风险资产的定价模型
投资学中的资本资产定价模型(CAPM)风险与预期收益的关系

投资学中的资本资产定价模型(CAPM)风险与预期收益的关系资本资产定价模型(Capital Asset Pricing Model, CAPM)是投资学中广泛应用的理论模型,它用于评估资产的预期收益与风险之间的关系。
该模型的核心思想是通过系统性风险,即贝塔系数,来解释预期收益率,从而提供了一种衡量投资风险的方法。
本文将探讨CAPM模型中风险与预期收益之间的关系。
一、CAPM模型基本原理CAPM模型是由美国学者威廉·夏普、约翰·莱特纳和杰克·特雷纳提出的。
该模型建立在一系列假设的基础上,包括投资者风险厌恶程度相同、无风险利率存在、市场资产组合是风险资产的惟一有效组合等。
根据这些假设,CAPM模型得出了风险与预期收益之间的线性关系,即预期收益率等于无风险利率加上风险溢价,而风险溢价等于资产的贝塔系数乘以市场风险溢价。
二、风险与预期收益的关系在CAPM模型中,风险通过资产的贝塔系数来度量。
贝塔系数是一个衡量资产价格与市场整体波动性之间关系的指标,它代表了资产相对于市场的敏感性。
贝塔系数大于1表示资产的价格波动幅度大于市场,小于1表示资产的价格波动幅度小于市场,等于1表示资产的价格波动与市场相同。
根据CAPM模型,贝塔系数越高,意味着资产的风险越高,预期收益也越高。
这是因为高风险资产需要提供更高的预期收益率来吸引投资者。
三、市场风险溢价CAPM模型中的市场风险溢价是指投资者愿意支付的超过无风险利率的溢价。
市场风险溢价表示了投资者对承担市场整体风险的回报要求。
根据CAPM模型,市场风险溢价等于市场整体风险与无风险利率之差,即市场风险溢价=市场预期收益率-无风险利率。
四、CAPM模型的应用与局限性CAPM模型在投资组合的风险评估、资产定价等方面具有广泛的应用。
通过使用CAPM模型,投资者能够评估特定资产的预期收益与风险,并与市场整体表现进行比较,以作出投资决策。
然而,CAPM模型也存在一定的局限性。
收益和风险资本资产定价模型

收益和风险资本资产定价模型收益和风险资本资产定价模型(CAPM)是一个经济学模型,被广泛用于计算资本资产的合理预期收益率。
首先,CAPM的主要假设是市场处于均衡状态。
它认为所有投资者都希望最大化自己的收益,同时考虑到风险。
根据CAPM,市场中的每个投资者都持有组合资产,这些资产按照其市值加权,并且将期望收益和风险降到最低限度。
CAPM的关键组成部分是资本市场线(CML)。
CML是一个直线,表示了投资组合的预期收益率和该投资组合的标准差之间的关系。
该直线的斜率被称为市场风险溢价(Market Risk Premium),它代表了投资者在承担额外风险时所能获得的回报。
CAPM的核心公式是:E(Ri) = Rf + βi(MRP)其中,E(Ri)表示资产i的期望收益率,Rf表示无风险利率,βi 表示资产i的系统风险,MRP表示市场风险溢价。
CAPM的优点之一是其简单性。
它只需要几个基本参数(无风险利率、市场风险溢价和资产的β值),就可以计算资产的预期收益率。
这使得CAPM成为金融经济学中最受欢迎的模型之一。
然而,CAPM也存在一些限制和风险。
首先,CAPM基于一系列理论假设,包括市场的完全竞争和投资者的理性行为。
然而,现实中的市场往往并不完全竞争,并且投资者可能不总是理性的。
其次,CAPM忽略了其他因素对资产收益率的影响。
例如,市场上的信息不对称、政策变化和宏观经济因素等都可能影响资产的预期收益率,而这些因素并未纳入CAPM模型中。
最后,CAPM的计算结果依赖于各个参数的估计值。
例如,无风险利率和市场风险溢价的估计可能存在误差,这将直接影响到资产预期收益率的计算结果。
综上所述,CAPM是一个有用的工具,可以帮助投资者计算资产的合理预期收益率。
然而,投资者需要认识到CAPM的局限性,并结合其他因素进行综合分析,以更好地评估投资风险和收益。
当提到投资和金融市场时,资本资产定价模型(CAPM)是一个普遍使用的理论。
第章收益和风险资本资产定价模型

• For well-diversified portfolios, unsystematic risk is very small
• Consequently, the total risk for a diversified portfolio is essentially equivalent to the systematic risk
return for the portfolio? •DCLK: 2/15 = .133
– DCLK: 19.69% – KO: 5.25% – INTC: 16.65%
•KO: 3/15 = .2 •INTC: 4/15 = .267
– KEI: 18.24%
•KEI: 6/15 = .4
• E(RP) = .133(19.69) + .2(5.25) + .267(16.65) + .4(18.24) = 15.41%
– 可风险风险又称非系统性风险或公司特有风险,是通过投
资组合可以分散掉的风险。Includes such things as labor strikes, part shortages, etc.
Total Risk
• Total risk = systematic risk + unsystematic risk
2024/8/2
19
10.3 投资组合的收益和风险
– 当由两种证券构成投资组合时,只要ρAB<1,投资 组合的标准差就小于这两种证券各自的标准差的加
权平均数,也就是投资组合多元化的效应就会发生
风险资产定价模型

二、资产定价理论发展进程图示
投资组合 选择理论 Portfolio Selection 1952 年
资本结 构理论 (MM 定 理)中无 风险套 利假设 的提出 1958 年(三)三个来自子例子 1:如何给土豆定价
知晓自己土豆的总产量、总成本和单位成本; 把土豆拿到集市上:比较别人家土豆的质量;询问别人家土豆的价格,比如每斤 0.2 元; 给自己土豆定价:理性生产者或销售者不会定价过高,也不会定价过低。因为定价过高卖不 出去,定价过低又赔钱。是 0.30 元、0.20 元还是 0.1 元? 土豆定价中包含均衡定价的思想:按社会平均生产成本和平均收益率定价,同时考虑供求因 素。
现在,如果出现正面奖励 2 元,出现反面奖励 1 元,问该项游戏如何定价?
该项游戏的期望收益= 1 1 2+ 1=1 0.5 1.5 2 2
分析 对于一个风险厌恶型的投资者,而且又是理性投资者,投资参与该游戏的价格不能高于游 戏的期望收益(即现金流入) ,即不能高于 1.5 元。如果低于 1.5 元,多玩就会赚钱;如果高于 1. 5 元,多玩就不会赚钱,只能赔钱。如果价格定在 1.5 元,买卖双方来说就是一个公平游戏, 按照公平游戏规则定价,就是一种均衡定价的思想。 给投资者带来的期望收益越大(现金流越大) ,投资者越愿意支付更高的价格得到该项资产, 当然,支付的价格越高,所得到的期望收益和现金流就会变小,投资者就会不持有或变现该项 资产,这样资产的价格就会降低,这又提高了期望收益率。
一、 问题的提出 (一) 什么是风险资产和无风险资产? 1. “所谓资产,它能给所有者带来货币收入” (平狄克《微观经济学》第 134 页) 。 资产给它的所有者带来的货币收入或叫收入流,有时是显现的,如房产带来的房租;有 时却是隐含的,它采取资产的价值或价格的升值或贬值的形式,比如由于所持房产或股票未 来的升值或降值所带来的资本增溢或损失等。 2. “风险资产带来的货币流(不管是显现的还是隐含的) ,至少具有一定的随机性,换句话 说,不可能预先确切知道货币流的大小” (同上书第 134 页) ,比如上例中房产所带来的货币 流入和股票所带来的货币流都是随机变化、无法确定的。未来现金流的不确定性,从而持有 风险资产得到未来收益的不确定性,就是持有风险资产的风险。不确定性越大,风险越大。 3. “与风险资产相对,如果一项资产的货币流是可以确切知晓的,那这就是无风险资产” (同 上书第 134 页) ,如短期国债,因为在短期内不会发生政府信用危机,也不会发生大的通货膨 胀。
商业银行的风险定价模型

商业银行的风险定价模型商业银行作为金融机构,其主要业务之一是贷款,而贷款涉及到信用风险和市场风险。
为了合理评估和定价这些风险,商业银行需要借助风险定价模型。
本文将介绍商业银行常用的风险定价模型以及其应用。
一、VaR模型VaR(Value at Risk)模型是商业银行风险管理中最常用的模型之一。
VaR模型能够对金融资产组合的风险进行量化和定价,并通过计算在一定置信水平下的最大可能损失来帮助银行管理风险。
VaR模型的核心是预测损失分布,并计算出在一定置信水平下的极值。
商业银行利用VaR模型进行风险定价,可以在贷款定价时考虑到不同类型的风险,并根据预测的损失分布来确定适当的利率和担保措施。
同时,VaR模型还可以帮助银行进行风险监控和风险分散,提高资金利用率和盈利能力。
二、CAPM模型CAPM(Capital Asset Pricing Model)模型是用于评估金融资产预期回报率的经济模型。
商业银行可以借助CAPM模型来对贷款项目进行定价。
CAPM模型认为,一个资产的预期回报率应该与市场回报率以及该资产与市场之间的相关性有关。
商业银行利用CAPM模型进行风险定价时,首先需要估计资产与市场之间的相关性,并根据市场回报率和风险溢价计算出该资产的预期回报率。
然后,在贷款定价过程中,银行可以根据该资产的预期回报率和风险水平来确定适当的利率和还款期限。
三、CVA模型CVA(Credit Value Adjustment)模型是商业银行用于评估信用风险的模型。
CVA模型通过衡量违约风险对贷款价值的影响,为银行在贷款定价和风险管理中提供重要参考。
CVA模型考虑到了债务人的违约概率、违约损失率以及银行的违约对策等因素。
商业银行利用CVA模型进行风险定价时,可以综合考虑债务人的信用状况和市场风险因素,对贷款的利率和担保要求进行合理调整。
CVA模型还可以帮助银行在贷款发放前进行风险评估和控制,降低信用风险带来的损失。
综上所述,商业银行的风险定价模型在贷款定价、风险管理和风险监控中发挥着重要作用。
资产资本定价模型理解

资产资本定价模型(Capital Asset Pricing Model,简称CAPM)是一种研究风险资产在市场中的均衡价格的模型,由威廉·夏普在马科维兹的投资组合理论的基础上提出。
以下是关于资产资本定价模型的详细解释:1.资产资本定价模型主要研究的是风险与要求的收益率之间的关系。
具体来说,它研究的是投资者在面对不同风险水平时所要求的预期收益率。
2.资产资本定价模型认为,投资者对风险的态度可以用其对风险的厌恶程度来衡量。
风险厌恶程度越高,投资者对风险的容忍度越低,要求的预期收益率也就越高。
3.资产资本定价模型的核心公式为Ri=Rf+β×(Rm-Rf),其中Ri表示资产的预期收益率,Rf表示无风险利率,Rm表示市场组合的收益率,β表示资产的贝塔系数,反映了资产相对于市场的波动性。
4.资产资本定价模型中,市场组合的收益率与无风险利率的差值被称为市场风险溢价。
这个溢价反映了市场整体对风险的偏好。
如果风险厌恶程度高,则市场风险溢价的值就大。
5.资产的贝塔系数是衡量该资产相对于市场的波动性的指标。
贝塔系数大于1,说明该资产的波动性大于市场平均水平,其预期收益率也会相应地高于市场平均水平;反之,贝塔系数小于1,说明该资产的波动性小于市场平均水平,其预期收益率也会相应地低于市场平均水平。
6.资产资本定价模型是一种线性回归模型,其成立需要一系列的假设前提,如没有交易成本、资产可以无限分割、存在大量的投资者等等。
然而,这些假设在现实中较为苛刻,难以全部实现。
总的来说,资产资本定价模型是一种理论工具,它可以帮助投资者理解和预测不同风险水平下的预期收益率。
然而,它也具有一定的局限性,实际应用中需要考虑多种因素。
风险、收益与资本资产定价模型

风险、收益与资本资产定价模型风险、收益与资本资产定价模型(CAPM)是一个经济学模型,用于解释资本市场中资产价格与预期收益率之间的关系。
这个模型是由美国金融学家威廉·斯托纳·沙普(William Sharpe)、约翰·拉尔森·特雷纳和杰克·特雷纳(John Lintner & Jack Treynor)在1960年代提出的。
CAPM的基本理念是,投资者对投资组合的风险和收益之间存在着一种线性关系。
它假设投资者在选择投资组合时,会考虑到该组合的风险水平,并且只愿意为承担风险而获得的预期收益支付一个合理的代价。
CAPM中的关键概念是风险和贝塔(Beta)值。
贝塔值是衡量资产相对于整个市场波动性的指标。
当贝塔值大于1时,资产的价格波动幅度比市场平均水平要大;当贝塔值小于1时,资产的价格波动幅度相对较小。
CAPM通过贝塔值来衡量投资风险,并据此预测资产的预期收益率。
CAPM模型的核心公式为:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)表示资产i的预期收益率,Rf表示无风险收益率(通常以短期国债利率为代表),E(Rm)表示市场整体的预期收益率,而βi则是资产i的β系数。
根据这个公式,CAPM模型认为资产的预期收益率应该与无风险收益率和市场整体的预期收益率之间存在一个正比关系,且该正比关系的斜率由资产的β系数决定。
换言之,如果一个资产的β系数高于1,那么其预期收益率将高于市场整体的预期收益率;反之,如果β系数低于1,那么其预期收益率将低于市场整体的预期收益率。
然而,CAPM模型也有其局限性。
首先,该模型假设了市场是完全有效的,投资者可以获得对所有信息的即时访问并作出理性的决策。
但事实上,市场并不总是完全有效,投资者很难预测出所有信息,因此无法完全依赖CAPM模型来预测资产的预期收益率。
其次,CAPM模型忽视了其他影响资产价格和预期收益率的因素,如市场流动性、政治风险、经济周期等。
财务管理中的风险定价模型

财务管理中的风险定价模型财务管理是企业中至关重要的一个方面,其核心任务之一就是确定资产和投资项目的风险,并且对风险进行合理定价。
在这一过程中,风险定价模型成为了财务管理的重要工具之一。
本文将探讨财务管理中的风险定价模型,介绍几种常用的模型,并讨论其应用和限制。
一、风险定价模型的基本原理风险定价模型是通过对风险因素进行量化分析,进而确定资产或投资项目的预期收益率的模型。
其基本原理是通过考虑风险因素的影响,计算资产或投资项目的风险溢价,从而确定其预期收益率。
常用的风险定价模型有CAPM模型和APT模型。
二、CAPM模型1. 概述CAPM模型是资本资产定价模型(Capital Asset Pricing Model)的缩写,由Sharpe、Lintner和Mossin等学者在上世纪60年代提出。
该模型通过考虑资产的非系统风险和系统风险,通过风险溢价来确定资产的预期收益率。
2. 公式及要素CAPM模型的公式为:E(Ri) = rf + βi(E(Rm) - rf),其中E(Ri)为资产i的预期收益率,rf为无风险利率,βi为资产i的贝塔系数,E(Rm)为市场组合的预期收益率。
3. 应用和限制CAPM模型是当前最为广泛应用的风险定价模型之一,其应用范围涵盖股票、债券等各类金融资产。
然而,该模型也存在一些限制,例如对于非市场风险的忽略以及假设市场是完全有效的等。
三、APT模型1. 概述APT模型是套利定价理论(Arbitrage Pricing Theory)的缩写,由罗斯(Ross)于上世纪70年代提出。
与CAPM模型不同的是,APT模型基于套利的原理,通过考虑多个因素对资产收益率的影响,从而确定资产的预期收益率。
2. 公式及要素APT模型的公式为:E(Ri) = rf + β1f1 + β2f2 + … + βnf(n),其中E(Ri)为资产i的预期收益率,rf为无风险利率,β1、β2等为资产i对因素f1、f2等的灵敏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/28
32
E(RP) P
A
2020/11/28
σ(RP)
33
4.无风险借入对投资组合的影响
对于不同的投资者而言,无风险借入的 引入对他们的投资组合选择的影响也不同。
对于风险厌恶程度较轻,从而其选择的 投资组合位于DT弧线上的投资者而言,由 于代表其原来最大满足程度的无差异曲线 I1与AT直线相交,因此不再符合效用最大 化的条件。因此该投资者将选择其无差异 曲线与AT线段的切点O’所代表的投资组 合。如图所示,对于该投资者而言,他将 进行无风险借入并投资于风险资产。
2020/11/28
12
E(RP)
r=4%
2020/11/28
σ(RP)
13
2.投资于一个无风险资产和一个风险组合的 情形
假设风险资产组合P是由风险资产C和D组 成的。经过前面的分析可知,P一定位于 经过C、D两点的向上凸出的弧线上。如果 我 期们收仍益然率用和标R1准和差σ1代,表用风X1险代资表产该组组合合的在预整 个投资组合中所占的比重,则前面的结论 同样适用于由无风险和风险资产组合构成 的投资组合的情形。这种投资组合的预期 收益率和标准差一定落在A、P线段上。
6
一、无风险资产的定义
➢在单一投资期的情况下,无风险资产的回 报率是确定的
➢无风险资产的标准差为零
➢无风险资产的回报率与风险资产的回报率 之间的协方差也是零
2020/11/28
7
➢根据定义无风险资产具有确定的回 报率,因此:
首先,无风险资产必定是某种具有固 定收益,并且没有任何违约的可能的 证券。
2020/11/28
25
1.无风险借款并投资于一种风险资产的情 形 仍然用前面的例子,此时X1 >0,X2<0 在前例中5种组合的基础上,我们再加入4 种组合:
组合F 组合G 组合H 组合I
X1 1.25 1.50 1.75 2.00
X2 -0.25 -0.50 -0.75 -1.00
2020/11/28
对具有一定风险厌恶程度投资者的地
投资组合的效用值是:U Er 0.005A 2
若设风险资产投资比例是y,则对具有 一定风险厌恶程度的投资者来说,最优 风险资产的投资比例是:
y E(rp ) rf
2020/11/28
0.01A
2 p
40
五、加入无风险资产对有效集 影响的数学推导(不做要求)
2020/11/28
36
四、允许同时进行无风险借贷—— 无风险借入和贷出对有效集的影响
1.同时进行无风险借贷对有效集的影响
当既允许无风险借入又允许无风 险贷出时,有效集也将变成一条直线 (该直线经过无风险资产A点并与马 科维兹有效集相切),相应地降低了 系统风险。切点T是最优风险资产组合, 因为它是酬报波动比最大的风险资产 组合。
2020/11/28
16
• T点代表马科维兹有效集中众多的有效组 合中的一个,但它却是一个很特殊的组合。
因为对于所有由风险资产构成的组合来说,
没有哪个点与无风险资产相连接形成的直 线会落在T点与无风险资产的连线的西北 方。换句话说,在所有从无风险资产出发
到风险资产或是风险资产组合的连线中, 没有哪一条线能比到T点的线更陡。由于 马科维兹有效集的一部分是由这条线所控 制,因而这条线就显得很重要。
2020/11/28
William Sharpe,
(1934-)资本资产
定价模型
(CAPM)
5
第一节 无风险借贷对有马科维 兹有效集的影响
一、无风险资产的定义 二、允许无风险贷款下的投资组合 三、允许无风险借入下的投资组合
四、允许同时进行无风险借贷——无 风险借入和贷出对有效集的影响
2020/11/28
该组合的预期收益率为:RP=X1R1+X2rf 组合的标准差为:σp=X1σ1
2020/11/28
9
❖考虑以下5种组合:
组合A 组合B 组合C 组合D 组合E
X1
0.00 0.25 0.5
0.75 1.00
X2
1.00 0.75 0.5
0.25 0.00
✓假设风险资产的回报率为16.2%,无风险 资产的回报率为4%,那么根据上面的公式, 5种组合的回报率和标准差如下:
2020/11/28
34
E(RP)
I1 T
O
D
A
C
2020/11/28
σ(RP)
35
• 对于较厌恶风险从而其选择的投资 组合位于CT弧线上的投资者而言, 其投资组合的选择将不受影响。因 为只有CT弧线上的组合才能获得最 大的满足程度。对于该投资者而言, 他只会用自有资产投资于风险资产, 而不会进行无风险借入。
2020/11/28
37
➢ 该直线上的任意一点所代表的投资组合,都可 以由一定比例的无风险资产和由T点所代表的 有风险资产组合生成。
➢ 因此得出一个在金融上有很大意义的结果。
对于从事投资服务的金融机构来说,不管 投资者的收益/风险偏好如何,只需要找到切 点T所代表的有风险投资组合,再加上无风险 资产,就能为所有投资者提供最佳的投资方案。 投资者的收益/风险偏好,就只需反映在组合 中无风险资产所占的比重。
2020/11/28
18
E(RP) T
A
C
2020/11/28
D
σ(RP)
19
4.无风险贷出对投资组合选择的影响
对于不同的投资者而言,无风险贷款 的引入对他们的投资组合选择有不同的 影响。
对于风险厌恶程度较轻,从而其选择 的投资组合位于DT弧线上的投资者而言, 其投资组合的选择将不受影响。因为只 有DT弧线上的组合才能获得最大的满足 程度。对于该投资者而言,他仍将把所 有资金投资于风险资产,而不会把部分 资金投资于无风险资产。
2020/11/28
17
• 从图中可以看出,在引入AT线段之后,即投 资者可以投资于无风险资产时,CT弧将不再 是有效集。因为对于T点左边的有效集而言, 在预期收益率相等的情况下,AT线段上风险 均小于马科维兹有效集上的组合的风险,而 在风险相同的情况下,AT线段上的预期收益 率均大于马科维兹有效集上组合的预期收益 率。按照有效集的定义,CT弧线的有效集将 不再是有效集。由于AT线段上的组合是可行 的,因此引入无风险贷款后,新的有效集由 AT线段和TD弧线构成,其中直线段AT代表无 风险资产和T以各种比例结合形成的一些组合。
26
组合 X1
A
0.00
B
0.25
C
0.50
D
0.75
E
1.00
F
1.25
G
1.50
H
1.75
I
2020/11/28
2.00
X2 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00
期 望 回 报 标准差
率
4.00% 0.00%
7.05
3.02
10.10 6.04
13.15 9.06
16.10 12.08
19.25 15.10
22.30 18.12
25.35 21.14
28.40
24.16
27
• 通过作图可以发现,4个包含无风险 借入的组合和5个包含无风险贷出的 组合是在同一条直线上,而包含无 风险借入的组合在AB线段的延长线 上,这个延长线再次大大扩展了可 行集的范围。不仅如此,还可以看 到,借入的资金越多,这个组合在 直线上的位置就越靠外。
2020/11/28
30
E(RP) T
A
C
2020/11/28
D
σ(RP)
31
3.无风险借入对有效集的影响
引入无风险借款后,有效集也将发生重 大变化。图中,弧线CD仍然代表马科维兹 有效集,T点仍表示CD弧与过A点直线的相 切点。在允许无风险借款的情形下,投资 者可以通过无风险借款并投资于风险资产 或风险资产组合T使有效集由TD弧线变成AT 线段向右边的延长线。
何不确定性,投资者的这种行为常常被称为
“无风险借入”。同时,为方便起见,我们
假定,为贷款而支付的利率与投资于无风险 资产而赢得的利率相等。
2020/11/28
24
• 在前面的例子中,我们用X2表示投资于无 风险资产的比例,而且X2限定为从0到1之 间的非负值。现在,由于投资者有机会以 相同的利率借入贷款,X2便失去了这个限 制。如果投资者借入资金,X2可以被看作 是负值,然而比例的总和仍等于1。这意 味着,如果投资者借入了资金,那么投资 于风险资产各部分的比例总和将大于1。
❖尽管这里仅对5个特定的组合进行了分析, 但可以证明:有无风险资产和风险资产构 成的任何一种组合都将落在连接它们的直 线上;其在直线上的确切位置将取决于投 资于这两种资产的相对比例。不仅如此, 这一结论还可以被推广到任意无风险资产 与风险资产的组合上。这意味着,对于任 意一个有无风险资产和风险资产所构成的 组合,其相应的预期回报率和标准差都将 落在连接无风险资产和风险资产的直线上。
2020/11/28
10
组合 X1
X2
期望回 标准差
报率
A
0.00 1.00 4.00% 0.00%
B
0.25 0.75 7.05 3.02
C
0.50 0.50 10.10 6.04
D
0.75 0.25 13.15 9.06
E
1.00 0.001/28
11
❖可以发现,这些点都位于连接代表无风险 资产和风险资产的两个点的直线上。