D102二重积分的计算12853
二重积分的计算方法

二重积分的计算方法二重积分是微积分中的一个重要概念,用于计算平面上某个区域的面积、质量、质心等问题。
在本文中,我们将介绍二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。
一、直角坐标系下的二重积分计算方法在直角坐标系下,二重积分的计算通常通过累次积分的方式进行。
设有一个二元函数 f(x, y) 在某一闭区域 D 上连续,则 D 可以表示为水平投影区域 D' 在直角坐标系上的投影区域,并且可以将 D 划分成许多小的面积 dA。
二重积分的计算可以表示为:∬Df(x, y)dA = ∫∫Df(x, y)dxdy其中,D 表示闭区域 D 上的面积,f(x, y) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(x, y)dxdy = ∫[a, b]∫[c(x), d(x)]f(x, y)dydx其中,[a, b] 表示 x 的取值范围,c(x) 和 d(x) 分别表示 D' 在 x 轴上的投影区间的下边界和上边界。
根据具体问题,我们可以选择先对 x进行积分,再对y 进行积分,或者先对y 进行积分,再对x 进行积分。
通过这样的累次积分方式,可以计算得到二重积分的结果。
二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系进行二重积分的计算更加方便。
对于闭区域 D 在极坐标系下的表示,我们可以将二重积分的计算公式改写为:∬Df(x, y)dA = ∫∫Df(r, θ)rdrdθ其中,D 表示闭区域 D 上的面积,f(r, θ) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(r, θ)rdrdθ = ∫[α, β]∫[g(θ), h(θ)]f(r, θ)rdrdθ其中,[α, β] 表示θ的取值范围,g(θ) 和h(θ) 分别表示 D 在极坐标系下的投影区间的内半径和外半径。
同样地,通过选择先对θ进行积分,再对r进行积分,或者先对r进行积分,再对θ进行积分的方式,可以计算得到二重积分的结果。
D10_2二重积分的计算-极坐标

故①式成立 .
机动 目录 上页 下页 返回 结束
2 2 ( x y ) d x d y, 其中D 为由圆 x 2 y 2 2 y, 例4. 计算 D
x y 4 y 及直线 x 3 y 0, y 3x 0 所围成的 y 平面闭区域. 4 2 2 解: x y 2 y r 2 sin x 2 y 2 4 y r 4 sin y 3x 0 2 3 x 3 y 0 1 6
D
d x2 ( y )
1
c
D f ( x, y) d c d y x ( y )
f ( x, y ) d x
机动 目录
x x1 ( y ) x
上页 下页 返回 结束
极坐标系情形: 若积分区域为
则
D f ( x, y) d D f (r cos , r sin ) rd r d
2 2 1 k 1 (r rk ) k 2 rk k 2 k
o
r rk x
k
rk k
rk rk k
在 k 内取点(rk , k ), 对应有
k
rk
rk
k rk cos k , k rk sin k
2
机动
2
目录 上页 下页 返回 结束
常见区域D'的确定
(1) D : x y 2Rx (如图)
2 2
y
r 2 2Rr cos D : , 0 r 2 R cos 2 2 (2) D : x 2 y 2 2Ry (如图) r 2Rr sin
二重积分计算方式

二重积分计算方式二重积分是微积分中的重要概念之一,用来求解平面上某个区域上的某个量的总和。
在本文中,我们将介绍二重积分的计算方式和应用。
一、二重积分的定义及性质二重积分是通过将一个二元函数在一个区域上进行积分来求解该区域上的某个量的总和。
在二重积分中,被积函数的两个自变量分别为x和y,积分区域为D。
1. 定义:设函数f(x,y)在区域D上有定义,D是xy平面上的一个有界闭区域,将D分成许多小区域,记作ΔD。
选取ΔD中任意一点(xi,yi),作函数值f(xi,yi)与ΔDi的乘积f(xi,yi)ΔAi,其中ΔAi为ΔDi的面积。
如果极限$$\lim_{\lambda \rightarrow 0} \sum_{i=1}^{n} f(xi,yi) \Delta Ai$$存在且与D和ΔD的选取无关,那么称此极限为函数f(x,y)在D上的二重积分,记作$$\iint_D f(x,y) dxdy$$2. 性质:二重积分具有线性性质和可加性质,即对于任意常数a和b,函数f(x,y)和g(x,y),以及区域D和E,有以下性质:- 线性性质:$$\iint_D (af(x,y) + bg(x,y)) dxdy = a\iint_D f(x,y) dxdy + b\iint_D g(x,y) dxdy$$- 可加性质:$$\iint_{D \cup E} f(x,y) dxdy = \iint_D f(x,y) dxdy + \iint_E f(x,y) dxdy$$二、二重积分的计算方式在实际计算二重积分时,常常使用直角坐标系和极坐标系来简化计算。
1. 直角坐标系下的计算方式在直角坐标系下,二重积分的计算可以通过迭代积分来进行。
假设被积函数为f(x,y),积分区域为D,可以将二重积分表示为以下形式:$$\iint_D f(x,y) dxdy = \int_a^b \int_{c(x)}^{d(x)} f(x,y) dy dx$$其中a和b为x的范围,c(x)和d(x)为y的范围。
二重积分的计算

二重积分的计算二重积分的计算,是多元函数积分学的第一个难关,这一关过好了,对于其他类型(三重积分,曲线和曲面积分等)的积分,将开个好头,希望大家真正理解并掌握。
首先需要化点功夫弄明白二重积分的定义以及性质。
这里我就不写过多的内容,因为深入理解需要在具体的计算中才能加深理解,就事论事地背定义是很难有效果的。
二重积分的计算,最基本也是最根本的是要理解转化二重积分为累次积分的原理,即一个二重积分化为两个有先后次序的定积分,这2个定积分一般彼此存在着关系,先积分的那个定积分一般是后一个定积分的被积函数。
转化的前提是需要将被积区域D 表示为不等式形式。
二重积分的被积区域是个平面域,常用两种表示法:1)12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先y 后x ”,具体公式为2211()()()()(,)(,)(,)x x bb Da x a x f x y d f x y dy dx dx f x y dy ϕϕϕϕσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
2)12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,这时,累次积分的次序是“先x 后y ”,具体公式为2211()()()()(,)(,)(,)y y dd Dc y c y f x yd f x y dx dy dy f x y dx ψψψψσ⎛⎫== ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰⎰。
上述公式表示的是在直角坐标系下的计算公式。
在直角坐标系下,对平面区域可以沿平行于坐标轴的直线来分划该区域,所以积分微元d dxdy σ=。
如果被积区域D 是一个矩形区域,则:c y dD a x b≤≤⎧⎨≤≤⎩,而且被积函数可表为(,)()()f x yg xh y =, 此时,二重积分实际变为两个独立定积分的乘积:(,)()()()()b d bdDa c a cf x y dg xh y d y d x g x d x h y d yσ⎛⎫==⎪⎝⎭⎰⎰⎰⎰⎰⎰, 这是二重积分计算中最简单的情况。
二重积分的计算公式

二重积分的计算公式二重积分是微积分中的基本内容之一,它用于计算平面上一些区域内的一些函数的面积或者平面质量分布等问题。
在进行二重积分计算时,首先需要确定被积函数、积分区域以及坐标系,然后通过适当的积分方法进行计算。
本文将介绍二重积分的计算公式及其应用。
一、二重积分计算公式1.矩形区域上的二重积分考虑一个定义在矩形区域D上的函数f(x,y),该区域上的二重积分可以通过将该区域分为许多小的矩形区域,并对每个小区域内的函数值进行求和,再取极限的方法进行计算。
设矩形区域D的边界为a≤x≤b,c≤y≤d,将其进行分割,得到对应的小矩形区域ΔxΔy,将f(x,y)在该矩形区域上的积分记为ΔI。
则整个矩形区域上的二重积分可以表示为:∬Df(x,y)dA = lim Δx,Δy→0 Σf(x,y)ΔxΔy其中Σ表示对所有小矩形区域进行求和,lim表示小矩形区域的数量趋于无穷小。
2.二重积分的换元法在计算二重积分时,有时可以通过变量替换将原来的积分变为更加简化的形式,这种方法称为换元法。
换元法的基本思想是将原坐标系中的二重积分转化为新坐标系下的二重积分,并通过求导和求逆变换的方法进行计算。
设原坐标系为(x,y),新坐标系为(u,v),变换公式为x=x(u,v),y=y(u,v),则原坐标系中的二重积分可以表示为:∬Df(x,y)dA = ∬D′f[x(u,v),y(u,v)],J(u,v),dudv其中D′为新坐标系下的区域,J(u,v)为变换矩阵的行列式,J(u,v),为其绝对值。
二、二重积分的应用1.几何应用二重积分常常用于计算平面几何中的面积和质心等问题。
例如,可以通过对平面上一个区域内的特定函数进行二重积分来计算该区域的面积,并可以通过对函数的乘积进行二重积分来计算该区域的质心位置。
2.物理应用二重积分在物理学中具有广泛的应用,特别是在计算质量分布、重心位置和力矩等问题上。
例如,可以通过对平面上一些区域的质量分布函数进行二重积分来计算该区域的总质量,并可以通过对质量分布函数与各点与一些轴线的距离的乘积进行二重积分来计算该区域对该轴线的力矩。
D10_2二重积分的计算

被圆柱面 x y 2 a x
2
2
所截得的(含在柱面内的)立体的体积. z π 解: 设 D : 0 r 2 a cos , 0 2 由对称性可知
V 4
D
4 a r r d r d
2 2
O y
0
2 acos
2a x 4 a2 r 2 r d r
y
r 2a cos
D
r ( )
D
O
x
2π
0
d
0
( )
f (r cos , r sin ) r d r
此时若 f ≡1 则可求得D 的面积
2π 2 1 d ( ) d D 2 0
目录
上页
下页
返回
结束
例6. 计算
其中D : x 2 y 2 a 2 .
O
r rk
x
rk k
rk rk k
在 k 内取点(rk , k ), 对应有
k
O
rk
rk
k rk cos k , k rk sin k
目录 上页 下页 返回 结束
lim f ( rk cos k , rk sin k )rk rk k
定积分换元法 (3) 变换 T : D D是一一对应的 , 则
D
(t ) ) f ( x )x dd xy f [ (tx )] ,v (t), )d tu,(vx f ( x , y ) d f ( u y ( )) J ( u , v ) dudv a
D
二、利用极坐标计算二重积分
在极坐标系下, 用同心圆 r =常数 及射线 =常数, 分划区域D 为
二重积分数值计算方法

二重积分数值计算方法二重积分是数学分析中的重要概念,用于计算平面区域上的面积、质心、重心等物理量。
而二重积分的数值计算方法则是将二重积分转化为数值计算问题,通过近似的方式求得积分的近似值。
本文将介绍二重积分数值计算方法的原理和常用算法。
一、二重积分的定义和性质二重积分是对二元函数在平面区域上的积分,其定义如下:∬f(x,y)dA = limΔx,Δy→0 ΣΣf(xi,yi)ΔA其中,f(x,y)为定义在平面区域D上的函数,ΔA为平面上的小面积,ΣΣ表示对所有小面积求和。
二重积分具有线性性质和可积性质,可以按照不同的积分顺序进行计算。
二、二重积分的数值计算方法由于二重积分的计算通常比较复杂,无法直接求得解析解,因此需要借助数值计算方法来进行近似计算。
常用的二重积分数值计算方法有以下几种:1. 矩形法矩形法是最简单的数值计算方法,将平面区域划分为若干个小矩形,然后在每个小矩形中选取一个点进行函数值的计算,最后将所有小矩形的函数值相加并乘以对应的小面积即可。
矩形法的精度较低,适用于简单的计算问题。
2. 梯形法梯形法是将平面区域划分为若干个小梯形,然后在每个小梯形中计算两个顶点的函数值,并将两个顶点的函数值加权平均,最后将所有小梯形的函数值相加并乘以对应的小面积即可。
梯形法的精度较矩形法高,适用于一般的计算问题。
3. 辛普森法辛普森法是将平面区域划分为若干个小矩形和小梯形,然后在每个小矩形和小梯形中计算三个顶点的函数值,并将三个顶点的函数值加权平均,最后将所有小矩形和小梯形的函数值相加并乘以对应的小面积即可。
辛普森法的精度较高,适用于复杂的计算问题。
4. 蒙特卡洛法蒙特卡洛法是通过随机采样的方式来进行积分的近似计算,将平面区域内的点随机散布,然后计算这些点的函数值并求平均,最后将平均值乘以平面区域的面积即可。
蒙特卡洛法的精度较高,适用于复杂的计算问题。
二重积分数值计算方法在实际问题中具有广泛的应用,例如计算平面区域的面积、质心、重心等物理量。
2D102二重积分的计算

y
M3
D M 4
M1 M2
令 h2 k2, 则
o
x
x2
x1
x(u
h, v)
x(u,
v)
x u
(u,
v)
h
o( )
机动 目录 上页 下页 返回 结束
x4
x1
x(u, v
k
)
x(u,
v)
x v
(u,
v)
k
o( )
同理得
y2
y1
y u
(u,
v)
1
机动 目录 上页 下页 返回 结束
例4. 计算 sin x dxdy, 其中D 是直线 Dx
所围成的闭区域.
y
解: 由被积函数可知, 先对 x 积分不行, y x
因此取D 为X – 型域 :
D
:
0 0
y x
x
D x o x
D
sin x
x
dxd
y
0
b
(xa, fy()xd)xddxy
f [f ((xt)(]u,v()t,)yd(tu,v()x) J (u(,tv)))d u
D
dv
机动 目录 上页 下页 返回 结束
证: 根据定理条件可知变换 T 可逆.
在uov坐标面上 , 用平行于坐标轴的
直线分割区域D, 任取其中一个小矩
则
D
:
11
y x
x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
则除包含边界点的小区域外,小区域的面积
k k
k
k
r rk x
k
1 2
(rk
rk )2 k
1 2
rk
2
k
rk k
rk rk k
在 k 内取点(rk ,k ), 对应有
k
rk
rk
k rk cosk , k rk sink
第7页/共22页
机动 目录 上页 下页 返回 结束
顺序. (2) 若积分域较复杂,可将它分成若干
y
X-型域或Y-型域 , 则
D2 D1
D3
D D1 D2 D3
o
x
第1页/共22页
机动 目录 上页 下页 返回 结束
例1. 计算 I xyd , 其中D 是直线 y=1, x=2, 及 D
y=x 所围的闭区域. 解法1. 将D看作X–型区域,
说明: (1) 若积分区域既是X–型区域又是Y –型区域 ,
则有 D f (x, y) dx dy
y d
y 2(x)
b
dx
a
2 (x) 1( x)
f
(x, y) dy
d
dy
2(y)
f (x, y) dx
c
1(y)
x
y
c
1(
y) y
x
D
1(
x)
2
(
y)
o a x bx
为计算方便,可选择积分顺序, 必要时还可以交换积分
n
lim
0
k
1
f
(
rk
cos k
,
rk
sin k
)rk
rk
k
即 D f (x, y) d D f (r cos , r sin )r d r d
rd d
d
dr r
第8页/共22页
机动 目录 上页 下页 返回 结束
设
D
:
1
( )
r
2
(
),
则
D r 2 ( )
D f (r cos , r sin )r d r d
d
2 (
)
f
(r
cos ,
r
sin
)r
o dr
1( )
r 1( ) r 2 ( )
特别,
对
D
:
0 r (
0
2
)
o r 1( )
r ( )
D f (r cos , r sin ) r d r d
2
( )
D
d f (r cos , r sin ) r d r o
0
0
第9页/共22页
解: 积分域由两部分组成:
y
D1
:
0
y
1 2
x2,
0x2
D2
: 0
2
y
x
8 x2 22
将 D D1 D2 视为Y–型区域 , 则
x2 y2 8
2
y
1 2
x2 D1 D2
o 22 2 x
D
:
2y x 0 y2
8 y2
2
8 y2
I D f (x, y) d x d y 0 dy 2y f (x, y)dx
y 3x
o D2 1 x
x 1
I x ln(y 1 y2 )dxdy D1
x ln(y 1 y2 )dxdy 0 D2
第6页/共22页
机动 目录 上页 下页 返回 结束
二、利用极坐标计算二重积分 y
在极坐标系下, 用同心圆 r =常数
及射线 =常数, 分划区域D 为
k (k 1, 2,, n)
机动 目录 上页 下页 返回 结束
若 f ≡1 则可求得D 的面积
d 1 2 2 ( ) d
D
20
思考: 下列各图中域 D 分别与 x , y 轴相切于原点,试
问 的变化范围是什么?
(1) y r ( )
(2) y r ( )
D
D
o
x
ox
答: (1) 0 ; (2)
2
2
第10页/共22页
机动 目录 上页 下页 返回 结束
例6. 计算
其中D : x2 y2 a2.
解:
在极坐标系下D
:
0ra
0 2
,
故
原式 D
r d r d
2
d
a rer2 d r
0
0
(1 ea 2 )
由于 ex2 的原函数不是初等函数 , 故本题无法用直角
坐标计算.
第11页/共22页
y x
x
D x o x
D
sin x
x
dxd
y
0
sin x
x
d
x
x
0 d
y
0 sin x dx
2
说明: 有些二次积分为了积分方便, 还需交换积分顺序.
第4页/共22页
机动 目录 上页 下页 返回 结束
例4. 交换下列积分顺序
2
x2
22
8 x 2
I
0
dx
2 0
f (x, y)dy 2
dx0
f (x, y)dy
第2页/共22页
机动 目录 上页 下页 返回 结束
例2. 计算 D xyd , 其中D 是抛物线
及直线
所围成的闭区域.
y
解: 为计算简便, 先对 x 后对 y 积分,
2 y2 x y
则
D
:
y2 1
x y
y 2
2
o 1
D
4x
y x2
2 y2
D xyd 1dyy2 xy d x
2 1
机动 目录 上页 下页 返回 结束
注: 利用例6可得到一个在概率论与数理统计及工程上
非常有用的反常积分公式
ex2 d x
0
2
①
事实上, 当D 为 R2 时,
利用例6的结果, 得
故①式成立 .
第12页/共22页
机动 目录 上页 下页 返回 结束
例7. 求球体
被圆柱面
所截得的(含在柱面内的)立体的体积.
1 2
x2
y
y2 y2
dy
1 2
2 [ y( y 2)2 y5 ] dy
1
第3页/共22页
机动 目录 上页 下页 返回 结束
例3. 计算 sin x dxdy, 其中D 是直线 Dx
所围成的闭区域.
y
解: 由被积函数可知, 先对 x 积分不行, y x
因此取D 为X – 型ห้องสมุดไป่ตู้ :
D
:
0 0
则D
:
11
y x
x 2
y
I
2
dx
1
x xyd y 1
2 1
1 2
xy2
xd
1
x
2 y
yx
1
2
1
1 2
x3
1 2
x
dx
9 8
解法2. 将D看作Y–型区域,
则
D
:
y 1
x y
2 2
o
1 x 2x
I
2
dy
1
y2xyd x
2
1
1 2
x
2
y
2d y
y
2 1
2
y
1 2
y3
dy 9 8
第5页/共22页
机动 目录 上页 下页 返回 结束
例5. 计算
其中D 由
y 4 x2, y 3x , x 1 所围成. 解: 令 f (x, y) x ln(y 1 y2 )
y
4 y 4 x2
D D1 D2 (如图所示)
D1
显然, 在 D1上, f (x, y) f (x, y) 在 D2上, f (x, y) f (x, y)
解: 设 D : 0 r 2 a cos , 0
2
z
由对称性可知
V 4 D 4 a2 r 2 r d r d
o
y
2 acos 0
4a2 r2 rdr
2a
x
32 a3( 2 )
3 23
第13页/共22页
机动 目录 上页 下页 返回 结束
内容小结
(1) 二重积分化为累次积分的方法 直角坐标系情形 :