第二节二重积分的计算

合集下载

第十章第二节_二重积分的计算法

第十章第二节_二重积分的计算法
(3) 改写D为: 0 y 1, 0 x y o
(1,1)
y x
x
y
0
1
dx sin y 2dy
x
1
(1,1)
0 dy 0 sin y dx
2
1
y
y x
(sin y ) x dy
2
1
y
x D : 0 y 1, 0 x y
o
y sin y 2dy
第二节 二重积分的计算法
一、利用直角坐标计算二重积分
二、极坐标系下二重积分的计算 三、小结 思考题
【复习与回顾】
回顾一元函数定积分的应用
平行截面面积为已知的立体的体积的求法
在点x处的平行截面的面积为 A( x ) 体积元素 dV A( x )dx 体积为
V A( x )dx
a b
一、利用直角坐标系计算二重积分
(( xx )0 ) 11
ff (x (x ,0 y,)dy y )dy
b
V A( x )dx
a
2 ( x )
1( x)
f ( x, y )d [
D a
f ( x , y )dy]dx.
公式1
上式称为先对 y后对x的二次积分
注意:
1)上式说明: 二重积分可化为二次定积分计算; 2)积分次序: X-型域 先Y后X; 3)积分限确定法: 后积先定限,域中做穿线; 先过为下限,后过未上线。
f ( x, y )d 的值等于以D 为底,以曲面z
D
f ( x , y ) 为顶的曲顶柱体的体积 .
【方法】根据二重积分的几何意义以及计算“平 行截面面积为已知的立体求体积”的方法来求.

第二节 二重积分的计算

第二节 二重积分的计算
2
a
O
a
a
0
2a
x
原式= dy
a a2 y2 f ( x, y2 2a
2 2
y ) dx
2a 2a y2 f 2a
dy
0
a
2a
a a y
f ( x , y )dx dy
a
( x , y ) dx
19
二重积分的计算法
交换积分次序的步骤
(1) 将已给的二次积分的积分限得出相
计算结果一样. 但可作出适当选择.
a
b
x
11
二重积分的计算法
(4) 若区域如图, 则必须分割.
y
D1
在分割后的三个区域上分别 使用积分公式.
(用积分区域的可加性质)
O
D3
D2
x
D

D
1

D2 D3
D1、D2、D3都是X型区域
12
二重积分的计算法
例 求 ( x 2 y )dxdy , 其中D是抛物线 y x 2和

R
R
dy
R2 y2
R 2 x 2 y 2 dx
8
二重积分的计算法
注 特殊地 D为矩形域: a≤x≤b,c≤y≤d

f ( x , y )d dx f ( x , y )dy a c D dy f ( x, y ) d x
d b c a
b
d
如D是上述矩形域, 且f ( x , y ) f1 ( x ) f 2 ( y ) 则
立体的体积.
D
曲顶z R 2 x 2
z
解 V1 f ( x , y ) d

高等数学第十章第二节二重积分的计算法课件.ppt

高等数学第十章第二节二重积分的计算法课件.ppt
• 若积分区域为
y y y2(x)
D
y y1(x)
a
bx

f (x, y) d
b
dx
y2 (x) f (x, y) d y
D
a
y1( x)
• 若积分区域为

f (x, y) d
d
dy
x2 ( y) f (x, y) d x
D
c
x1( y)
y x x2 ( y) d
D
c
x x1( y) x
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知, 当被积函数 f (x, y) 0
且在D上连续时, 若D为 X – 型区域
y y 2(x)

D
D
:
1
(
x) a
y x
b
2
(
x)
f (x, y) dx dy
b
2 (x)
a d x 1(x)
f
(x,
D
x o a y 1(x)b y) d y
d
dy
2(y)
f (x, y) dx
c
1(y)
y d
y 2(x)
x
y
c
1(
y) y
x
D
1(x)
2
(
y)
o a x bx
为计算方便,可选择积分序, 必要时还可以交换积分序.
(2) 若积分域较复杂,可将它分成若干 y
D2
X-型域或Y-型域 , 则
D1
D D1 D2 D3
D3
o
x
例1. 计算 I D x2 yd , 其中D 是直线 y=1, x=2, 及

(完整版)第二节二重积分的计算

(完整版)第二节二重积分的计算

即等于两个定积分的乘积.
例2 求 x2e y2dxdy, 其中D 是以 (0,0),(1,1),(0,1)
D
为顶点的三角形.
解 因 e y2dy 无法用初等函数表示,
所以, 积分时必须考虑次序.
x2e y2dxdy
1
dy
y x 2e y2 dx
0
0
D
e1 y2
y3 dy
1
1 y2e y2dy2 1 1 2
Oa
b x Oa
bx
f ( x, y)d
b
dx
2 ( x) f ( x, y)dy
a
1 ( x)
D
3. 若区域如图, 则必须分割. 在分割后的三个区域上分别 使用积分公式. (利用积分区域的可加性)
y
D3
D1 D2
O
x
D
D1
D2
D3
例1 求 ( x2 y)dxdy,其中D是抛物线y x2和
0
3
60
6 e
例3 交换积分次序:
1
2 x x2
2
2 x
0 dx0
f ( x, y)dy 1 dx0 f ( x, y)dy
y
解 积分区域:
y2 x
y 2x x2
O
1
2x
原式=
1
dy
2 y
f ( x, y)dx
0
1 1 y2
例4 计算积分 I
1
2 1
dy
1
y
y e x dx
(
x,
y)dx)dy
D

f y)dx.
D
c
1( y)

第二节 二重积分的计算

第二节  二重积分的计算

D
α ≤ϕ ≤ β,
ρ = ρ2 (θ )
ρ 1 (ϕ ) ≤ ρ ≤ ρ 2 (ϕ ).
β
o
α
A
∫∫ f ( ρ cos ϕ , ρ sin ϕ ) ρdρdϕ
D
= ∫α dθ ∫ρ12(ϕ ) f ( ρ cos ϕ , ρ sin ϕ ) ρdρ .
β
ρ (ϕ )
二重积分化为二次积分的公式( 二重积分化为二次积分的公式(2)
π
a cos ϕ
I = ∫ dϕ ∫0
2 π − 2
f ( ρ ,ϕ )dρ
(a ≥ 0).
思考题解答
π π − ≤ϕ ≤ D: 2 2 , 0 ≤ ρ ≤ a cos ϕ
I = ∫0 dρ ∫
a a ρ − arccos a arccos
y
ϕ = arccos
D
ρ
a ρ = a cosϕ
D
例 1 写出积分∫∫ f ( x , y )dxdy的极坐标二次积分形
D
式,其中积分区域
D = {( x, y ) | 1 − x ≤ y ≤ 1 − x 2 , 0 ≤ x ≤ 1}.
x = ρ cos ϕ 解 在极坐标系下 y = ρ sin ϕ 所以圆方程为 ρ = 1, 1 直线方程为 ρ = , sin ϕ + cosϕ
所求面积σ =
∫∫ dxdy = 4∫∫ dxdy
D
D1
= 4 ∫0 dϕ ∫a
6
π
a 2 cos 2ϕ
ρ dρ
π = a ( 3 − ). 3
2
三、小结
二重积分在极坐标下的计算公式
∫∫ f ( ρ cosϕ , ρ sin ϕ ) ρdρdϕ D β ρ (ϕ ) = ∫α dϕ ∫ρ (ϕ ) f ( ρ cosϕ , ρ sinϕ ) ρ dρ .

第二节_二重积分的计算法

第二节_二重积分的计算法

作业 P153 1 (4); 2 (3); 4; 6 (2), (3); 11; 12 (1), (3); 13 (4); 18
x 2 + y 2 = 4 y 及直线 x − 3 y = 0, y − 3x = 0 所围成的 平面闭区域. y 4
∫∫ (x
D
2
+ y ) d x d y = ∫π dθ
2
3 6
π

4 sinθ 2 r ⋅rdr 2 sinθ
2
= 15( − 3) 2
π
o
x
内容小结
二重积分化为累次积分的方法 X – 型区域 直角坐标系情形 Y – 型区域 极坐标系情形: 积分区域 极坐标系情形
例7. 计算
其中D : x 2 + y 2 ≤ a 2 .
−a 2
= π (1 − e
)

+∞ − x 2 e 0
dx =
π
2
例8. 求球体
x2 + y 2 = 2 ax 被圆柱面
z
所截得的(含在柱面内的)立体的体积.
o
2a
y
x
( x 2 + y 2 ) d x d y, 其中D 为由圆 x 2 + y 2 = 2 y, 例9. 计算∫∫ D
第二节 二重积分的计算法
一、利用直角坐标计算二重积分
三、利用极坐标计算二重积分
一、曲顶柱体体积的计算
y = ϕ2 ( x)
设曲顶柱的底为
z
y
ϕ1 ( x) ≤ y ≤ ϕ 2 ( x) D = ( x, y) a≤ x≤b
曲顶柱体体积为
D
o
a x0 b x y = ϕ1 (x) (x

第二节_二重积分的计算法

第二节_二重积分的计算法

第二节_二重积分的计算法二重积分:在平面上规定一个有界闭合区域D,对于D上的每一点P(x,y),都有一个标量函数f(x,y)与之对应。

则二重积分的数值就是由函数f(x,y)在区域D上所有点处的函数值决定的。

二重积分一般可以表示为∬Df(x,y)dA。

计算二重积分的方法主要有以下几种:直角坐标法、极坐标法、换元积分法和累次积分法。

1.直角坐标法:针对矩形、直角三角形、抛物线和折线边界的区域,可以直接使用直角坐标法来计算二重积分。

具体步骤如下:(1)写出二重积分的累加和形式:I=ΣΣf(x,y)ΔA。

(2)将区域D分成若干小矩形,计算每个小矩形的面积ΔA。

(3)在每个小矩形上选择代表点(x,y),计算f(x,y)的函数值。

(4)将函数值与相应小矩形的面积相乘,加和求和即可得到二重积分的数值。

2.极坐标法:当具有极坐标对称性的区域时,采用极坐标法可以简化计算。

具体步骤如下:(1) 确定极坐标变换:x=r*cosθ,y=r*sinθ。

(2) 根据变换的雅可比矩阵计算面积元素dA的极坐标形式:dA=rdrdθ。

(3) 将二重积分转化为极坐标下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Df(r*cosθ,r*sinθ)rdrdθ。

(4)将极坐标下的积分区域和积分限进行变换,然后按照累次积分进行计算。

3.换元积分法:当二重积分区域D的边界方程比较复杂时,可以使用换元积分法来简化计算。

具体步骤如下:(1)根据边界方程对二重积分区域D进行变换,将原来的二重积分区域映射到一个新的坐标系中的区域G。

(2)根据变换的雅可比矩阵,计算新坐标系下的面积元素dA'。

(3) 将二重积分转化为新坐标系下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Gf(x(u,v),y(u,v)),J(u,v),dudv,其中J(u,v)为雅可比行列式。

(4)对新坐标系下的累次积分按照直角坐标法或极坐标法进行计算。

4.累次积分法:当二重积分区域D可以通过垂直于坐标轴的直线进行划分时,可以使用累次积分法进行计算。

第二节二重积分的计算方法

第二节二重积分的计算方法

D
ϕ 1 (θ ) ≤ r ≤ ϕ 2 (θ ).
o
βα
A
∫∫ f ( r cosθ , r sinθ )rdrdθ
D
= ∫ dθ ∫
α
β
ϕ2 (θ )
ϕ1 (θ )
f (r cosθ , r sinθ )rdr.
区域特征如图
r = ϕ1(θ )
D
α ≤θ ≤ β,
r = ϕ2 (θ )
ϕ 1 (θ ) ≤ r ≤ ϕ 2 (θ ).
第二节 二重积分的计算方法
二重积分的计算可以按照定义来进行, 二重积分的计算可以按照定义来进行, 同定积分按照定义进行计算一样, 同定积分按照定义进行计算一样,能够按照 定义进行计算的二重积分很少, 定义进行计算的二重积分很少,对少数特别 简单的被积函数和积分区域来说是可行的, 简单的被积函数和积分区域来说是可行的, 但对于一般的函数和积分区域却不可行。 但对于一般的函数和积分区域却不可行。 本节介绍一种计算二重积分的方法—— 本节介绍一种计算二重积分的方法 二重积分化为二次单积分(定积分) 把 二重积分化为二次单积分(定积分)来 计算。 计算。
z = f (x, y)
o
a
x
x + dx
b
x
a
o
已知平行截面面积 A ( x ) 的立体的体积
α
y
x
b
x
V = ∫a A(x)dx.
b
y
o
x
a
b
x
∵ 当 f ( x , y ) > 0时 , ∫∫ f ( x , y )dxdy 的值等于以 D 为底,以 为底,
D
为曲顶柱体的体积. 曲面 z = f ( x , y ) 为曲顶柱体的体积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0xy
(改变积分 ,按次 先 x后序 y积分次序 ) 计算
I
1 y si ny
dy
dx
0
y y2
1siny(yy2)dy 0y
1
1
0sin ydy0ysin ydy
1 c1 o (s c 1 s o 1 i )s n 1 s1 i .n
由以上几例可见,为了使二重积分的计算较为 简便,究竟选用哪一种积分次序主要由积分区域的 特点来确定,同时还要兼顾被积函数的特点,看被 积函数对哪一个变量较容易积分,总之要兼顾积分 区域和被积函数的特点。
注意两种积分次序的
I
11
dy
(x22y)dx
0
y
计算效果!
1(1x32xy)|1 dy 1(12y7y3/2)dy
03
y
03
3
(1yy214y5/2)1 2.
3
15 0 5
例2. 计算 D xyd, 其中D 是抛物线 y2 x 及直线
yx2 所围成的闭区域.
y
解: 为计算简便, 先对 x 后对 y 积分, 2 y2 x
f(x,y)d等于 D为 以底,z以 f(x,曲 y)为 面 顶
D
曲顶柱体的体积.
应用计算“平行截
z
zf(x,y)
面面积为已知的立 y2(x)
体求体积”的方法,

y
A( x)
A(x) 2(x)f(x,y)dy 1(x)
D
ax b x
f(x,y)dxdy D
b
a A(
x)d
x
b
dx
2(x)
f
y1(x)
x2 y2 8
2
y
1 2
x2 D
1
D
2
o 22 2 x
D :
2yx 8y2 0y2
I
2
f(x,y)dxdy d y
8y2
f (x,y)dx
D
0
2y
例 6 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.
0
0
1
0
解: 积分域由两部分组成:
D1
性质: 设函数 f (x,y) 在闭区域上连续, 域 D 关于x 轴
对称 , D 位于 x 轴上方的部分为D1 , 在 D 上 y
( 1 )f(x , y ) f(x ,y )则,
D1
Df(x,y)d2D 1f(x,y)d oD x
( 2 )f( x , y ) f( x ,y )则,Df(x,y)d0
(x,y)dy
a
1(x)
如果积分区域 D 为:1(y)x2(y),cyd.
[Y-型区域]
d
x1(y) c
D x2(y)
d
x1(y) D
c
x2(y)
f(x ,y)ddd y 2(y)f(x ,y)d.x
D
c 1(y)
Y型区域的特点:穿过区域且平行于x轴的直
线与区域边界相交不多于两个交点.
当被积函数 f (x,y) 在D上变号时, 由于
0
2 a x2

0x2a,
D:
2ax x2y
2a,x
D2
将积D 分 分D 区 1 成 ,D 2及 域 D 3三部 , 分
D 1:2 ya 2xaa2y2,0ya;D 1
D3
y2 D 2:2ax2a,ay2a;
D3:a
a2y2 x2a,
0ya;
故I
a
d
0
a
yy2
a2y2
2a
2a
f(x,y)d x a
00
00
2I
11
1
dx f(x)f(y)dy d
x
x
f(x)f(y)dy
0x
0
0
1
dx
1
f
1
1
(x)f(y)dy f(x)dx f(y)dy
A2
00
0
0
2 计 y 算 x 2 d .其 D : 1 中 x 1 ,0 y 1 . D
解 先去掉绝对值符号,如图
yx2d
D3
有些二次积分为了积分方便, 还需交换积分顺序.
例5. 交换下列积分顺序
2 x 2
22 8 x 2
I 0 d x 0 2f(x ,y )d y 2 d x 0 f(x ,y )d y
解: 积分域由两部分组成:
y
D1:00yx122x2, D2:02yx822x2 将 D D 1D 2视为Y–型区域 , 则
5. 证明:f设 (x)为正的连续函数,则
b
b
f (x)dx
1
dx(ba)2.
a
a f (x)
证:左端
b
b
f(x)dx
1
dy
f (x) dxdy
a
a f(y)
D f (y)
D
f f
(y) (x)
dxdy
D:aaxybb
1 f(x) f(y)
2D [f(y)f(x)]dxdy
D
f(x) f(y)
a
a
证:左端
b
b
f(x)dx f(y)dy
f(x)f(y)dxdy
a
a
D
1 [f2(x)f2(y)d ]xdy 2D
D:aaxybb
1 bd ybf2 (x )d x bd xbf2 (y )d y
2a a
aa
babf2(x)dxbf2(y)dy
2a
a
(ba) bf2(x)dx a
V8
R2x2dxdy8 R R2x2dx
R2 x2
dy
D
0
0
8 R(R2x2)dx 16 R 3
0
3
例 12 求由下列曲面所围成的立体体积,
z x y,z xy, x y 1, x 0, y 0.
解 曲面围成的立体如图. 所围立体在 xoy 面
上的投影是
0xy 1 , xyx,y
第二节 二重积分的计算 一、利用直角坐标计算二重积分
如果积分区域 D 为: 1(x)y2(x),axb.
[X-型区域]
y2(x)
D
y1(x)
y2(x)
D
y1(x)
a
b
a
b
其中函数1(x)、2(x) 在区间 [a,b]上连续.
X型区域的特点: 穿过区域且平行于y轴的直
线与区域边界相交不多于两个交点.
根据二重积分的几何意义,当 f(x ,y)0 ,(时x ,,y) D

y2 x y2 D:
1 y2
oD
1
4x yx2
2
y2
xyd dy
D
1
y2
xydx
2 1
1 2
x2
y
y2 y2
dy
1 2[y(y2)2y5]dy 2 1
1 y44y32y21y6 2 45
24 3
6 1 8
例3 计算 x2d.其D 中 由 yx,y1,x2
y2
D
x
围成.
解 X-型 D:1yx,1x2. x
D
D1
(x2 y)d(yx2)d
D2
D1D2
D3
1 dx x 2 (x 2 y )d y 1 d1 x (y x 2 )d y 11 .
1 0
1 x 2
15
3. 计算二重积分
I (x2xyD由直线 y x ,y 1 ,x 1围成 .
解:积分域如图, 添加辅助线 yx,将D 分为 D1, D2 ,
D
点 分 别 为 (0,0) , ( ,0),( , ) 的 三 角 形 闭 区 域 .
3 、 将 二 重 积 分 f ( x , y )d ,其 中 D 是 由x 轴 及 半 圆 周
D
x 2 y2 r 2( y 0)所 围成 的闭 区域,化 为先 对 y 后 对 x 的 二 次 积 分 ,应 为 _____________________.
f(x,y)f(x,y)f(x,y)f(x,y)f(x,y)
2
2
f1(x, y)
f2(x,y) 均非负
D f (x ,y )d x d y D f 1 (x ,y )d x d y
D f2(x,y)dxdy
因此上面讨论的二次积分法仍然有效 .
说明: (1) 若积分区域既是X–型区域又是Y –型区域 ,
x2
2
x x 2
d y2
D
1dx1 x
dy y2
2 x2 x ( ) dx
2
(x3 x)dx
1
y1
1
D
x
9 .
4
例4 计算二重I积 分 Dsiynyd,
y
1
其中 D由y x, yx所围 .
yx y x
解 I(按 先 1dy后 xx积 x si分ny次 dy序计) 算积不出o的积分,无1法计算x。
ff((xy))dxdyD 1dxdy(ba)2
一 、填 空题:
练习题
1 、 ( x 3 3 x 2 y y 3 )d ________________. 其 中
D
D : 0 x 1,0 y 1.
2 、 x cos( x y )d _ _ _ _ __ _ _ __ _ _ _ __ . 其 中 D 是 顶
则有 Df(x,y)dxdy
b
dx
a
2(x) f(x,y)dy
1(x)
相关文档
最新文档