二重积分计算习题
二重积分习题

a:=0..1;
b:=x-1..-x+1;
f:二exp(x+y);
int(f,y=b);
in t(i nt(f,y二b),x二a);
simpliW);
3、如果二重积分f (x,y)d的被积函数f (x, v)是两个函数f'x)及f2(v)的乘积,即
D
f (x, V) f1(x)f2(v),积分区域D {( x, v) |a x b,c y d},证明这个二重积分等于两个单 积分的乘积,即
bd
f (x, v)df1(x)dxf2(v)dv.
ac
D
精心整理
bdb
f)(x)f2(y)dy dxf1(x)dx
ln2 2
0dyeyf (x,y)dx.
所围成的闭区域
2 2
ay
0f(x, y)dx.
y 3
图形
于是
D
(II)由于D {( x, y) | x2
y.R
D
2x2
y2d
2
y
0
R2}关于x轴对称,且f(x,y) y_R2x2y2为y的奇函数,于是
(III)
{(x,y)|x2y2
R2}关于x轴对称,且f(x,y)
3
y
1x y
3
y cosx
d1 x2y2
3
,
精心整理
(1)Il(x y)2d与I2(X y)3d,其中D是由x轴、y轴与直线x y 1所围成;
2
I1ln(x y)d [lnΒιβλιοθήκη x y)] d I2.DD
4
(1)I xy(x y 1)d,
D
其中D {(x,y)|0 x 1,0 y 2};
计算下列二重积分

习题9-21. 计算下列二重积分:(1)⎰⎰+D d y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1}; (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域:2. 画出积分区域, 并计算下列二重积分:(1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域; (2)⎰⎰-+D d x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域. 3. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域;(2)由直线y =x , x =2及双曲线xy 1=(x >0)所围成的闭区域; (3)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.4. 改换下列二次积分的积分次序:(1)⎰⎰ydx y x f dy 010),(; (2)⎰⎰---221110),(y y dx y x f dy; (3)⎰⎰--21222),(x x x dy y x f dx ; (4)⎰⎰ex dy y x f dx 1ln 0),(;5. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量.6. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.7. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.8. 画出积分区域, 把积分⎰⎰Ddxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D是:(1){(x , y )|x 2+y 2≤2x };(2){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.9. 化下列二次积分为极坐标形式的二次积分:(1)⎰⎰1010),(dy y x f dx ; (2)⎰⎰--21110),(x xdy y x f dx ; 10. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax a dy y x dx ; (2)⎰⎰-+xx dy y xdx 212210)(; 11. 利用极坐标计算下列各题: (1)⎰⎰+D y x d eσ22,其中D 是由圆周x 2+y 2=4所围成的闭区域; (2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;12. 选用适当的坐标计算下列各题:(1)dxdy yx D 22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. (2)⎰⎰++--Dd y x y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域; 13. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.14. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.。
考研数学二重积分练习

习题8 二重积分 一、填空题1、若D 是以(0,0),(1,0)及(0,1)为顶点的三角形区域,由二重积分的几何意义知(1)Dx y --⎰⎰=_____。
2、设区域D 是221x y +≤与222x y x +≤的公共部分,在极坐标系下(,)Df x y dxdy ⎰⎰的累次积分 。
3、当{(,)1,1}D x y x y x y =+=-=}时 Ddxdy ⎰⎰= 。
4、设{}222(,)D x y x y a =+≤,若Dπ=,则a = 。
5、设区域D 由曲线sin ,,02y x x y π==±=所围成,则()51Dx y dxdy -⎰⎰= 。
二、选择题 1、设2211cos sin x y dxdyI x y +≤=++⎰⎰,则( )。
A 、2/32I ≤≤ B 、23I ≤≤ C 、1/2D I ≤≤ D 、10I -≤≤ 2、设(,)f x y 是连续函数,则1(,)xdx f x y dy =⎰⎰( )。
A 、1(,)y dy f x y dx ⎰⎰ B 、110(,)y dy f x y dx ⎰⎰ C 、101(,)ydy f x y dx ⎰⎰ D 、1(,)xydy f x y dx ⎰⎰。
3、设D 是第一象限中由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰( )。
A 、()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰B 、()34cos ,sin d f r r rdr ππθθθ⎰ C 、()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰D 、()34cos ,sin d f r r dr ππθθθ⎰4、设1DI σ=⎰⎰,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(, 其中 }1),{(22≤+=y x y x D ,则( )A 、123I I I >>B 、321I I I >>C 、312I I I >>.D 、213I I I >>5、累次积分cos 2(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成:( ) A、1(,)dyf x y dx ⎰ B 、1(,)dy f x y dx ⎰ C 、1100(,)dxf x y dy ⎰⎰D 、1(,)dx f x y dy ⎰。
二重积分的计算习题课

y= x
x x = ∫1 (− ) 1 dx y x
2
2
x
1
o
D
1
x=2
9 = ∫1 ( x − x)dx = . 4
2 3
2
x
型区域计算可以吗? 按Y-型区域计算可以吗 型区域计算可以吗
6
P155:15(2) P155:15(2)
∫∫
D
π 2 1 1− ρ 1 − x2 − y2 dxdy = ∫ 2 dθ ∫ ρ dρ 2 2 2 0 0 1+ x + y 1+ ρ
• 确定积分序
• 写出积分限
• 计算要简便 (充分利用对称性,几何意义和性质等 充分利用对称性, 充分利用对称性 几何意义和性质等)
2
P154:2(3) P154:2(3)
e x + y d σ , 其 中 D = {( x , y ) x + y ≤ 1 ∫∫
D
}.
1
0 ≤ x ≤1 解: X-型 D1: 型 x − 1 ≤ y ≤ 1 − x
12
6. (10分)计算二重积分 ∫∫ r 2 sin θ 1 − r 2 sin 2θ drdθ ,
D
π 其中D = ( r ,θ ) 0 ≤ r ≤ sec θ , 0 ≤ θ ≤ . 4
(10数学二 数学二) 数学二
7. (10分)计算二重积分 ∫∫ ( x + y )3 dxdy , 其中D由曲线x = 1 + y 2
二重积分复习课
1.∫∫ f ( x, y)d xdy = 极点在区域D的外部 D 极坐标系下计算 极点在区域D的边界上 极点在区域D的内部 y x =ψ ( y) y = ϕ ( x) y ρ = ρ2(θ) ρ = ρ(θ ) ρ = ρ(θ) d ρ=ρ (θ)
二重积分习题及答案

D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇
解
x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D
2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分
二重积分(习题)

第九章 二重积分习题9-11、设⎰⎰+=13221)(D d y x I σ,其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ,其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰D d xy σ4;(II)⎰⎰--D d y x R y σ222;(III)⎰⎰++Dd y x xy σ2231cos . 解:令⎰⎰=Dd y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数,于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x x y y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ. 3、根据二重积分的性质,比较下列积分的大小:(1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(,其中}10,53|),{(≤≤≤≤=y x y x D . 解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y x I σ)94(22,其中}4|),{(22≤+=y x y x D ;解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ;解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=. 习题9-21、计算下列二重积分:(1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域:1||,1||≤≤y x ;解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy xDdx xe e e dy xye dx d y x 22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x xDσ.(4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域.解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x x D.2、画出积分区域,并计算下列二重积分:(1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;解:556)(321044712=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y x xx Dσ.(2)⎰⎰Dd xyσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ. (3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域;解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+Dy x d e σ,其中D 是由1||||≤+y x 所确定的闭区域.解:⎰⎰⎰⎰⎰⎰+--+-+--+++=10110111x x y x x x y x Dy x dy e dx dy e dx d e σe e e e e e dx e e dx e e x x 1212232)()(101201112-=++-=-+-=⎰⎰---+. a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,即12(,)()()b d a c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰. 证明:1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y ex dx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;>plot([(1-x^2)^(1/2),-1*(1-x^2)^(1/2)],x=0..1,color=1); 解:⎰⎰⎰⎰-----==aay a ax a x a dx y x f dy dy y x f dx I 22222200),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.>plot([x^2,3-2*x],x=-3..1,color=1); 解:319201(,)(,)y y yyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(y y dx y x f dy ;解:⎰⎰=12),(x xdy y x f dx I .(2)⎰⎰10),(eey dx y x f dy ;解:⎰⎰=e xdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;解:⎰⎰-=102),(y ydx y x f dy I .(5)⎰⎰-π0sin 2sin),(xx dy y x f dx ;>plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]],x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xa ax x ax dy y x f dx dy y x f dx .>plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]],x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a ay dx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.>plot([2-x,x],x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(x yDdx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y . 7、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.>with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y =0..1-x):display({A,B,F,G,H},grid=[25,20],axes=BOXED, scaling=CONSTRAINED,style=PATCHCONTOUR);解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V x Dσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin 500sin 10ππ+=,试计算所需挖掉的土方量.>plot3d(10*sin(Pi*y/500)+sin(Pi*x/20),y=0..500,x=0..20);解:)(70028)20sin 500sin10(32005000m dy x y dx zd V D =+==⎰⎰⎰⎰ππσ. 9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)],x=0..1,color=1);解:⎰⎰-=22)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;>plot([1+(1-x^2)^(1/2),1-(1-x^2)^(1/2)],x=-1..1,color=1); 解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.>plot([x^2,[[1,0],[1,1]]],x=0..1,color=1);解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;>plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdrr r f d rdr r r f d I . (2)⎰⎰--+1011222)(x xdy y x f dx ;>plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值: (1)⎰⎰-+ax ax dy y x dx 2020222)(;>plot((2*x-x^2)^(1/2),x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =,于是4204420cos 20343cos 4a adr r d I a πθθππθ===⎰⎰⎰.(2)⎰⎰+103221xxdy yx dx ;>plot([3^(1/2)*x,x],x=0..1,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I . (3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 23022233302222.>plot([3^(1/2)*x/3,(1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是36036002183a d a dr r d I a πθθππ===⎰⎰⎰.12、利用极坐标计算下列各题:(1)⎰⎰--Dd y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .(2)⎰⎰++Dd y x σ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;>plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(20102-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd x yσarctan ,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1); 解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题:(1)⎰⎰D d y x σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域;>plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1);解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I x x .(2)⎰⎰+Dd y x σ22sin ,其中D 是圆环形区域22224ππ≤+≤y x ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;>plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1);解:4332232214)32()(a dx a y a ay dx y x dy I a a a a y a y =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x .>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1);解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I . 14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--. 15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r +米,试求该水池的蓄水量. >plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr r d V (米3). 16、讨论并计算下列广义二重积分: (1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且))(1(1q p q I --=. (2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ. 即当1>p 时,广义二重积分收敛,且1-=p I π.。
二重积分习题及答案

在第一象限部分.
y
解: (1) 作辅助线 y x2 把与D 分成
1 D1
D1, D2 两部分, 则
1 o 1 x
I D1 dxdy D2 dxdy
D2
1
dx
1
1
x2 dy
1 dx
1
x2
dy
0
2 3
(2) 提示:
I D ( x2 y2 2xy 2) dxdy
y
作辅助线 y x 将D 分成 D1 , D2 两部分
1 求 x2e y2dxdy ,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
解 e y2dy 无法用初等函数表示
积分时必须考虑次序
x2e y2dxdy
1
dy
y x2e y2 dx
00
D
e1 y2 y3dy e1 y2 y2dy2 1 (1 2).
1
yx
D1
D2
o
1x
2D2 (x y)dxdy 2D dxdy
2 ( 2 1)
3
2
说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算 ( x y )dxdy, D : x2 y2 1
D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号.
解 采用直角坐标
1
( x y )dxdy 4 dx
1 x2 ( x y)dy 8
D
0
0
3
【注】在利用对称性计算二重积分时,要同时考虑被积
函数的奇偶性和积分区域的对称性,不能只注意积分区域
第十章二重积分练习题

D
D
A I1 I2
B I1 I2
C I1 I2
D 以上都不对
4.设
f ( x2 y2 )d tet ,则 f (x) ( )
x2 y2 t2
A
1 2
xe x
B
1 2
(1
1 )ex x
C
1 2
(1
1 )ex x
D
1 2
(1
x)ex
5.设 D 是由上半圆周 y 2ax x 2 和 x 轴所围成的闭区域,则 f (x, y)d ( )
0
0
8.旋转抛物面 z 1 x 2 y 2 在1 z 2 部分的曲面面积 S 为( )
2
(A) 1 x2 y2 dxdy; x2 y22
(B) 1 x 2 y 2 dxdy ; x2 y22
(C) 1 x2 y2 dxdy ; x2 y24
(D) 1 x 2 y 2 dxdy 。 x2 y24
d
2cos f (r cos ,r sin )rdr ,则将该二次积分化为直角坐标形式为(
0
)
4
1
A. dx
2xx2 f (x, y)
x2 y2 dy
0
x
1
2 x x2
B. dx
f (x, y)dy
0
x
C.
2
dx
2xx2 f (x, y) x2 y2 dy
0
x
2
2 x x2
D. dx
D
x
9. I ex xydxdy ,其中 D 为以双曲线 x2 y2 1的右支及直线 y 0, y 1所围成。 D
10. I x2 y2 dxdy , D {(x, y) | 0 y x, x 2 y 2 2x} 。