问题中,,,,,;第三步:(棵).①已知嘉琪的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵.22. 新定义:如果a,b都是非零整数,且,那么就称a是“4倍数”.(1)验证:嘉嘉说:是“4倍数”,琪琪说:也是“4倍数”,判断他们谁说得对?(2)证明:设三个连续偶数的中间一个数是(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.23. 如图,在平面直角坐标系中,线段的两个端点坐标分别为,,直线l的解析式为,点C的坐标为.(1)若直线l经过点C关于线段的对称点D,求直线l的解析式;(2)在(1)的条件下,若将直线l向右平移n个单位长度,且平移后的直线经过线段的中点M,求n的值;(3)直线经过点C,若这条直线与线段有交点(包含M,B两点),请直接写出k的取值范围.24. 如图,点P是△ABC内一点,,垂足为点D,将线段PD绕点P顺时针旋转90°得到扇形DPE,过点E作交AB于点M,连接PM,与交于点F,过点P 作交BC于点N.(1)求证:;(2)已知,.①通过计算比较线段PN和哪个长度更长;②计算图中阴影部分的面积(结果保留).25. 如图,轴上依次有,,,四个点,且,从点处向右上方沿抛物线发出一个带光的点(1)求点的横坐标,且在图中补画出轴;(2)通过计算说明点是否会落在点处,并补全抛物线;(3)求抛物线的顶点坐标和对称轴;(4)在轴上从左到右有两点,,且,从点向上作轴,且在沿轴左右平移时,必须保证沿抛物线下落的点能落在边包括端点上,直接写出点横坐标的最大值与最小值.26. 有两张全等的等腰直角三角形纸片和,,.(1)如图1,若点F在边的中点M处,,将沿射线方向平移,当四边形是菱形时,求a的值;(2)若将图1中的以点F为旋转中心,按逆时针方向旋转一定角度,交于点G,交于点H,如图2,发现,请你证明这个结论;(3)若将图1中沿射线方向平移,接着以点F为旋转中心,按顺时针方向旋转至经过点C时,交于点G,如图3,求出此时两张等腰直角三角形纸片重叠部分的面积.答案1. C解:∵,∴()内应填的数是7,故C正确.故选:C.2. D解:∵把沿翻折,若点B落在点C的位置,∴,∴,∴线段是边上的中线,也是边上的高,还是的平分线,故选D.3. B解:根据乘法分配律得,只有B正确,故选:B.4. D解:A.,故此选项不合题意;B.,负数没有算术平方根,故此选项不合题意;C.3,故此选项不合题意;D.,故此选项符合题意;故选:D.5. A解:∵在中,,∴,∵,∴故选:A.6. B解:下载5个1000的文件需要的时间为(s),故选:B.7. A由长方体和第一、二、三部分所对应的几何体可知,第四部分所对应的几何体一排有一个正方体,一排有三个正方体,前面一个正方体在后面三个正方体的中间.故选:A.8. B由,可知一组对边平行,另一组对边相等,不一定是平行四边形,所以A 不符合题意;由,可知一组对边平行,平行线间距离是5,可知另一组对边平行,该四边形是平行四边形,所以B符合题意;由,可知一组对边平行,另一组对边无法确定,不一定是平行四边形,所以C不符合题意;由,可知一组对边平行,另一组对边无法确定,不一定是平行四边形,所以D不符合题意.故选:B.9. A解:∵,∴,∵两个不等于0的实数、满足,∴,故选:A.10. A解:切于点,是半径,,.,.、分别切于点、,,.,.故选:A.11. C解:∵点P在线段的垂直平分线上,∴(垂直平分线上的点到两端点的距离相等),同理,得,∴,∴都是等腰三角形.连接,∵,∴.∵,∴,∴,∴是顶角为的等腰三角形.∵,∴,∴是顶角为的等腰三角形.∵,∴,∴,∴,∴,∴是顶角为的等腰三角形,故选C.12. D解:根据题意,可知的值即为该级部的优秀人数,∵描述甲、丁两级部情况的点恰好在同一个反比例函数的图象上,∴甲、丁两级部的优秀人数相同,∵点乙在反比例函数图象上面,∴乙级部的的值最大,即优秀人数最多,∵点丙在反比例函数图象下面,∴丙级部的的值最小,即优秀人数最少,∴乙甲丁丙,故选:D.13. D解:已知4条木棍的四边长为3、4、5、7;①选、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选、3、4作为三角形,则三边长为12、4、3;,不能构成三角形,此种情况不成立;④选、5、4作为三角形,则三边长为10、5、4;而,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选.14. D解:∵数据1,2,3,4,5,a,b的平均数是4,∴,,将此组数据由小到大排列,则第4个数据即为中位数,又∵该组数据的中位数小于4,∴a,b两数中必有一个值小于4,,∴a,b两数中较大的数的值大于9,∴a的值可能是10.故选:D.15. D解:设壶中原有x升酒,由题意得,,故选D.16. A解:连接CP,CE,CF,PM,PN,∵点P关于BC,AC的对称点分别为点E,F,∴CP=CE,CP=CF,∠PCN=∠ECN,∠PCM=∠FCM,∴∠ECF=2∠ACB=60°,∴△ECF是等边三角形,当点P与B重合时,CP最大为2AB=2,当点P与A重合时,CP最小为CA,∴EF的最大值为2,最小值为,故甲正确;由对称性知,∠E=∠CPN=60°,∠F=∠CPM=60°,∴∠MPN=120°,∴△PMN是钝角三角形,故乙正确,故选:A.17. =解:(甲),(乙),所以(甲)=(乙).故答案为:=.18. ①. 是②. ####2.4(1)解:∵四边形是正方形,∴,,在与中,∵,∴,∴,∵,∴,∴;(2)∵正方形的边长为4,∴,,∵,∴,∵,∴,∵,,∴,∴,∴,∴.故答案为:①是;②19.①. ②. ③.(1)解:①设放入一个小球使水面升高,根据题意列出方程,有图形得:,解得:;②设放入一个大球使水面升高,根据题意列出方程,由图形得:,解得:;故答案为:.(2)解:设放入大球个,小球个,根据题意得,,解得:,答:应放入大球个;故答案为:.20. (1);(2)由题意,得,,解得,因为a为负整数,所以a的值为.21. (1)D类型的人数为(人),补全条形统计图如图所示:(2)①嘉琪错在第二步;②(棵),估计这360名学生共植树(棵).22. (1)嘉嘉:,是“4倍数”,琪琪:,不是“4倍数”.所以嘉嘉说的对.(2)证明:设三个连续偶数分别为,,,,∵n为整数,∴是“4倍数”.23. (1)∵,,∴轴.∵点C,D关于线段对称,且∴.∵直线l的解析式为,且经过点D,∴,∴直线l的解析式为;(2)由(1)知直线l的解析式为,∵,,∴线段的中点M的坐标为.设平移后的直线解析式为,将M的坐标代入,得,解得;(3)∵直线经过点C,且,∴,∴直线,将代入得,,解得:;将代入得,,解得:,∴k的取值范围是.24.(1)证明:∵,∴∠PDN=90°,∵将线段PD绕点P顺时针旋转90°得到PE,∴PD=PE,∠DPE=90°,∴∠EPM+∠MPD=90°,∵,∴∠MEP=∠NDP=90°,∵,∴∠MPD+∠DPN=90°,∴∠EPM=∠DPN,在△PEM和△PDN中,,∴(ASA);(2)解:①∵,∴EM=DN=,在Rt△PDN中,,∴sin∠DPN=,∴∠DPN=30°,∴∠DPF=90°-30°=60°,∴,∵;∴PN更长;②∵,∴∠EPM=∠DPN=30°,EP=DP=3,∴S阴影=S△EPM-S扇形PEF=.25. (1)图形如图所示,抛物线,令,则,解得或,,点的横坐标为;(2)由可知抛物线与轴的另一个交点为,,,,点不会落在点处,补全抛物线如图所示;(3),抛物线的顶点为,对称轴为直线;(4)当时,,解得,抛物线经过,中,,,,当点与重合时,点的横坐标的值最大,最大值为,当点与重合时,点的横坐标最小,最小值为,点横坐标的最大值为,最小值为.26. (1)解:如图1,在和中,,∴,∵点M是中点,∴.∵四边形是菱形,∴,∴.(2)证明:如图2,连接,∵,,点F是的中点,∴,∴,,∴,∴,∴,∴.(3)解:如图3,连接,过点G作于点K,在中,,由平移知,,∴.∵,,∴.∵,∴,∴,∴,∴,在中,,∴,∴,∴,∴,在中,,∵,∴,∴,∴,∴.。
2023年成都市九年级中考数学模拟试卷(一)附答案解析

2023年成都市九年级中考数学模拟试卷(一)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果|x﹣2|=2﹣x,那么x的取值范围是()A.x≤2B.x<2C.x≥2D.x>22.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1034.(3分)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度5.(3分)下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.a2•a4=a8D.2a6÷a3=2a36.(3分)永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.17.(3分)如图,在△ABC中,∠BAC=70°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.40°B.50°C.60°D.70°8.(3分)若关于x 的分式方程无解,则a 的值为()A.1B.﹣1C.1或0D.1或﹣19.(3分)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则的值为()A.B.C.D.10.(3分)如图是二次函数y =x 2+bx +c 的部分图象,抛物线的对称轴为直线x =1,与x 轴交于点A (﹣1,0),与y 轴交于点B .给出下列结论:①b =c ;②点B 的坐标为(0,﹣3);③抛物线与x 轴另一个交点的坐标为(3,0);④抛物线的顶点坐标为(1,﹣4);⑤函数最大值为﹣4.其中正确的个数为()A.5B.4C.3D.2二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式:4a 3b 2﹣6a 2b 2=.12.(4分)若一次函数y =(k ﹣2)x +3﹣k 的图象不经过第四象限,则k 的取值范围是.13.(4分)如图,AB 是半圆O 的直径,AC =AD ,OC =2,∠CAB =30°,则点O 到CD 的距离OE 为.14.(4分)《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车,若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x辆车,y个人,根据题意,可列方程组为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣1)2021+()﹣1+|﹣1+|﹣2sin60°.(2)解不等式组.16.(6分)先化简,再求值:÷(x+2﹣),其中x=.17.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.18.(8分)在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角∠AEP)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为32cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.9,≈1.4,≈1.7)19.(10分)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图象上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.20.(10分)已知:AB与⊙O相切于点B,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BC,BD.(1)如图1,求证:∠ABC=∠ADB;(2)如图2,BE是⊙O的直径,EF是⊙O的弦,EF交OD于点G,并且∠A=∠E,求证:=;(3)如图3,在(2)的条件下,点H在上,连接EH,FH,DF,若DF=,EH=3,FH=5,求AB的长.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)若m﹣n=3,mn=5,则m+n的值为.22.(4分)一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为.23.(4分)如图,正六边形的边长为1cm,分别以它的所有顶点为圆心,1cm为半径作圆弧,则阴影部分图形的周长和为cm.(结果保留π)24.(4分)如图,直线y=kx与反比例函数y=的图象交于A,B两点,与函数y=(0<b<a)在第一象限的图象交于点C,AC=3BC,过点B分别作x轴,y轴的平行线交函数y=在第一象限的图象于点E,D,连接AE交x轴于点G,连接AD交y轴于点F,连接FG,若△AFG的面积为1,则的值为,a+b的值为.25.(4分)在菱形ABCD中,∠D=60°,CD=4,以A为圆心,2为半径作⊙A,交对角线AC于点E,点F为⊙A上一动点,连接CF,点G为CF中点,连接BG,取BG中点H,连接AH,则AH的最大值为.二.解答题(共3小题,满分30分)26.(8分)“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x条生产线后,每条生产线每天可生产口罩y个.(1)直接写出y与x之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w个,请求出w与x的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?27.(10分)在矩形ABCD中,AB=2BC.点E是直线AB上的一点,点F是直线BC上的一点,且满足AE =2CF,连接EF交AC于点G.(1)tan∠CAB=;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=BE;(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H.①EG=FG这个结论是否仍然成立?请直接写出你的结论;②当CF=1,BF=2时,请直接写出GH的长.28.(12分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m 的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果|x﹣2|=2﹣x,那么x的取值范围是()A.x≤2B.x<2C.x≥2D.x>2【答案】A【解析】因为|x﹣2|=2﹣x,由负数的绝对值等于它的相反数,0的绝对值是0可得,x﹣2≤0,即x≤2,故选:A.2.(3分)如图所示几何体的左视图是()A.B.C.D.【答案】C【解析】从左边看,是一列两个矩形.故选:C.3.(3分)下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【答案】A【解析】数字2034000科学记数法可表示为2.034×106.故选:A.4.(3分)在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()A.向上平移3个单位长度B.向下平移3个单位长度C.向左平移3个单位长度D.向右平移3个单位长度【答案】C【解析】将△ABC各点的纵坐标保持不变,横坐标都减去3,所得图形与原图形相比向左平移了3个单位.故选:C.5.(3分)下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.a2•a4=a8D.2a6÷a3=2a3【答案】D【解析】2a+5b不能合并同类项,故A不符合题意;(﹣ab)2=a2b2,故B不符合题意;a2•a4=a6,故C不符合题意;2a6÷a3=2a3,故D符合题意;故选:D.6.(3分)永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.1【答案】B【解析】将这组数据重新排列为36.2、36.2、36.2、36.3、36.3、36.4、36.5,所以这组数据的众数为36.2,中位数为36.3,故选:B.7.(3分)如图,在△ABC中,∠BAC=70°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.40°B.50°C.60°D.70°【答案】A【解析】由作图可知:MN垂直平分线段AC,可得DA=DC,则∠DAC=∠C=30°,故∠BAD=70°﹣30°=40°,故选:A.8.(3分)若关于x的分式方程无解,则a的值为()A.1B.﹣1C.1或0D.1或﹣1【答案】D【解析】去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,当a﹣1=0,即a=1时,方程无解;当a ﹣1≠0,即a ≠1时,解得:x =,由分式方程无解,得到=﹣1,即a =﹣1,综上,a 的值为1或﹣1,故选:D .9.(3分)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则的值为()A.B.C.D.【答案】A【解析】方法1,如图,作BF ⊥l 3,AE ⊥l 3,∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,在△ACE 和△CBF 中,,∴△ACE ≌△CBF ,∴CE =BF =3,CF =AE =4,∵l 1与l 2的距离为1,l 2与l 3的距离为3,∴AG =1,BG =EF =CF +CE =7∴AB ==5,∵l 2∥l 3,∴=∴DG =CE =,∴BD =BG ﹣DG =7﹣=,∴=.方法2、过点A 作AE ⊥l 3于E ,交l 2于G ,∵l 1∥l 2∥l 3,∴=,∴CD =3AD ,设AD =a ,则CD =3a ,AC =CD +AD =4a ,∵BC =AC ,∴BC =4a ,在Rt△BCD 中,根据勾股定理得,BD ==5a ,在Rt△ABC 中,AB =AC =4a ,∴,故选:A .10.(3分)如图是二次函数y =x 2+bx +c 的部分图象,抛物线的对称轴为直线x =1,与x 轴交于点A (﹣1,0),与y 轴交于点B .给出下列结论:①b =c ;②点B 的坐标为(0,﹣3);③抛物线与x 轴另一个交点的坐标为(3,0);④抛物线的顶点坐标为(1,﹣4);⑤函数最大值为﹣4.其中正确的个数为()A.5B.4C.3D.2【解析】∵二次函数y=x2+bx+c的对称轴为直线x=1,与x轴交于点A(﹣1,0),∴,抛物线与x轴另一个交点的坐标为(3,0),故③正确,符合题意;解得,∴b≠c,故①错误,不符合题意;函数解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点B的坐标为(0,﹣3),故②正确,符合题意;抛物线的顶点坐标为(1,﹣4),故④正确,符合题意;函数图象开口向上,当x=1时,取得最小值﹣4,故⑤错误,不符合题意;故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)分解因式:4a3b2﹣6a2b2=________.【答案】2a2b2(2a﹣3).【解析】4a3b2﹣6a2b2=2a2b2(2a﹣3).12.(4分)若一次函数y=(k﹣2)x+3﹣k的图象不经过第四象限,则k的取值范围是________.【答案】2<k≤3.【解析】当一次函数y=(k﹣2)x+3﹣k的图象经过第一、三象限时,,∴k=3;当一次函数y=(k﹣2)x+3﹣k的图象经过第一、二、三象限时,,∴2<k<3.综上,k的取值范围是2<k≤3.13.(4分)如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为________.【答案】.【解析】∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°,∴∠OCA=∠A=30°,∴∠OCD=45°,即△OCE是等腰直角三角形,在等腰Rt△OCE中,OC=2;因此OE=.14.(4分)《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车,若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x辆车,y个人,根据题意,可列方程组为________.【答案】.【解析】依题意,得:.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(﹣1)2021+()﹣1+|﹣1+|﹣2sin60°.(2)解不等式组.【答案】见解析【解析】(1)原式=﹣1+2+﹣1﹣2×=﹣=0;(2),解不等式①得:x>1,解不等式②得:x>3,∴不等式组的解集是x>3.16.(6分)先化简,再求值:÷(x+2﹣),其中x=.【答案】见解析【解析】原式=÷=•=,当x=时,原式==.17.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了________名学生;(2)将条形统计图补充完整;扇形统计图中D类学生所对应的圆心角是________度;(3)为了共同进步,陈老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】见解析【解析】(1)陈老师一共调查学生:(2+1)÷15%=20(名);故答案为:20.(2)C类学生人数:20×25%=5(名),C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),×360°=36°,补充条形统计图如图,故答案为:36;(3)列表如下,A类学生中的两名女生分别记为A1和A2,女A1女A2男A男D女A1男D女A2男D男A男D女D女A1女D女A2女D男A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为=.18.(8分)在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角(即望向屏幕中心P的的视线EP与水平线EA的夹角∠AEP)时,对保护眼睛比较好,而且显示屏顶端A与底座C的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为32cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.3,cos18°≈0.9,≈1.4,≈1.7)【答案】见解析【解析】(1)由已知得AP=BP=AB=16cm,在Rt△APE中,∵sin∠AEP=,∴AE==≈≈53,答:眼睛E与显示屏顶端A的水平距离AE约为53cm;(2)如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB•cos∠BAF=32×cos18°≈32×0.9≈28.8,BF=AB•sin∠BAF=32×sin18°≈32×0.3≈9.6,∵BF∥CD,∴∠CBF=∠BCD=30°,∴CF=BF•tan∠CBF=9.6×tan30°=9.6×≈5.44,∴AC=AF+CF=28.8+5.44≈34(cm).答:显示屏顶端A与底座C的距离AC约为34cm.19.(10分)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图象上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.【答案】见解析【解析】(1)设反比例函数为y=,∵点A(2,m)和点B(6,2)在y=的图象上∴k=2m=6×2解得m=6,,∴点A的坐标为(2,6),设直线AB的表达式为y=ax+b,把A(2,6)和B(6,2)代入得,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,在直线AB 为y =﹣x +8中,令y =0,则x =8,∴C (8,0),∴S △AOB =S △AOC ﹣S △BOC =﹣=16,∵B (6,2),∴OB ==2,∵S △AOB =OB •AH =16,∴AH ==.20.(10分)已知:AB 与⊙O 相切于点B ,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BC ,BD .(1)如图1,求证:∠ABC =∠ADB ;(2)如图2,BE 是⊙O 的直径,EF 是⊙O 的弦,EF 交OD 于点G ,并且∠A =∠E ,求证:=;(3)如图3,在(2)的条件下,点H 在上,连接EH ,FH ,DF ,若DF =,EH =3,FH =5,求AB 的长.【答案】见解析【解析】(1)证明:连接OB ,如图1所示:∵AB 与⊙O 相切于点B ,∴AB ⊥OB ,∴∠OBA =90°,∵CD 是⊙O 的直径,∴∠CBD =90°,∴∠CBD =∠OBA ,∴∠CBD﹣∠OBC=∠OBA﹣∠OBC,即∠OBD=∠ABC,∵OB=OD,∴∠OBD=∠ADB,∴∠ABC=∠ADB;(2)证明:∵∠A+∠AOB=90°,∠A=∠E,∠EOG=∠AOB,∴∠E+∠EOG=90°,∴∠EGO=90°,∴OD⊥EF,∴=;(3)解:连接DH、DE,过点D作DM⊥FH于M,DN⊥HE交HE的延长线于N,如图3所示:∵=,∴DE=DF=,∠DHE=∠DHF,∴DN=DM,∴Rt△DEN≌Rt△DFM(HL),∴EN=FM,∵∠N=∠DMH=90°,∠DHE=∠DHF,DH=DH,∴△DHN≌△DHM(AAS),∴HN=HM,设EN=t,则FM=t,∴3+t=5﹣t,解得:t=,∴EN=,∴HN=4,在Rt△DEN中,DN===4,在Rt△DHN中,tan∠DHN===,∴∠DHN=30°,∴∠DBE=30°,∴∠ADB=∠ABC=∠DBE=30°,∴∠BCD=90°﹣∠ADB=60°,∴∠A=∠BCD﹣∠ABC=30°=∠ADB,∴AB=BD,∵BE是⊙O的直径,∴∠BDE=90°,在Rt△BDE中,tan∠DBE=,∴BD====,∴AB=BD=.B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)若m﹣n=3,mn=5,则m+n的值为________.【答案】.【解析】根据(m+n)2=(m﹣n)2+4mn,把m﹣n=3,mn=1,得,(m+n)2=9+20=29;所以m+n=.22.(4分)一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为________.【答案】b>﹣.【解析】∵一元二次方程x2﹣x+(b+1)=0无实数根,∴Δ=(﹣)2﹣4×1×(b+1)<0,解得:b>﹣,23.(4分)如图,正六边形的边长为1cm,分别以它的所有顶点为圆心,1cm为半径作圆弧,则阴影部分图形的周长和为________cm.(结果保留π)【答案】2π.【解析】正六边形的每一个内角为=120°,由圆的对称性可得,阴影部分的周长正好是半径为1cm的圆的周长,半径为1cm的圆的周长为2π×1=2πcm,24.(4分)如图,直线y=kx与反比例函数y=的图象交于A,B两点,与函数y=(0<b<a)在第一象限的图象交于点C,AC=3BC,过点B分别作x轴,y轴的平行线交函数y=在第一象限的图象于点E,D,连接AE交x轴于点G,连接AD交y轴于点F,连接FG,若△AFG的面积为1,则的值为________,a+b的值为________.【答案】,【解析】∵OA=OB,AC=3BC,故点C是OB的中点,设点B的坐标为(m,),则点A(﹣m,﹣),则点C的坐标为(m,),则b=m•=a,即,则点E、D坐标分别为(m,)、(m,),由点A、E的坐标得,直线AE的表达式为y=+,设直线AE交y轴于点H,令y=+=0,解得x=﹣m,令x=0,则y=,故点G 、H 的坐标分别为(﹣m ,0)、(0,),同理可得,点F 的坐标为(0,﹣),则△AFG 的面积=S △HFA ﹣S △HFG =HF ×(x G ﹣x A )=×(+﹣)×(﹣m +m )=1,解得a =,而b =a ,∴a +b =;25.(4分)在菱形ABCD 中,∠D =60°,CD =4,以A 为圆心,2为半径作⊙A ,交对角线AC 于点E ,点F 为⊙A 上一动点,连接CF ,点G 为CF 中点,连接BG ,取BG 中点H ,连接AH ,则AH 的最大值为________.【答案】+.【解析】如图,连接BE ,AF ,EG ,取BE 的中点J ,连接HJ ,AJ .∵AE =EC ,CG =GF ,∴EG =AF =1,∵BH =HG ,BJ =JE ,∴JH =EG =,∵四边形ABCD 是菱形,∴∠ABC =∠D =60°,BC =BA ,∴△ABC 是等边三角形,∵CE =EA ,∴BE ⊥AC ,∴BE =AE =2,∴JE =BJ =,∴AJ ==,∵AH ≤AJ +JH ,∴AH ≤+,∴AH 的最大值为+.二.解答题(共3小题,满分30分)26.(8分)“武汉加油!中国加油!”疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩500个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x 条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y 与x 之间的函数关系式;(2)若每天共生产口罩6000个,在投入人力物力尽可能少的情况下,应该增加几条生产线?(3)设该厂每天可以生产的口罩w 个,请求出w 与x 的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?【答案】见解析【解析】(1)由题意可知该函数关系为一次函数,其解析式为:y =500﹣20x ;∴y 与x 之间的函数关系式为y =500﹣20x (0≤x ≤25,且x 为整数);(2)由题意得:(10+x )(500﹣20x )=6000,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10,∵尽可能投入少,∴x 2=10舍去.答:应该增加5条生产线.(3)w =(10+x )(500﹣20x )=﹣20x 2+300x +5000=﹣20(x ﹣7.5)2+6125,∵a =﹣20<0,开口向下,∴当x=7.5时,w最大,又∵x为整数,∴当x=7或8时,w最大,最大值为6120.答:当增加7或8条生产线时,每天生产的口罩数量最多,为6120个.27.(10分)在矩形ABCD中,AB=2BC.点E是直线AB上的一点,点F是直线BC上的一点,且满足AE =2CF,连接EF交AC于点G.(1)tan∠CAB=;(2)如图1,当点E在AB上,点F在线段BC的延长线上时,①求证:EG=FG;②求证:CG=BE;(3)如图2,当点E在BA的延长线上,点F在线段BC上时,AC与DF相交于点H.①EG=FG这个结论是否仍然成立?请直接写出你的结论;②当CF=1,BF=2时,请直接写出GH的长.【答案】见解析【解析】(1)∵矩形ABCD中,∠ABC=90°,AB=2BC,∴tan∠CAB==,故答案为:;(2)①证明:过点E作EH⊥AB,交AC于点H,则∠AEH=90°.∵四边形ABCD是矩形,∴∠B=∠AEH=90°.∴EH∥BF,∴∠EHG=∠FCG,∠HEG=∠CFG,在Rt△ABC和Rt△AEH中,∵AB=2BC,∴tan∠CAB===,∴AE=2EH,∵AE=2CF,∴EH=CF,∴△EHG≌△FCG(ASA),∴EG=FG.②证明:设EH=x,则AE=2x,Rt△AEH中,根据勾股定理得,AH==x,∵EH∥BF,∴=,∴=,∴CH=BE,∵△EHG≌△FCG,∴HG=CG,∴CG=BE.(3)①成立;过点F作FP∥AB交AC于P,如图3所示:则FP∥CD,∠CFP=∠ABC=90°,∴∠CPF=∠CAB,在Rt△CFP和Rt△ABC中,AB=2BC,∴tan∠CPF==tan∠CAB=,∴PF=2CF,∵AE=2CF,∴AE=PF,在△PFG和△AEG中,,∴△PFG≌△AEG(ASA),∴EG=FG;②解:如图3,∵△AEG≌△PFG(AAS),∴AG=PG,∵BF=2,CF=1,∴BC=3,CD=AB=2BC=6,∴AC===3,∵FP∥AB,∴△CPF∽△CAB,∴,∴PC=AC=,PA=AC﹣PC=2,∴AG=PG=PA=,∵FP∥CD,∴△PFH∽△CDH,∴,∴PH=PC=,∴GH=PG+PH=+=.28.(12分)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m 的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.【答案】见解析【解析】(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∴抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.当x=0时,y=﹣2x2+4x+6=6,∴点C的坐标为(0,6).设直线BC的解析式为y=kx+c,将B(3,0)、C(0,6)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=﹣2x+6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,∴S=PF•OB=﹣3m2+9m=﹣3(m﹣)2+,∴当m=时,△PBC面积取最大值,最大值为.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m<3.综上所述,S关于m的函数表达式为=﹣3m2+9m(0<m<3),S的最大值为.(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,∵∠CDM=∠CMN=90°,∠DCM=∠NCM,∴△MCD∽△NCM,若△CMN与△OBC相似,则△MCD与△OBC相似,设M(a,﹣2a2+4a+6),C(0,6),∴DC=﹣2a2+4a,DM=a,当时,△COB∽△CDM∽△CMN,∴,解得,a=1,∴M(1,8),此时ND=DM=,∴N(0,),当时,△COB∽△MDC∽△NMC,∴,解得a=,∴M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME⊥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∴EC=2a2﹣4a,EM=a,同理可得:或=2,△CMN与△OBC相似,解得a=或a=3,∴M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,存在M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,﹣),使得∠CMN=90°,且△CMN与△OBC相似.。
2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (18)

故答案为:4. 【点睛】本题考查圆锥与扇形的结合,关键在于理解圆锥周长是扇形弧长,圆锥母线是扇形半径. 14.《九章算术》是中国传统数学 重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载 的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高 1 丈(1
∴OD= ﹣ 故选:B.
=.
二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直 接填写在答题卡相应位置上)
9.2020 年 6 月 23 日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过 6500000 辆 营运车辆导航设施应用北斗系统,数据 6500000 用科学记数法表示为________. 【答案】6.5×106 【解析】 【分析】 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时, 小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10 时,n 是正数;当原数的绝 对值<1 时,n 是负数.
7.下列命题是假命题的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
【分析】利用正方形的判定依次判断,可求解.
解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项 A 不合题意;
B、对角线互相垂直的矩形是正方形是真命题,故选项 B 不合题意;
由折叠的性质可得 A′M=2,
∵AD∥EF,
∴∠AMB=∠A′NM,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023年中考数学第一复习试卷:数与式一、选择题1. (2020秋•镇原县期末)下列说法中,正确的是( ) A.x 2﹣3x 的项是x 2,3x B.3ba +是单项式C.,πa,a 2+1都是整式D.3a 2bc ﹣2 是二次二项式2. (2021·贵州铜仁)2的相反数是( ) A.2B.-2C.12D.12-3. (2020秋•福田区校级)在代数式x 2+5,-a,x 2-3x+2,π,x5,x 21x 1++中,整式有( ) A.3个 B.4个 C.5个 D.6个 4. (2020秋•涪城区校级期末)若a+2b =3,则多项式2a+4b-1的值为( ) A.3 B.4 C.5 D.65. (2020秋•抚顺县期末)若x 2﹣3x ﹣2=0,则2x 2﹣6x+2020的值为( ) A.2021 B.2022 C.2023 D.20246. (2020秋•荔湾区校级月考)若关于x,y 的多项式kxy 2-kxy-3xy 2+xy+x+y-k 是二次多项式,则k 的值是( ) A.3 B.-3 C.1 D.-1 7. (2020秋•汝阳县期末)无论x 取任何实数,下列一定是二次根式的是( )A.2x --B.xC.2x 2+D.2x 2-8. (2020秋•绥中县期末)已知xy =3,x ﹣y =﹣2,则代数式x 2y ﹣xy 2的值是( ) A.6 B.﹣1 C.﹣5 D.﹣69. (2020秋•会宁县期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是( ) A.2 B.4 C.6 D.8 10. (2020秋•福田区期末)观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;根据此规律,第10个等式的右边应该是a 2,则a 的值是( ) A.45 B.54 C.55 D.65 二、填空题11. (2022·贵州黔东南)若()225240x y x y +-+++=,则x-y 的值是________.12. (2020•浙江自主招生)分解因式:2x 2+7xy-15y 2-3x+11y-2= .13. (2020•成都模拟)已知实数a,b 互为相反数,且|a+2b|=1,b <0,则b = .14. (2020•吉安模拟)如图,有一个正三角形图片高为2厘米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,将图片沿数轴负方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是 .15. (2020秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.16. (2020秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2021次输出的结果是.三、解答题17. (2020秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.18. (2020秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b-c 0,a+b 0,c-a 0.(2)化简:|a+b|-|a+c|+|b-c|-|a|.19. (2020•河北模拟)对于题目:实数a,b,c的大小如图中数轴所示,化简:|a-c|-|a-b|+|c-b|+2c.张皓程的解法如图所示:(1)张皓程从第步开始出错.(2)请你写出正确的解答过程.20. (2020春•江阴市期中)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9).请你分析一下a、b的值,并写出正确的因式分解过程.21. (2020秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?答案一、选择题1. 【答案】故选:C.2. 【答案】B 2的相反数是-2.故选:B.3. 【答案】解:整式有x2+5,-a,x2-3x+2,π,共4个;故选:B.4. 【答案】解:∵a+2b=3,∴2a+4b-1=2(a+2b)-1=2×3-1=6-1=5.故选:C.5. 【答案】解:∵x2﹣3x﹣2=0,∴x2﹣3x=2,∴2x2﹣6x+2020=2(x2﹣3x)+2020=2×2+2020=2024,故选:D.6. 【答案】解:kxy2-kxy-3xy2+xy+x+y-k=(k-3)kxy2+(1-k)xy+x+y-k,∵关于x,y的多项式kxy2-kxy-3xy2+xy+x+y-k是二次多项式,∴k-3=0,∴k=3.故选:A.7. 【答案】故选:C.8. 【答案】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.9. 【答案】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.10. 【答案】解:观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;…∴第十个等式为:13+23+…+93+103=(1+2+3+4+…+9+10)2=552;故选:C.二、填空题11. 【答案】912. 【答案】解:∵2x2+7xy-15y2=(x+5y)(2x-3y),∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数,∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1,∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).13. 【答案】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.14. 【答案】故答案为:-4315. 【答案】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.16. 【答案】故答案为:10.三、解答题17. 【答案】解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.18. 【答案】解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b-c<0,a+b<0,c-a>0, 故答案为:<,<,>;(2)∵b-c<0,a+b<0,a+c>0,∴|a+b|-|a+c|+|b-c|-|a|=-a-b-(a+c)+(-b+c)-(-a)=-a-b-a-c-b+c+a=-a-2b.19. 【答案】解:(1)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,所以|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c所以是第①步出错,原因是去绝对值符号时,负数没有变号;故答案为:①;(2)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c=a-c+a-b-c+b+2c=2a.20. 【答案】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴x2+6x+9=(x+3)2.21. 【答案】解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22020-1,又∵21=2,22=4,23=8,24=16,25=32,……∴22020的个位数字为6,∴22020-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10,∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.。