初三数学总复习(1)数与式测试题
2020-2021学年九年级数学中考复习数学《数与式》专题训练【含答案】

14. 合并同类项:4a2+6a2-a2=________. 15. 单项式x-|a-1|y与2 y是同类项,则ab= .
D.段④
| |5
- 16. 计算:-3.5+ 2 -(-2)=________.
17.
x3 x5 x7 x9 一组按照规律排列的式子:x, 4 , 9 ,16,25,…,其中第8个式子是_______ _,第n个式子是________(用含n的式子表示,n为正整数).
21.
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1 =(22-1)(22+1)(24+1)(28+1)…(232+1)+1 =(24-1)(24+1)(28+1)…(232+1)+1
=… =264-1+1 =264. 因为264的个位数字是6,
所以(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字是6.
xy
xy
C. 若x=y,则c=c D. 若2c=3c,则2x=3y
7. 下列等式错误的是( ) A. (2mn)2=4m2n2 B. (-2mn)2=4m2n2 C. (2m2n2)3=8m6n6 D. (-2m2n2)3=-8m5n5
8. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是( ) A. a=2,b=3 B. a=-2,b=-3 C. a=-2,b=3 D. a=2,b=-3
4. 下列各组数中,把两数相乘,积为1的是( )
1
3
A. 2和-2 B. -2和2 C. 3和 3 D. 3和- 3
5. 计算(-a-b)2的结果是( )
中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(共20小题) 1.(2022•无锡)分式32x-中x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x -D .2x2.(2022•无锡)下列运算正确的是( ) A .2222a a -=B .224()ab ab =C .236a a a ⋅=D .844a a a ÷=3.(2022•钢城区)7-的相反数是( ) A .7-B .17-C .7D .174.(2022•陕西)计算:32(4)(a b -= ) A .538a bB .6216a bC .628a b -D .5216a b5.(2022•陕西)2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( ) A .60.510⨯B .45010⨯C .4510⨯D .5510⨯6.(2022•陕西)21-的绝对值为( ) A .21B .21-C .121D .121-7.(2022•德州)下列实数为无理数的是( ) A .12B .0.2C .5-D 38.(2022•德州)已知2M a a =-,2(N a a =-为任意实数),则M N -的值( ) A .小于0B .等于0C .大于0D .无法确定9.(2022•德州)下列运算正确的是( ) A .22423a a a +=B .236(2)8a a =C .326a a a ⋅=D .222()a b a b -=-10.(2022•淮安)计算23a a ⋅的结果是( ) A .2aB .3aC .5aD .6a11.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A .80.1110⨯B .71.110⨯C .61110⨯D .61.110⨯12.(2022•攀枝花)2的平方根是( ) A .2B .2±C 2D .213.(2022•攀枝花)下列各式不是单项式的为( ) A .3B .aC .baD .212x y14.(2022•攀枝花)实数a 、b 在数轴上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<15.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=16.(2022•内蒙古)实数a 在数轴上的对应位置如图所示,21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -17.(2022•淄博)计算3262(2)3a b a b --的结果是( ) A .627a b -B .625a b -C .62a bD .627a b18.(2022•淄博)若实数a 的相反数是1-,则1a +等于( ) A .2B .2-C .0D .1219.(2022•淄博)下列分数中,和π最接近的是( ) A .355113B .22371C .15750D .22720.(2022•巴中)下列运算正确的是( ) A 2(2)2-- B .111()33-=- C .236()a a =D .842(0)a a a a ÷=≠二、填空题(共5小题)21.(2022•无锡)我市2021年GDP 总量为14000亿元,14000这个数据用科学记数法可表示为 .22.(2022•038(1)--= .23.(2022•黄石)计算:20(2)(20223)--= . 24.(2022•襄阳)化简分式:ma mba b a b+=++ .25.(2022•菏泽)若22150a a --=,则代数式244()2a a a a a --⋅-的值是 . 三、解答题(共6小题) 26.(2022•无锡)计算: (1)1|5|(2)tan 45--+-+︒; (2)26142m m m----. 27.(2022•陕西)计算:115(2)28()3-⨯-+⨯-.28.(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =. 29.(2022•淮安)(1)计算:0|5|(32)2tan 45-+--︒; (2)化简:23(1)93a a a ÷+--. 30.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.31.(2022•徐州)计算: (1)202211(1)|33|()93--+--+;(2)22244(1)x x x x+++÷.一、选择题(共14小题)1.(2023•绥化一模)2±是4的( )区域模拟A .平方根B .相反数C .绝对值D .倒数2.(2023•达州一模)12023-的倒数的绝对值是( ) A .2023B .12023C .2023-D .12023-3.(2023•汶上县一模)2022年3月11日,新华社发文总结2021年中国取得的科技成?.其中中国高铁运营里程超40000000米.则数据40000000用科学记数法可表示为( ) A .80.410⨯B .7410⨯C .84.010⨯D .6410⨯4.(2023•张家口二模)“中国智造”势在必行.据2023年1月21日消息,英特尔公司定购了一台AML 公司的约23亿元人民币的最先进的EUV 光刻机;据2022年9月8日消息,武汉购买了一台价格约为5亿元人民币的非EUV 光刻机.由于美国的干涉,我国买不到最先进的EUV 光刻机;就连我国购买较低端的DUV 光刻机,美国近期都开始干涉.据2022年8月14日的消息:“中国已经购买了700多台AML 公司的光刻机.”这700台光刻机,按平均每台2亿元人民币计算,总共约合是人民币( ) A .111.410⨯元B .121.410⨯元C .101410⨯元D .120.1410⨯元5.(2023•沭阳县一模)计算33()ab 的结果是( ) A .6abB .36a bC .6a bD .39a b6.(2023•寻乌县一模)下面的计算正确的是( ) A .326a a a ⋅=B .222()a b a b -=-C .326()a a -=D .55a a -=7.(2023•明光市一模)下列运算错误的是( ) A 42=±B .2124-=C .22232a a a -=D .633a a a ÷=8.(2023•明光市一模)把多项式424a a -分解因式,结果正确的是( ) A .22(2)(2)a a a a -+B .22(4)a a -C .2(2)(2)a a a +-D .22(2)a a -9.(2023•张家口二模)下列计算不正确的是( ) A 222+=B 222C 0.452=D 1232=10.(2023•韩城市一模)下列运算正确的是( ) A .3515m m m ⋅= B .235()m m -=- C .23246()m n m n -=D .22321m m -=11.(2023•兴隆台区一模)下列运算正确的是( ) A 255=± B .0.40.2= C .3(1)1--=-D .222(3)6m m n -=-12.(2023•泰山区一模)在实数:(6)--,-5,0,|3|-中,最小的数是( ) A .(6)--B .5-C .0D .|3|-13.(2023•白塔区校级一模)化简 的结果是( ) A .﹣3B .±3C .3D .914.(2023•黄浦区二模)设a 是一个不为零的实数,下列式子中,一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32aa>二、填空题(共10小题)15.(2023•兴隆台区一模)分解因式:2()9()a x y y x -+-= . 16.(2023•梁园区一模)计算:3|5|8---= .17.(2023•潮南区一模)若与y n +3x 4是同类项,则(m +n )= .18.(2023•海曙区一模)若2(2)30a b -++=,则2023()a b +的值是 . 19.(2023•慈溪市一模)在1-,-2,1,0这四个数中,最小的数是 . 20.(2023•崂山区一模)计算:433(2)x y xy ÷-= . 21.(2023•364 . 22.(2023•1205. 23.(2023•杨浦区二模)如果关于x 的二次三项式25x x k -+在实数范围内不能因式分解,那么k 的取值范围是 .24.(2023•张店区一模)化简22()m n mn n m m m--÷-的结果为 .三、解答题(共7小题)25.(2023•大丰区一模)计算:40218()2sin 453π---︒. 26.(2023•长安区四模)计算:2021(2)3(3)()3--︒+--. 27.(2023•1125()|234cos302-+-︒. 28.(2023•青海一模)先化简,再求值:2221111()()aba b ++-,其中11()2a -= 1b =.29.(2023•齐齐哈尔模拟)(1)计算:202302(1)(2022)(3)12tan 60π-⨯-÷-︒︒; (2)因式分解:22222()4x y x y +-.30.(2023•襄垣县一模)(131148(2)()1224-⨯-(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务. 分解因式:22(3)(3)x y x y +-+.解:原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步 8()()x y x y =+-⋯⋯第三步 228()x y =- ⋯⋯第四步任务一:以上变形过程中,第一步依据的公式用字母a ,b 表示为 ;任务二:以上分解过程第 步出现错误,具体错误为 ,分解因式的正确结果为 . 31.(2023•官渡区校级模拟)已知:2420a a --=. (1)求2(4)1a a --的值; (2)求证:42204a a -=-;(3)若24251100404a b a a -=-+ 以下结论:0b > 0b = 0b < 你认为哪个正确?请证明你认为正确的那个结论.1.下列实数中 比3-小的数是( ) A .2-B .1C .0D .π-2.太阳的主要成分是氢 氢原子的半径约为0.000000000053m .这个数用科学记数法可以表示为( ) A .100.5310-⨯B .105.310-⨯C .115.310-⨯D .125310-⨯考前押题3.(1)计算:011(32)()4cos30|123-++︒--; (2)因式分解:29x y y -.4.已知2a b += 2ab = 求32231122a b a b ab ++的值.5.如图 约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式. (1)求整式M 、P ; (2)将整式P 因式分解; (3)P 的最小值为 .参考答案一、选择题(共20小题)1.【答案】A有意义【解答】解:分式3-2x∴-≠x20解得2x≠故选:A.2.【答案】D【解答】解:222-=故A错误不符合题意;2a a a2224()=故B错误不符合题意;ab a b235⋅=故C错误不符合题意;a a a844÷=故D正确符合题意;a a a故选:D.3.【答案】C【解答】解:7-的相反数为7故选:C.4.【答案】B【解答】解:32-a b(4)2322a b=-(4)()62=;16a b故选:B.5.【答案】D【解答】解:数据500000用科学记数法表示为5⨯.510故选:D.6.【答案】A【解答】解:21-的绝对值为21故选:A.7.【答案】D是分数属于有理数故本选项不合题意;【解答】解:A.12B.0.2是有限小数属于有理数故本选项不合题意;C.5-是整数属于有理数故本选项不合题意;D3故本选项符合题意;故选:D.8.【答案】C【解答】解:M N-2(2)=---a a a222=-+a a2=-+(1)1a2a-(1)02a∴-+(1)11∴-大于0M N故选:C.9.【答案】B【解答】解:A .因为22223a a a += 故A 选项不符合题意; B .因为236(2)8a a = 故B 选项符合题意; C .因为23235a a a a +⋅== 故C 选项不符合题意; D .因为222()2a b a ab b -=-+ 故D 选项不符合题意. 故选:B .10.【答案】C【解答】解:235a a a ⋅=. 故选:C .11.【答案】B【解答】解:711000000 1.110=⨯. 故选:B .12.【答案】D【解答】解:因为2(2)2±= 所以2的平方根是2故选:D .13.【答案】C【解答】解:A 、3是单项式 故本选项不符合题意; B 、a 是单项式 故本选项不符合题意; C 、b a不是单项式 故本选项符合题意; D 、212x y 是单项式 故本选项不符合题意; 故选:C .14.【答案】B【解答】解:由数轴知 12a << 32b -<<- A ∴错误||b a > 即B 正确0a b +< 即C 错误0a b -> 即D 错误.故选:B .15.【答案】C【解答】解:3332a a a += 故A 错误 不符合题意; 2111a a b a b b b b÷⋅=⋅⋅= 故B 错误 不符合题意; 22222(1)21111a a a a a a a ---===---- 故C 正确 符合题意; 3326()b b a a= 故D 错误 不符合题意; 故选:C .16.【答案】B【解答】解:根据数轴得:01a << 0a ∴> 10a -<∴原式||11a a =++-11a a =++-2=.故选:B .17.【答案】C【解答】解:原式62626243a b a b a b =-= 故选:C .18.【答案】A【解答】解:实数a 的相反数是1- 1a ∴=12a ∴+=.故选:A .19.【答案】A【解答】解:355 3.1416113≈; 223 3.140871≈; 157 3.1450=; 22 3.14287≈因为 3.1416π≈所以和π最接近的是355113. 故选:A .20.【答案】C【解答】解:A 2(2)2- 选项错误 不符合题意;B 、11()33-= 选项错误 不符合题意; C 、236()a a = 选项正确 符合题意; D 、844(0)a a a a ÷=≠ 选项错误 不符合题意;故选:C .二、填空题(共5小题)21.【答案】41.410⨯.【解答】解:414000 1.410=⨯ 故答案为:41.410⨯.22.【答案】3-.【解答】解:原式21=-- 3=-.故答案为:3-.23.【答案】3.【解答】解:原式41=- 3=.故答案为:3.24.【答案】m .【解答】解:原式ma mba b +=+()m a b a b +=+m =故答案为:m .25.【答案】15.【解答】解:244()2a a a a a --⋅-22442a a a a a -+=⋅-22(2)2a a a a -=⋅-22a a =-22150a a --=2215a a ∴-=∴原式15=.故答案为:15.三、解答题(共6小题)26.【答案】(1)112;(2)22m +.【解答】解:(1)原式1512=-+112=;(2)原式62(2)(2)(2)(2)m m m m m m -+=++-+-24(2)(2)m m m -=+-22m =+.27.【答案】9-.【解答】解:原式10163=- 1043=-+-9=-.28.【答案】22x x +-- 5-.【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=-- 当3x =时 原式3232+=-- 5=-. 29.【答案】(1)4;(2)13a +. 【解答】解:(1)原式5121=+-⨯ 512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a-=⨯+- 13a =+. 30.【答案】3a a- 14. 【解答】解:原式2(3)21()(2)22a a a a a a --=÷---- 2(3)3(2)2a a a a a --=÷-- 2(3)2(2)3a a a a a --=⋅-- 3a a -=当4a =时 原式43144-==.31.【答案】(1)43-; (2)2x x +. 【解答】解:(1)202211(1)|33|()93--+--+13333=+--+43=-;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+.一、选择题(共14小题)1.【答案】A【解答】解:2±是4的平方根. 故选:A .2.【答案】A【解答】解:12023-的倒数是2023- 12023∴-的倒数的绝对值是|2023|2023-=. 故选:A .3.【答案】B区域模拟【解答】解:740000000410=⨯. 故选:B .4.【答案】A【解答】解:11200000000700140000000000 1.410⨯==⨯元. 故选:A .5.【答案】D【解答】解:33()ab333()a b =39a b =.故选:D .6.【答案】C【解答】解:A 、32a a a ⋅= 故原计算错误 不合题意; B 、222()2a b a b ab -=+- 故原计算错误 不合题意; C 、326()a a -= 故原计算正确 符合题意; D 、54a a a -= 故原计算错误 不合题意; 故选:C .7.【答案】A【解答】解:A 42= 故A 符合题意;B 、2124-= 故B 不符合题意; C 、22232a a a -= 故C 不符合题意; D 、633a a a ÷= 故D 不符合题意;故选:A .8.【答案】C【解答】解:原式22(4)a a =- 2(2)(2)a a a =+-. 故选:C .9.【答案】C【解答】解:A 、原式2= 所以A 选项正确 不合题意; B 、原式2= 所以B 选项正确 不合题意; C 、原式10= 所以C 选项错误 符合题意; D 、原式2= 所以D 选项正确 不合题意. 故选:C .10.【答案】C【解答】解:A 、358m m m ⋅= 故A 不符合题意; B 、236()m m -=- 故B 不符合题意; C 、23246()m n m n -= 故C 符合题意; D 、22232m m m -= 故D 不符合题意; 故选:C .11.【答案】C【解答】解:A 255 故A 不符合题意; B 100.4= 故B 不符合题意;C 、3(1)1--=- 故C 符合题意;D 、22(3)9m m -= 故D 不符合题意;故选:C .12.【答案】B【解答】解:(6)6--= |3|3-=50|3|(6)∴-<<-<--.故选:B .13.【答案】C【解答】解:=3.故选:C .14.【答案】A【解答】解:A .32a a ->- 故本选项符合题意;B .若1a =- 则32a a < 故本选项不符合题意;C .若1a = 则32a a -<- 故本选项不符合题意;D .若1a =- 则32a a< 故本选项不符合题意. 故选:A .二、填空题(共10小题)15.【答案】()(3)(3)x y a a -+-.【解答】解:2()9()a x y y x -+-2()(9)x y a =--()(3)(3)x y a a =-+-故答案为:()(3)(3)x y a a -+-16.【答案】3-.【解答】解:3|5|8----5(2)=---52=-+3=-故答案为:3-.17.【答案】﹣1.【解答】解:∵与y n +3x 4是同类项∴m +3=4 n +3=1∴m =1 n =﹣2∴m +n=1+(﹣2)=﹣1.故答案为:﹣1.18.【答案】1-.【解答】解:由题意得 20a -= 30b +=解得2a = 3b =-所以 20232023()(23)1a b +=-=-.故答案为:1-.19.【答案】2-.【解答】解:|1|1-=|2|2-=21> 21∴-<-2101∴-<-<<∴在1-2- 1 0中最小的数为:2-.故答案为:2-.20.【答案】18x-.【解答】解:原式4333(8)x y x y=÷-1 8x=-.故答案为:18x-.21.【答案】4.【解答】3644=.故答案为:4.22.【答案】0.【解答】解:原式52510=2525==.故答案为:0.23.【答案】254k>.【解答】解:关于x的二次三项式25x x k-+在实数范围内不能分解因式就是对应的二次方程250x x k -+=无实数根∴△2(5)42540k k =--=-<254k ∴>. 故答案为:254k >. 24.【答案】1m n-. 【解答】解:原式222m n m mn n m m--+=÷ 2()m n m m m n -=⋅- 1m n=-. 故答案为:1m n -. 三、解答题(共7小题)25.2.【解答】解:40218()2sin 453π---︒212212=-+- 12212=-+2=26.【答案】5-.【解答】解:2021(2)3(3)()3--︒+--34319=+-4119=-+-5=-.27.【答案】533-【解答】1125()|234cos302-+-︒ 352(23)4=-+--522323=-+533=-28.【答案】222a ba b + 32.【解答】解:2221111()()a b a b ++-22222()a b b a ab a b +-=+2222222a ab b b a a b +++-=22222ab b a b +=222a ba b += 当11()22a -== 1b =时 原式2222121⨯+⨯=⨯424+=32=.29.【答案】(1)829;(2)22()()x y x y +-.【解答】解:(1)原式11192332=-⨯÷+139=-+ 829=; (2)原式2222(2)(2)x y xy x y xy =+++-22()()x y x y =+-.30.【答案】22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.【解答】解:(1)原式1143(8)()2324=-⨯--1143238()24=+⨯- 2342=- 232=;(2)原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步8()()x y x y =+-⋯⋯第三步228()x y =-.⋯⋯第四步任务一:以上变形过程中 第一步依据的公式用字母a b 表示为22()()a b a b a b -=+-;任务二:以上分解过程第四步出现错误 具体错误为进行乘法运算 分解因式的正确结果为8()()x y x y +-.故答案为:22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.31.【答案】(1)3;(2)见解答;(3)0b >.【解答】(1)解:2420a a --= 242a a ∴-=2(4)1a a ∴--2281a a =--22(4)1a a =--221=⨯-3=;(2)证明:2420a a --=224a a ∴-=222(2)(4)a a ∴-= 即4224416a a a -+= 42204a a ∴-=-;(3)解:0b > 证明如下: 由(2)知42204a a -=-42204a a ∴=-4222()(204)a a ∴=-84240016016a a a ∴=-+ ∴842110040164a a a =-+由(2)知42204a a -=-42204a a ∴=-∴421514a a =-4242481511411004044a a b a a a a -∴===-+2420a a --=0a '≠40a ∴>0b ∴>.1.【答案】D【解答】解:A 、|2||3|-<- 因此23->- 故A 不符合题意; B 、31-< 故B 不符合题意; C 、30-< 故C 不符合题意; D 、|||3|π->- 因此3π-<- 故D 符合题意. 故选:D .2.【答案】C【解答】解:110.000000000053 5.310-=⨯. 故选:C .3.【解答】解:(1)原式3134232=++⨯- 4=; (2)原式2(9)y x =-考前押题(3)(3)y x x =+-.4.【解答】解:原式32231122a b a b ab =++ 221(2)2ab a ab b =++21()2ab a b =+2a b += 2ab =∴原式12442=⨯⨯=.5.【答案】(1)520x -;(2)4(2)(2)P x x =+-;(3)16-.【解答】解:(1)根据题意得:2(3420)3(3)M x x x x =----22342039x x x x =---+520x =-;223420(2)P x x x =--++ 22342044x x x x =--+++ 2416x =-;(2)2416P x =-24(4)x =-4(2)(2)x x =+-;(3)2416P x =- 20x∴当0x =时,P 的最小值为16-. 故答案为:16-。
中考数学数与式专题知识训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.已知a c ≠,若M =a 2-ac ,N =ac -c 2,则M 与N 的大小关系是( ) A .M >NB .M =NC .M <ND .不能确定2.下列运算中,正确的是( ) A .22a b ab += B .22232a b ba a b -= C .224448a a a +=D .55ab ab -=3.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中91nm 10m -=),用科学记数法表示这个最小刻度(单位:m ),结果是( ) A .8210m -⨯B .9210m -⨯C .10210m -⨯D .11210m -⨯4.计算32()a 的结果是( ) A .23aB .32aC .5aD .6a5.据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为( ) A .39.3×104B .3.93×105C .3.93×106D .0.393×1066.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为( ) A .43.2610⨯毫米 B .30.32610⨯毫米 C .43.2610-⨯毫米 D .532.610-⨯毫米7.下列各式正确的是( ) A .﹣12=1 B .0–(–6)=6 C .34()143⨯-=D .2a a a +=8.下列从左到右变形,是因式分解的是( )A .()223222525a a ab b a a b ab +-=+-B .()()225525x y x y x y +-=-C .()()22x y x y x y -=+-D .2()231231x x x x -+=-+9 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间10.下列运算正确的是( ) A .()222436-=-ab a bB .3233a b ab a b -÷=-C .()()32230a a --=D .22(2)4a a +=+11.“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜纪录,数据10909用科学记数法可表示为( ) A .50.1090910⨯B .41.090910⨯C .310.90910⨯D .2109.0910⨯12.32()xy -的计算结果是( ) A .26x yB .26x y -C .29x yD .29x y -13.下列四个数中,最小的数是( ) A .1-B .2-C .0D .314.下列运算中正确的是( ). A .55102x x x +=B .22111(3)(3)9224x y x y x y --+=-C .23333(2)424x y x x y --•=-D .358()()x x x --•-=-15.下列计算正确的是( ) A .()224a a -=-B .336a a a +=C .326326a a a ⋅=D .53232623a b a b a b -÷=-16.2015年茂名市生产总值约2450亿元,将2450用科学记数法表示为( ) A .0.245×104B .2.45×103C .24.5×102D .2.45×101117) A .-2B .4C .-4D .﹣818.a 、b 为有理数,且0a >,0b <,b a >,则a 、b 、a -、b -的大小顺序是( )A .b a a b <-<<-B .a b a b -<<<-C .b a a b-<<-<D .a a b b -<<-<19.下列各式中计算错误的是( )A .()3422231462x x x x x x -+-=+- B .()2321b b b b b b -+=-+C .()231222x x x x --=-+D .342232312323x x x x x x ⎛⎫-+=-+ ⎪⎝⎭20.下列各组式子中,属于同类项的是( ) A .2a 与3bB .13ab 与3baC .24xy 与24x yD .13-与3a二、填空题21.1的立方根是_______.22x 的取值范围是__________. 23.数据12500用科学记数法表示为___________. 24.有理数的加法法则:(1)做有理数加法时,先确定__________,再确定________.即: ①同号两数相加,取________的符号,并把________相加;①绝对值不相等的异号两数相加,取_________的符号,并用________减去__________.(2)互为相反数的两数相加得_______;一个数与_____相加,仍得___________. 25,则x=______.26.若x +y =2 ,228x y -=时,x -y =_______. 27.当4a =时,代数式23232a a -++的值是__________.28.化简:(1_______, (2=_______,(3= ______.29=a ________. 30.两个无理数的和为有理数,这两个无理数可以是______和_______.31.如图所示,数轴上点A 表示的数为a ,化简||a ________.32.用“>”或“<”填空:34--_______2()3-- 33.计算111a a a +++的结果为________.34=________35.观察下列式子:1①3=1×2+3=5,3①1=3×2+1=7,5①4=5×2+4=14.请你想一想:(a ﹣b)①(a+b)=_____.(用含a ,b 的代数式表示) 36.已知||6a =,||3b =,且a b <,则式子aab b-=__________. 37.五一假期,青岛市天气风和日暖,适宜出游假日期间,全市共接待游客总人数797.23万人次,实现游客消费116.95亿元,旅游收入再创历史新高,未发生重大投诉和安全责任事故,实现了“安全、秩序、质量、效益、文明”五统一.将116.95亿用科学记数法可表示为_____.38.若02017a =,2201520172016b =⨯-,201620172332c ⎛⎫⎛⎫=-⨯ ⎪⎪⎝⎭⎝⎭,则下列a ,b ,c 的大小关系正确的是_________.39.如图,将其折叠围成正方体后,分别计算相对面上的数字之积,其中最大的结果是___________.40.计算:|1|﹣(﹣3)2.三、解答题41.计算:2(1-. 42.计算: (1)25a a-;(2)3b b x x -;(3)222a ba b b a +--.43.计算下列各式的值:(1)23--(244.计算:(1(2)(2-.45()1812-⨯+.46.计算:.(4) 47.你来算一算!千万别出错! (1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).48.化简或计算:(1)()17342⎛⎫-⨯--÷- ⎪⎝⎭;(2)()220101113332⎛⎫-+-÷⨯-- ⎪⎝⎭;(3)()()22229354a b a b +---.49.有8袋大米,以每袋20千克为标准,超过的千克数计作正数,不足的千克数计作负数,称后记录结果如下:(1)这8袋大米中最接近标准重量的这袋重 千克; (2)这8袋大米一共多少千克?50.(1)2︒+︒-︒+︒;sin303tan60cos45tan30(2)2sin452cos60︒+︒︒参考答案:1.A【分析】先利用作差法,再分解因式进行求解. 【详解】解:①a ≠c , ①a -c ≠0,①M -N =a 2-2ac +c 2=(a -c )2>0, ①M >N , 故选:A .【点睛】本题考查了因式分解.掌握作差法是解题的关键. 2.B【分析】利用同类项的定义和合并同类项的法则对每个选项进行逐一判断即可得出结论. 【详解】解:①2a 与b 不是同类项,不能合并, ①A 选项不符合题意;①()22223232a b ba a b a b -=-=,①B 选项符合题意; ①222448a a a +=, ①C 选项不符合题意;①5ab 与5不是同类项,不能合并, ①D 选项不符合题意, 故选:B .【点睛】本题考查的是同类项的判定以及合并同类项,掌握“合并同类项的法则”是解本题的关键. 3.C【分析】按照科学记数法规则写出即可. 【详解】解:0.2nm =90.210m -⨯=10210m -⨯ 故选C【点睛】本题考查科学记数法,属于基础题. 4.D【分析】利用幂的乘方计算法则计算即可.【详解】解:263()=a a , 故选:D.【点睛】本题考查了幂的乘方,解题的关键是掌握运算法则. 5.B【详解】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于393000有6位,所以可以确定n=6-1=5. 故:393000=3.93×105. 故选B .考点:科学记数法—表示较大的数. 6.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000326=43.2610-⨯毫米. 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 7.B【分析】根据有理数的乘方、有理数的减法、有理数的乘法及合并同类项法则即可求出答案.【详解】解:A 、﹣12=-1,故A 不符合题意. B 、0–(–6)=6,故B 符合题意. C 、34()143⨯-=-,故C 不符合题意.D 、2a a a +=,故D 不符合题意. 故选:B .【点睛】本题考查有理数的乘方、有理数的减法、有理数的乘法及合并同类项,解题的关键是熟练运用合并同类项法则,本题属于基础题型. 8.C【分析】根据因式分解的定义逐个判断即可.【详解】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C .从左到右的变形属于因式分解,故本选项符合题意;D .()()2231211x x x x -+=--,故本选项不符合题意;故选:C .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 9.B【分析】根据被开方数的范围,确定出所求即可. 【详解】①9<10<16,①34,在整数3与4之间. 故选:B .【点睛】此题考查了估算无理数的大小,解题的关键是熟知无理数估算的方法. 10.C【分析】根据整式的运算法则进行计算,逐个判断即可.【详解】解:A. ()222424396ab a b a b -=≠-,故错误,不符合题意;B. 32233a b ab a a b -÷=-≠-,故错误,不符合题意;C. ()()32230a a --=,故正确,符合题意;D. 22224(44)a a a a +=++≠+,故错误,不符合题意; 故选:C .【点睛】本题考查了幂的运算、单项式除以单项式的运算,合并同类项、乘法公式,解题关键是熟练运用整式运算的法则进行准确计算. 11.B【分析】用科学记数法表示绝对值大于1的数,形如,11001,na n a <⨯<为正整数,据此解题.【详解】解:10909用科学记数法可表示为41.090910⨯, 故选:B .【点睛】本题考查用科学记数法表示绝对值大于1的数,是基础考点,难度较易,掌握相关知识是解题关键. 12.A【详解】试题分析:原式=26x y .故选A . 考点:幂的乘方与积的乘方. 13.B【分析】直接利用有理数比较大小方法进而得出答案. 【详解】①|-1|=1,|-2|=2, ①-1>-2, ①3>0>-1>-2, ①最小的数是-2. 故选:B .【点睛】此题主要考查了有理数大小比较,正确掌握比较方法是解题关键. 14.D【分析】A .合并同类项得到结果,即可做出判断;B .原式第二个因式提取-1,再利用完全平方公式展开得到结果,即可做出判断;C .先利用积的乘方及幂的乘方运算法则计算,再利用单项式乘以单项式的法则计算得到结果,即可做出判断;D .先利用同底数幂的乘法法则计算,变形后得到结果,即可做出判断. 【详解】A .x 5+x 5=2x 5,故本选项错误;B .2222211111(3)(3)(3)(39)3922244--+=--=--+=--x y x y x y x xy y xy y x ,故本选项错误;C .(-2x 2y )3•4x -3=-8x 6y 3•4x -3=-32x 3y 3,故本选项错误;D .-(-x )3•(-x )5=-(-x )8=-x 8,故本选项正确. 故选:D【点睛】本题考查了整式的混合运算,完全平方公式、幂的乘方、同底数幂相乘运算法则,熟练掌握这些法则是解题的关键. 15.D【分析】根据积的乘方运算,合并同类项,单项式的乘法与除法运算逐项分析判断即可求解.【详解】A. ()224a a -=,故该选项不正确,不符合题意; B. 3332a a a +=,故该选项不正确,不符合题意;C. 325326a a a ⋅=,故该选项不正确,不符合题意;D. 53232623a b a b a b -÷=-,故该选项正确,符合题意;故选D【点睛】本题考查了积的乘方运算,合并同类项,单项式的乘法与除法,正确的计算是解题的关键.16.B【详解】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 考点:科学记数法—表示较大的数17.A【分析】根据平方根的意义可得8=-,然后根据立方根的意义可得到问题解答.【详解】解:①8=-,且()328-=-,①-2,故选A .【点睛】本题考查平方根和立方根的综合运用,熟练掌握平方根、立方根的意义和性质是解题关键.18.A【分析】根据a >0,b <0,|b|>|a|,推出-a <0,-b >0,-b >a ,-a >b ,即可得出答案.【详解】解:①0a >,0b <,b a >,①-a <0,-b >0,-b >a ,-a >b ,①b <-a <a <-b ,故选A .【点睛】本题考查了相反数和有理数的大小比较的应用,关键是能根据已知得出-a <0,-b>0,-b >a ,-a >b ,题型较好,但是一道比较容易出错的题目.19.A【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【详解】A 、2x-(2x 3+3x-1)=332-2-3+1=-2-+1x x x x x ,故A 错误;B 、()2321b b b b b b -+=-+,故B 正确;C 、-12x (2x 2-2)=-x 3+x ,故C 正确;D 、342232312323x x x x x x ⎛⎫-+=-+ ⎪⎝⎭,故D 正确; 故选:A .【点睛】此题考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.20.B【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可作出判断.【详解】A . 所含字母不同,不是同类项;B .是同类项;C . 字母的指数不相同,不是同类项;D .所含字母不同,不是同类项.故选B .【点睛】此题考查同类项,解题关键在于掌握同类项的定义.21.1【分析】如果一个数的立方等于a ,那么这个数叫a 的立方根,也称为三次方根;也就是说,如果³x a =,那么x 叫做a 的立方根. 【详解】解:∵311=,1=.故答案是:1.【点睛】本题考查立方根的意义,根据立方根的意义求立方根.22.x≥-5【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:x+5≥0,解得x≥-5.【点睛】主要考查了二次根式的意义和性质.a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.1.25×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将12500用科学记数法表示为1.25×104.故答案为:1.25×104.【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.24. 符号 绝对值 相同 绝对值 绝对值较大的数 较大的绝对值 较小的绝对值 0 0 这个数【解析】略25.11【分析】两边平方后求解可得.【详解】解:两边平方得x-2=9,解得:x=11,经检验x=11是原方程的解,故答案为11.【点睛】本题主要考查无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法. 常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.26.4【分析】根据平方差公式可得()()22x y x y x y +-=-,从而得到28x y ,即可求解.【详解】解:①()()22x y x y x y +-=-,x +y =2 ,228x y -=,①28x y ,解得:4x y -=.故答案为:4【点睛】本题主要考查了平方差公式的应用,解题的关键是熟练掌握平方差公式()()22a b a b a b +-=-.27.60【分析】把字母的值代入代数式,按照运算法则进行计算即可.【详解】解:当4a =时,22323234234260a a -++=⨯-+⨯+=,故答案为:60【点睛】此题考查了代数式的值,熟练掌握运算法则是解题的关键.28. 5 【分析】根据二次根式的的性质以及立方根的定义分别化简.【详解】解:(1=(25,(3,故答案为:5. 【点睛】本题考查了二次根式的的性质以及立方根的定义,属于基础知识,应熟练掌握. 29.4【分析】根据题意得到3123a a -=+,求出a 即可求解.【详解】解:①①3123a a -=+,①a=4.故答案为:4【点睛】本题考查了二次根式的加减法则,熟知二次根式的加减法则是解题的关键,进行二次根式的加减,首先要化为最简二次根式,再将被开方数相同的最简二次根式合并.30. 2【详解】()222-= ,①这两个无理数可以是:2(答案不唯一)31【分析】直接利用数轴得出a的取值范围,再利用二次根式的性质化简得出答案.【详解】解:由数轴可得:0<a<1,故原式=a a【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.32.<【详解】解:34--=34-;2()3--=23,因为34-<23,则34--<2()3--.33.1【分析】根据同分母分式加减法的运算法则进行计算,即可求出答案.【详解】解:原式=11aa++=1.故答案为:1.【点睛】本题考查了同分母分式的加减,解题的关键是熟练掌握同分母分式加减的运算法则.34.【分析】利用二次根式的性质化简,再合并同类二次根式即可.==故答案是:【点睛】本题考查了二次根式的化简与计算,熟悉相关性质是解题的关键.35.3a﹣b【分析】将第1个数乘以2,再加上第2个数,据此列出算式,再计算可得.【详解】解:(a﹣b)①(a+b)=2(a﹣b)+(a+b)=2a﹣2b+a+b=3a﹣b,故答案为3a ﹣b .【点睛】考查有理数的混合运算和整式的运算,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.36.16或-16【分析】根据题意利用绝对值的代数意义求出a 与b 的值,即可解答.【详解】①|a|=6,|b|=3,且a <b ,①a=-6,b=-3或a=-6,b=3,则原式=18-2=16或-18+2=-16,故答案为:16或-16.【点睛】此题考查有理数的混合运算,熟练掌握运算法则是解题的关键.37.1.1695×1010【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将116.95亿用科学记数法表示为1.1695×1010.故答案是:1.1695×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.38.c a b >>【分析】直接利用零指数幂,积的乘方和同底数幂的乘法法则以及乘法公式进而计算得出答案.【详解】解:020171a ==,2201520172016b =⨯-2(20161)(20161)2016=-+-22201612016=--1=-,2016201723()()32c =-⨯ 2016233322⎡⎤⎛⎫=-⨯⨯ ⎪⎢⎥⎝⎭⎣⎦32=, c a b ∴>>.故答案为:c a b >>.【点睛】此题主要考查了零指数幂、有理数大小比较、积的乘方和同底数幂的乘法,正确掌握相关运算法则是解题关键.39.18【分析】正方体的表面展开,向对的面之间一定相隔一个正方形,根据这一特征确定出向对面,再根据有理数的乘法法则进行计算即可得解.【详解】解:折叠围成正方体后,相对面上的数字分别是-1和5,2和-4,-3和-6, ①155,2(4)8,3(6)18-⨯=-⨯-=--⨯-=,①相对面上的数字之积,其中最大的结果是18.故答案为:18.【点睛】本题主要考查了正方体相对两个面上的数字,解题关键是注意正方体的空间形状,从向对面入手,分析及解答问题.40.﹣.【详解】原式1910-+=-+故答案为﹣.【点睛】本题主要考查绝对值、平方和开根号的运算.41.0【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【详解】解:原式=3﹣ ﹣(1+2﹣=3﹣﹣=0.【点睛】本题主要考查了实数的运算,熟练掌握实数的运算法则,正确化简是解题的关键.42.(1)3a -;(2)2b x;(3)1. 【分析】利用同分母分式的加减计算法则进行计算即可.【详解】解:(1)原式25a -=,3a=-; (2)原式3b b x-=, 2b x =; (3)原式222a b a b a b=---, 22a b a b -=-, 1=.【点睛】此题主要考查了分式的加减,关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.43.(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.44.(1)【分析】(1(2)根据完全平方公式进行计算即可;【详解】解:(1==(2)(2,=22((-⨯2【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.45.5【分析】根据二次根式的性质,有理数的乘法,绝对值的性质进行计算即可.【详解】解:原式41==.5【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质,有理数的乘法,绝对值的性质是解题的关键.46.(1)5(4)6【分析】(1)根据二次根式的性质直接化简即可;(2)根据二次根式的除法运算法则直接化简即可;(3)根据二次根式的性质直接化简即可;(4)根据二次根式的除法运算法则直接化简即可.(1)==5;(2)==(3)原式== (4)原式124=⨯⨯=6=【点睛】题目主要考查二次根式的除法运算,熟练掌握运算法则是解题关键. 47.(1)415;(2)1. 【详解】试题分析:(1)先对乘方和绝对值进行运算,然后进行乘除运算,最后进行加法运算;(2)利用乘法分配律将式子展开,计算出括号里面的数值再进行除法运算. 试题解析:解:(1)原式=-1×125×(-53)+0.2=415; (2)原式=(-9+4+3)÷(-2)=-2÷(-2)=1.点睛:有理数混合运算时,有时运用乘法分配律会简化运算.48.(1)29-;(2)0;(3)21930a b +.【分析】(1)原式先计算乘除法,再计算加减即可得到答案;(2)根据先乘方,后乘除、最后加减,有括号的先计算括号的运算顺序计算即可; (3)原式先去括号,再合并同类项即可.【详解】解:(1)()17342⎛⎫-⨯--÷- ⎪⎝⎭原式2142=--⨯218=--29=-(2)()220101113332⎛⎫-+-÷⨯-- ⎪⎝⎭原式111623=-+⨯⨯ =11-+0=(3)()()22229354a b a b +---原式224181512a b a b =+++21930a b =+【点睛】本题考查有理数的混合运算以及整式的运算,熟练掌握运算法则是解答本题的关键.49.(1)19.8;(2)这8袋大米一共157.9千克.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案.【详解】解:(1)因为|-0.2|<|0.3|<|-0.5|<|-0.6|<|0.8|<|1.5|<|-1.6|<|-1.8|所以这8袋大米中最接近标准重量的这袋重20-0.2=19.8(千克)故答案为:19.8;(2)因为-0.2+0.3+(-0.5)+(-0.6)+0.8+1.5+(-1.6)+(-1.8)=-2.1(千克), 所以总计不足2.1千克,这8筐大米总共20×8-2.1=157.9(千克)答:这8袋大米一共157.9千克.【点睛】本题主要考查了有理数的混合运算以及正数和负数,理清题意,正确列出算式是解答本题的关键.50.(1(2)3. 【分析】(1)求出各特殊角的三角函数值,再进行乘法和二次根式的化简运算,最后计算加减即可;(2)先求出各特殊角的三角函数值,化最简二次根式,再进行乘法的计算,最后计算加减即可.【详解】解:(1)2sin303tan60cos 45tan30︒+︒-︒+︒2132=++⎝⎭1122=+=(2)2sin452cos60︒+︒︒22=3+3=.【点睛】本题考查特殊角的三角函数值的混合计算,还涉及化最简二次根式和二次根式的化简.掌握相关运算法则是解题关键.。
(完整)新人教版中考总复习数与式测试题(含答案),推荐文档

中考总复习数与式测试题(用时 分钟)一、选择题1. 化简(a 2)3的结果是( ) A.- a 5B.a 5C.- a 6D.a 62. 下列计算正确的是()2A. - 1B. (2a ) 1 2aC.(a 3)2 a 5D. a 6 a 3 a 323.若2a m b 2m+3n 与a 2m -1 b 8的和仍是一个单项式,则 m,n 的值分别是() A. 1,2B. 2,1C. 1,1D. 1,34.若(x 1)2 1 x ,则x 的取值范围是( )5.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S,按此推断S 与n 的关系式为( )。
曇m 亡 S ■ JA . S=3nB. S=3(n — 1) C . S=3n — 1D . S=3n +1学校班级学号A. x > 1B. x > 1C. x v 1D.x w 16.若分式x 2 4x+3的值为零,贝U x 的值为(A. 0B.- 3C. 3D. ± 3A = 3, 5 * t7. 分式, 22a2的最简公分母是(a+b a b b aA. (a2 b2)(a+b )(b a))B. (a2 b2)(a+b )2 2C. (a b )(b a) 2D. a二、填空题 14. J*的平方根是15. 计算0.000314用科学记数法写为 16. 若 a 2+a=0,则 2a 2+2a+2008 = …211200717.若(a 2)2b 3 0,贝U a+b18. 定义“ @”: x@y= • xy+4,则(2@6) @8 = _______ ;a b 8. 分式 - b a2 2a bab化简的结果是( A. 0B.2aC.2b2bD.—a9.下列运算正确的是(x y x y A.y x yB.a 2b 2 (a b)2C.a 2b 2 (a b)2D.—1 x一 x10.已知一 y2 x 2 严云3xy 7y3xy2y 2_=(2\A.空10311.若 “!” B.—103是一种数学运算符号,并且1!c.空103=1, 2 ! = 2X 1 =2,D.Z103=3X 2X 1= 6, 4!=4X 3X 2X 1,…,贝y 四的值为98! A. 50 49B. 99!C.9900D. 212.下列说法正确的是(A .近似数3. 9X 103精确到十分位B .按科学计数法表示的数 & 04X105其原数是80400C. 把数50430保留2个有效数字得 5. 0X 104D. 用四舍五入得到的近似数8. 1780精确到0. 00113.若0,则匸朋(x 2 x)2----- 的值等于(1A.2*3 3C.19. 某日北京申奥网站的访问人次为201949,用四舍五入法取近似值保留两个有效数字可记为_____________ ;20. 实数a在数轴上的位置如图, ------ 77=~*化简a 1 (a 2)2= _________________ ;0 1 a 221. 若最简二次根式.m23与.5m 3是同类二次根式,则m= ____________ ;22. 已知A=a2-a+5,B=a+2,则A与B的大小关系是_________________ ;X 223. 若x v 2,则;---- 的值为;x 21 2 124. 右a 3,贝卩 a 2 = ____________ ;a a25. 在下列一组数据中:0,. 3 , ■ 6 , 3, 2 3,-. 15 ,32,…,第10个数据是___________________26. 大家一定熟知杨辉三角(I),观察下列等式(H)1 11(a b)1 a b1 2 1 (a b)2 2 a 2ab b21 3 3 1 (a b)3 3 a 3a2b 3ab2b31 4 6 4 1 (a b)4 4 a 4a3b 6a2b24ab3b4nI根据前面各式规律,则(a b)5 _____________ .27. 观察下面的单项式:x , -2x , 4x3, -8x4,…….根据你发现的规律,写出第7个式子是__________ . _________28. 在五环图案中,分别填写五个数a、b、c、d、e,如图,其中a、b、c是三个连续偶数(a<b),d、e是两个连续奇数(d<e),且满足a+ b+ c=d+e,例如:另一组符合条件 的数,填入29. 已知1 13,则代数式2X 14xy 2y的值为 .x yx 2xy y30. 观察下列等式:16-仁15 ,25-4=21, 36-9=27, 49-16=33,用自然数n (其中n > 1)表示上面一系列等式所反映出来的规律是 ________________________ 31.如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b ,宽为a + b 的矩形,需要 A(3) 2a 3-4a 2+2a33. 计算(1) ( 2x)2(6x 3 12x 4) (3x 2)__________ 张,B 类卡片 _________ 张,C 类卡片 a a 三、解答题32.因式分解 (1) 4(x- y)2- 9(x+y )2A 类类卡片 (2) x 2-4xy+4y 2(4)3a 2- 2a-1 ⑵计算:-4 (1)1 (10、5)° 2tan451 34. -------------- 当x= 戸时,求代数式x 2-4x+2的值.2 J3(3)a 1 a 2 a a 2 a 2 4a 4 a 2 2a a3a a a 2 a2a 2 a 2 435. 已知2x- 3=0,求x(x2- x)+x2(5- x)-9 的值.x 2 2x 1136. 先化简 厂x 1 x37. 已知a 、b 互为相反数,c 、d 互为倒数,I a b |m 的绝对值是2,求114m 3cd 的值.2m 138. 已知a 、b 、c 是厶ABC 的三边,且满足形状.阅读下面解题过程:解:由 a 4 b 2c 2 b 4 a 2c 2得:4. 42 2「22a b a c b c2,2 2,2 2 2 ,2a b a b c a b2 , 2 2即a b c•••△ ABC 为 Rt △o,再取一个你认为合理的 x 1x 值,代入求原式的值a4b2c2b4a2c2,试判断厶ABC的①②③④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号)错误原因是 ________________________ ;本题的结论应为 __________________________________一、选择题I. C ; 2.D ; 3.A ;4.D ;二、填空题II. 3.14 X 10-4;12.2008 ;15. A > B ; 16.-1 ;三、解答题19. (1) -(5x+y)(x+5y); (2) (x-2y20. ( 1)原式=4x2+2x-4x2=2x;k 亠a 1 1 “(3)原式= 1 ;a a 21.1 ;(引导学生用简便算法)参考答案5.A ;6.B ;7.D ;8.C ;13.1 ; 14.-1 (舍),6;17. 7 ; 18. 3.3 ;)2; (3) 2 a(a-1)2; (4) (3(2)原式=xy+y 2+x2-y2-x2=xy2a 8(4)原式= a 420.22. 原式=(2x+3 ) (2x-3),代入2x-3=0,得原式值为1 123. 原式= ,值为-.a 1 224. 提示:因式分解.a2-1, ab-b, b+ab .2a 1 a 1 ab b b25. ; 2,…ab b b a2 1 a 1 9.B ; 10.C ; a+1)( a-1)。
2019-2020年九年级中考数学总复习测试卷(专题1数与式)

A. 分钟
B. 分钟
பைடு நூலகம்
C.分钟
D.分钟
解析 :8 元中减去第 1 分钟的话费 a 元,剩下的是之后的话费 ,将其除以 b,得到之后打电话的时
间,再加上第 1 分钟就是总时间 ,即总时间为 +1=.
答案 :C
2
9.已知 P=m-1,Q=m -m,m 为任意实数 ,则 P 与 Q 的大小关系是 ( )
A.P>Q
B.P=Q
C.P<Q
D.无法确定
解析 :Q-P=m2-m+1=>0,
∴Q>P,即 P<Q.
答案 :C
10.任何一个正整数 n 都可以进行这样的分 解 :n=s ×t(s,t 是正整数 ,且 s≤ t),如果 p×q 在 n 的所 有这种分解中两因数之差的绝对值最小 ,我们就称 p×q 是 n 的最佳分解 ,并规定 :F(n)=. 例如 18 可 以 分 解 成 1×18,2 ×9,3 ×6 这 三 种 , 这 时 就 有 F(18)=. 给 出 下 列 关 于 F(n) 的 说 法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4) 若 n 是一个完全平方数 ,则 F(n)=1. 其中正确说法的个数是
个数 1,2,1 恰好对应 (a+b)2=a2+2ab+b2 展开式中的系数 ;第四行的四个数
(a+b)
33 2
=a +3a b+3ab
2
+b
3
展开式中的系数
……
1,3,3,1 恰好对应
(1) 根据上面的规律 ,写出 (a+b) 5 的展开式 ; (2) 利用上面的规律计算 :25-5 ×24+10 ×23-10 ×22+5×2-1. 解: (1)(a+b) 5=a5 +5a4b+10a3 b2 +10a2 b3+5ab4+b5 .
新人教版中考总复习数与式测试题(含答案)

中考总复习数与式测试题(用时 分钟)学校 班级 学号 姓名 分数一、选择题1.化简23()a -的结果是( )A .-a 5B .a 5C .-a 6D .a 62.下列计算正确的是() A .2112-⎛⎫=- ⎪⎝⎭B .a a 221-=-)(C .325a a =()D .633a a a ÷= 3.若2a m b 2m +3n 与a 2m -1 b 8的和仍是一个单项式,则m ,n 的值分别是( )A .1,2B .2,1C .1,1D .1,34.1x -,则x 的取值范围是( )A .x >1B .x ≥1C .x <1D .x ≤15. 如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )。
A .S=3nB .S=3(n -1)C .S=3n -1D .S=3n +16.若分式2294+3x x x --的值为零,则x 的值为( )A .0B .-3C .3D .±37.分式2212,,a b a+b a b b a --的最简公分母是( )A .22()()()a b a+b b a --B .22()()a b a+b -C .22()()a b b a --D .22a b -8.分式22a b a b b a ab+--化简的结果是( ) A .0 B .2a b - C .2b a - D .2b a9.下列运算正确的是( )A .x y x y x y x y ---=-++B .222()a b a b a b a b -+=--C . 222()a b a b a b a b --=-+D .1111x x x -=-+ 10.已知2222232,7237x x xy y y x xy y -+=-+则=( ) A .28103 B .4103 C .20103 D .710311.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A. 5049B. 99!C. 9900D. 2! 12.下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.00113.若220x x --=2的值等于( )A .3B .3CD 或3二、填空题的平方根是 ; 15.计算0.000314用科学记数法写为 ;16.若a 2+a =0,则2a 2+2a +2008= ;17.若2(2)30a b -++=,则()2007a+b = ;18.定义“@”:x @y2@6)@8 = ;19.某日北京申奥网站的访问人次为201949,用四舍五入法取近似值保留两个有效数字可记为 ;20.实数a在数轴上的位置如图, ,化简1a -= ; 21.m = ;22.已知A =a 2-a +5,B=a +2,则A 与B 的大小关系是 ;23.若x <2,则22x x --的值为 ; 24.若22113a a a a+=+,则= ; 25.在下列一组数据中:03,,…,第10个数据是 ;26.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 27.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .28. 在五环图案中,分别填写五个数a 、b 、c 、d 、e ,如图,其中a 、b 、c 是三个连续偶数(a <b ),d 、e 是两个连续奇数(d <e ),且满足a +b +c =d +e ,例如:请你在0~20之间选择a1 1 1 12 1 13 3 1 14 6 4 1 .......................................ⅠⅡ 1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++另一组符合条件 的数,填入29.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 30.观察下列等式:16-1=15,25-4=21,36-9=27,49-16=33,…… ,用自然数n (其中n ≥1)表示上面一系列等式所反映出来的规律是 ;31.如图所示的正方形和长方形卡片若干张,拼成一个长为2a +b ,宽为a + b 的矩形,需要A 类卡片 张,B 类卡片 张,C 类卡片 .三、解答题32.因式分解(1)4(x -y )2-9(x+y )2 (2)x 2-4xy +4y 2(3) 2a 3-4a 2+2a (4)3a 2-2a -133.计算(1)2342(2)(612)(3)x x x x -+-÷ (2) 计算:︒---+-45tan 2)510()31(401. a a b a b b A 类 B 类 C 类(3)()()22122442a a a aa a a a a⎡+-⎤--⋅⎢⎥-+-⎣⎦(4)232224a a aa a a⎛⎫-÷⎪+--⎝⎭34.当xx2-4x+2的值.35.已知2x-3=0,求x(x2-x)+x2(5-x)-9的值.36. 先化简22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,再取一个你认为合理的x 值,代入求原式的值.37. 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.38.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ①()()()2222222b a c b a ba -=-+ ② 即222cb a =+ ③∴△ABC 为Rt △。
九年级数学总复习总结《数与式》测试题

九年级数学总复习《数与式》测试题一、选择题(每题4分,共32分)1.实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )A .2a +bB .2aC .aD .b 2.下列计算中,正确的是( )A .33x x x =∙ B .3x x x -= C .32x x x ÷= D .x x x += 3.若2与a 互为倒数,则下列结论正确的是( )。
A 、21=a B 、2-=a C 、21-=a D 、2=a 4.计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2 (D )m 3 5.代数式2346x x -+的值为9,则2463x x -+的值为( ) A .7 B .18C .12D .96.2007年10月中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A 、3.84×410千米 B 、3.84×510千米 C 、3.84×610千米D 、38.4×410千米7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-; B .)1)(4(432-+-=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-。
8.下列等式正确的是( )(A )x b a x b x a )(-=- (B )942188+=+ (C )b a b a +=+22 (D )b a b a +=+2)( 二、填空题(每题4分,共40分)9.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:10. 用“”定义新运算:对于任意实数a ,b ,都有a b=b 2+1。
初三数学总复习(1)数与式测试题

初三数学总复习(1)数与式测试题一、选择题(每小题4分;共40分)1. 4的算术平方根是 ( ) A. 2 B . ―2 C. ±2 D. 2 ( ) A . ―9的立方根是-3 B . 0的平方根是0 C.31是最简二次根式 D . 3-21)(等于81 3.若代数式532++x x 的值为7;则代数式2932-+x x 的值是 ( )A .0B .2C .4D .64.随着计算机技术的迅猛发展;电脑价格不断降低;某品牌电脑按原售价降低m 元后; 又降低20%;现售价为n 元;那么该电脑的原售价为 ( ) A .元)54(m n + B .元)45(m n + C .元)5(n m + D .元)5(m n + 5.比较83和411的大小是 ( ) A. 83>411 B. 83 <411 C. 83=4116.若x 2+2(m -3)x +16 是一个完全平方式;则m 的值是 ( ) A. -5 B. 7 C. -1 D. 7或-17.把分式错误!中的x;y 都扩大两倍;那么分式的值 ( ) A. 扩大两倍 B. 不变 C. 缩小 D. 缩小两倍 8.下列计算正确的是 ( ) A. 1243a a a =⋅ B. ()743a a = C. ()3632b a b a = D. ()043≠=÷a a a a9.用激光测量两座山峰之间的距离;从一座山峰发出的激光经过秒到达另一座山峰;已知光速为米/秒;则两座山峰之间的距离用科学记数法表示为 ( )A.米 B.米 C.米 D.米10.估计54的大小应为 : ( ) B. 在7.2~7.3之间C. 在7.3~7.4之间D. 在7.4~7.5之间 二、填空题(每小题3分;共30分)11.3-л的绝对值是 ______ ;3;-8 的倒数是_____________.12.一个实数的平方根为3+a 和32-a ;则这个数是 . 13.计算:20072009-20082⨯=__________________. 14.如果332n m x和-444-y nm 是同类项;则这两个单项式的和是________;积是________.4222-+x xx 中;当x___________时有意义;当x____________时值为零. 16.研究下列算式你会发现有什么规律:4×1×2+1=32 4×2×3+1=52 4×3×4+1=72 4×4×5+1=92……请你将找出的规律用含一个字母的等式表示出来: . 17.请你写一个能先提公因式、再运用公式来分解因式的三项式;并写出分解因式的结果 .18.计算:( 2+1)( 2-1)-( 2-3)2=____________________.19.将多项式42+x 加上一个整式;使它成为完全平方式;试写出满足上述条件的三个整式:___________________________________.20.有50个同学;他们的头上分别戴有编号为1;2;3;……;49;50的帽子.他们按编号从小到大的顺序;顺时针方向围成一圈做游戏:从1号开始按顺时针方向“1;2;1;2……”报数;报到奇数的同学再次退出圈子;经过若干轮后;圆圈上只剩下一个人;那么;剩下的这位同学原来的编号是____________________. 二、解答题(每小题10分;共80分) 21.计算: 2-0221)32003(|22|4)(+---+-22.计算: )543182(18342421⨯÷-23.先化简;再求代数式的值 ;其中;.24. 如图;数轴上表示1、2的对应点分别为A 、B;点B 关于点A 的对称点为C.设点C 所表示的数为x;求2222+-x x 的值.25.小王将甲、乙两种股票同时卖出;其中甲种股票卖价1200元;盈利20℅;乙种股票卖价也是1200元;但亏损20℅;请你帮小王算一算;他这两种股票合计是盈利还是亏损?盈亏多少元?26.观察下列各式及其变形过程: 322383223222+==⨯= (1) 按上述等式及其验证过程的基本思路;猜想833的变形结果;并进行验证.· A B C x· ·· 012(2) 针对上述各式反映的规律;写出用n(n ≥2的整数)表示的等式;并给出证明.(3) 仿照上面探索规律的方法;写出用表示下列各式的一般规律:52-2522=; 103-31033=……(不要求证明)x;y 满足方程组⎩⎨⎧-=-=+1522y x y x ;求代数式x y y x y xy x y x xy x -+-+-÷+-2222223的值.28.在密码学中;你直接可以看到的内容为明码;对明码进行某种处理后得到的内容为密码.对于英文;人们将26个字母按顺序分别对应整数0和25;现有4个字母构成的密码单词;记4个字母对应的数字分别为a;b;c;d;.已知整数a+2b; 3b; c+2d;3d 除以26的余数分别是9;16;23;12;请你通过携理计算破译此密码;写出这个单词;并写出此单词的汉语词义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学总复习(1)
数与式测试题
一、选择题 (每小题 4 分,共 40 分)
1. 4 的算术平方根是()
A. 2 B .― 2 C.±2 D.2
2.下列说法中正确的是()
A. ― 9 的立方根是 -3 B . 0的平方根是 0
C.1
D .(
1-31是最简二次根式
2
)等于38
3.若代数式x23x 5 的值为7,则代数式 3x 29x 2 的值是()
A. 0B. 2C. 4D. 6
4.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,
又降低20%,现售价为 n 元,那么该电脑的原售价为()A .4n)元B5m)元 C .(5m n)元D. (5n m)元
(m. ( n
54
5.比较 83和 4 11的大小是()
A. 8 3 >411
B. 83<4 11
C.8 3 =411
D. 不能确定大小
6.若 x2+ 2(m- 3) x+16是一个完全平方式,则m的值是()
A.- 5
B. 7
C. -1
D. 7或- 1
7.
3x
中的 x,y都扩大两倍 , 那么分式的值()
把分式x+y
A.扩大两倍
B.不变
C.缩小
D.缩小两倍
8.下列计算正确的是()
A.a3 a4a12
B.a3 4 a 7
C.a 2b3a6 b 3
D.a3a4 a a 0
9.用激光测量两座山峰之间的距离,从一座山峰发出的激光经过秒到达另一座山峰,已知
光速为米/秒,则两座山峰之间的距离用科学记数法表示为()
A .米B .米C .米D .米
10.估计 54的大小应为:( )
A.在 7.1~ 7.2之间
B.在 7.2~7.3之间
C.在 7.3~ 7.4之间
D.在 7.4~7.5之间
二、填空题 ( 每小题3分,共30分 )
11.3 -л的绝对值是______
3
- 8的倒数是_____________.
,
12.一个实数的平方根为a 3 和 2a 3 ,则这个数是.
13.计算 : 20082- 20092007 =__________________.
14.如果 3 m2 x n3和 -4 m4n y4 是同类项,则这两个单项式的和是________, 积是 ________.
2
15.在分式
x2x
中,当x___________时有意义;当x____________时值为零.
x2 4
16.研究下列算式你会发现有什么规律:
4× 1×2+1=32 4 × 2× 3+1=52 4 × 3× 4+1=724× 4× 5+1=92,,
请你将找出的规律用含一个字母的等式表示出来:.
17.请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结
果.
18.计算 :( 2 +1)( 2 -1)-(2 - 3 )2=____________________.
19.将多项式 x 24加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整
式 :___________________________________.
20.有 50个同学 , 他们的头上分别戴有编号为1,2,3, ,,,49,50 的帽子 . 他们按编号从小到大的顺
序, 顺时针方向围成一圈做游戏 : 从 1 号开始按顺时针方向“ 1, 2, 1, 2,, ”报数,报到奇数的同
学再次退出圈子,经过若干轮后,圆圈上只剩下一个人,那么,剩下的这位同学原来的编
号是 ____________________.
二、解答题 ( 每小题 10 分 , 共 80 分)
21. 计算 :42| 2 2| (20033)0
1-2
()
2
1
24
41
22. 计算 :18(2854)
233
1
23. 先化简,再求代数式的值,其中,
.
24. 如图 , 数轴上表示 1、 2 的对应点分别为A、 B, 点 B 关于点 A 的对称点为 C. 设点 C 所表示的
数为 x, 求x2 2 2x2的值.
·C A B ···
0x12
25. 小王将甲、乙两种股票同时卖出, 其中甲种股票卖价1200 元 , 盈利 20℅, 乙种股票卖价也是1200
元 , 但亏损 20℅, 请你帮小王算一算, 他这两种股票合计是盈利还是亏损?盈亏多少元 ?
26. 观察下列各式及其变形过程:
22 2 22822
3333
(1)按上述等式及其验证过程的基本思路,猜想33
的变形结果 , 并进行验证 . 8
(2) 针对上述各式反映的规律, 写出用 n(n ≥ 2 的整数 ) 表示的等式 , 并给出证明 .
(3)仿照上面探索规律的方法 , 写出用表示下列各式的一般规律:
2
2
2 -
2
, 3
3
3 -
3
,,( 不要求证明 )
551010
x 2 2 y5x3xy2x22xy y 2 2 y2
27. 已知 x,y 满足方程组
y
, 求代数式
x y x y
的值 .
x1x
28. 在密码学中 , 你直接可以看到的内容为明码, 对明码进行某种处理后得到的内容为密码. 对于英
文 , 人们将 26 个字母按顺序分别对应整数 0 和 25, 现有 4 个字母构成的密码单词 , 记 4 个字母对应的数字分别为 a,b,c,d,. 已知整数 a+2b, 3b, c+2d,3d 除以 26 的余数分别是 9,16,23,12, 请你通过携理计算破译此密码 , 写出这个单词 , 并写出此单词的汉语词义 .
2。