广东深圳市宝安中学八年级数学下学期期中试题(含解析)
广东省深圳市八年级数学下学期期中试卷(含解析) 新人教版

2015-2016学年广东省深圳市八年级(下)期中数学试卷一、选择题(本部分共12小题,每小题3分,共36分,每小题只有一个选项正确)1.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>2.下列各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)3.下列多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)24.将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.若a﹣b=2,ab=3,则ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣58.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或209.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣110.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,则下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点11.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是()A.17 B.16 C.15 D.1212.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C. cm2D. cm2二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:4x2﹣8x+4=______.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,则∠DAE=______.15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),则不等式kx1+b1<kx2+b2的解集是______.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段A1C1,A2C2,…,则A1C1=______;则A3C3=______;则A n C n=______.三、解答题(本题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角顶点A在y轴,画出△OAB.①点B的坐标是______;②把△OAB向上平移5个单位后得到对应的△O1A1B1,画出△O1A1B1,点B1的坐标是______;③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是______.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.21.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.22.某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点P点Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年广东省深圳市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题只有一个选项正确)1.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.a﹣1<b﹣1 C.﹣a>﹣b D.>【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,B;根据不等式的性质3,可判断C;根据不等式的性质2,可判断D.【解答】解;A、不等式的两边都加上那个同一个数,不等号的方向不变,故A错误;B、不等式的两边都减去同一个数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都除以同一个负数不等号的方向改,故D正确;故选:D.2.下列各式从左到右,不是因式分解的是()A.x2+xy+1=x(x+y)+1 B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4xy+4y2=(x﹣2y)2D.ma+mb+mc=m(a+b+c)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【解答】解:A、结果不是乘积的形式,不是分解因式,选项正确;B、是分解因式,选项错误;C、是分解因式,选项错误;D、是分解因式,选项错误.故选A.3.下列多项式中,不能运用平方差公式因式分解的是()A.﹣m2+4 B.﹣x2﹣y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2【考点】因式分解-运用公式法.【分析】能运用平方差公式因式分解的式子的特点是:两项平方项;符号相反.【解答】解:A、﹣m2+4符合平方差公式因式分解的式子的特点,故A错误;B、﹣x2﹣y2两项的符号相同,所以不能用平方差公式因式分解,故B正确;C、x2y2﹣1符合平方差公式因式分解的式子的特点,故C错误;D、(m﹣a)2﹣(m+a)2符合平方差公式因式分解的式子的特点,故D错误.故选B.4.将一把直尺与一把三角板如图那样放置,若∠1=35°,∠2的度数是()A.65° B.70° C.75° D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由三角形外角的性质即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=35°,∴∠3=∠1=35°,∴∠2=35°+30°=65°.故选A.5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.7.若a﹣b=2,ab=3,则ab2﹣a2b的值为()A.6 B.5 C.﹣6 D.﹣5【考点】因式分解-提公因式法.【分析】直接将原式提取公因式ab,进而分解因式将已知代入求出答案.【解答】解:∵a﹣b=2,ab=3,则b﹣a=﹣2,∴ab2﹣a2b=ab(b﹣a)=3×(﹣2)=﹣6.故选:C.8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.9.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【考点】解一元一次不等式.【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.10.已知△ABC中,求作一点P,使P到∠A的两边的距离相等,且PB=PC,则下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P是AC、AB两边上中垂线的交点C.P是∠A的角平分线与BC的中垂线的交点D.P是∠A的角平分线与AB的中垂线的交点【考点】角平分线的性质;线段垂直平分线的性质.【分析】分别作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点.【解答】解:作出∠BAC的平分线及线段BC的垂直平分线,其交点即为所求点,故选C.11.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是()A.17 B.16 C.15 D.12【考点】一元一次不等式的应用.【分析】根据竞赛得分=10×答对的题数+(﹣5)×未答对的题数,根据本次竞赛得分要超过100分,列出不等式求解即可.【解答】解:设要答对x道.10x+(﹣5)×(20﹣x)>100,10x﹣100+5x>100,解得:x>,根据x必须为整数,故x取最小整数14,即小彤参加本次竞赛得分要超过100分,他至少要答对14道题.故选C.12.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C. cm2D. cm2【考点】三角形的面积.【分析】根据三角形的面积公式,知:等底等高的两个三角形的面积相等.【解答】解:S阴影=S△BCE=S△ABC=1cm2.故选:B.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:4x2﹣8x+4= 4(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式4,再根据完全平方公式进行二次分解即可求得答案.【解答】解:4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2.故答案为:4(x﹣1)2.14.如图,△ABC中,AD⊥BC,AE是∠BAC的平分线,∠B=60°,∠BAC=84°,则∠DAE= 12°.【考点】三角形内角和定理.【分析】由角平分线的定义可求得∠BAE,在Rt△ABD中可求得∠BAD,再利用角的和差可求得∠DAE的大小.【解答】解:∵AE是∠BAC的平分线,∠BAC=84°,∴∠BAE=∠BAC=×84°=42°,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=42°﹣30°=12°,故答案为:12°15.如图,已知一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),则不等式kx1+b1<kx2+b2的解集是x<1 .【考点】一次函数与一元一次不等式.【分析】看两函数交点坐标左边的图象所对应的自变量的取值即可.【解答】解:一次函数y1=kx1+b1与一次函数y2=kx2+b2的图象相交于点(1,2),所以不等式kx1+b1<kx2+b2的解集是x<1.故答案为:x<1.16.如图,已知Rt△ABC中,AC⊥BC,∠B=30°,AB=10,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A1⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段A1C1,A2C2,…,则A1C1= 5×()2;则A3C3= 5×()6;则A n C n= 5×()2n.【考点】勾股定理;含30度角的直角三角形.【分析】首先求出∠A的度数和AC的长,根据角的正弦函数与三角形边的关系,可求出各边的长,然后再总结出规律.【解答】解:∵Rt△ABC中,AC⊥BC,∠B=30°,AB=10,∴∠A=60°,AC=AB=5,∴sinA=,∴A1C=AC×=5×,又∵A1C1⊥BC,CA1⊥AB,∴∠A1CC1=∠A,∴在Rt△A1C1C中,根据锐角三角函数得,A1C1=5×()2,以此类推,则A3C3=5×()6;∴A n C n,5×()2n;故答案为:,5×()6,5×()2n.三、解答题(本题共7小题,共52分)17.计算:(1)解不等式:x﹣(2x﹣1)≤3(2)解不等式组:,并把它的解集在数轴上表示出来.(3)因式分解:﹣4a2x+12ax﹣9x.【考点】解一元一次不等式组;提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可;(3)先提取公因式,再利用公式法进行因式分解即可.【解答】解:(1)去括号得,x﹣2x+1≤3,移项得,x﹣2x≤3﹣1,合并同类项得,﹣x≤2,把x的系数化为1得,x≥﹣2;(2)由①得,x≥﹣3,由②得,x<2,故不等式组的解集为:﹣3≤x<2.在数轴上表示为:;(3)原式=﹣x(4a2﹣12a+9)=﹣x(2a﹣3)2.18.先因式分解,再求值:4x(m﹣1)﹣3x(m﹣1)2,其中x=,m=3.【考点】因式分解的应用.【分析】先分解因式,再代入求值.【解答】解:4x(m﹣1)﹣3x(m﹣1)2,=(m﹣1)[4x﹣3x(m﹣1)],=(m﹣1)(4x﹣3mx+3x),=(m﹣1)(7x﹣3mx),当x=,m=3时,原式=(3﹣1)(7×﹣3×3×)=2×(﹣3)=﹣6.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,Rt△OAB的B点在第三象限,到x轴的距离为3,到y轴的距离为4,直角顶点A在y轴,画出△OAB.①点B的坐标是(﹣4,﹣3);②把△OAB向上平移5个单位后得到对应的△O1A1B1,画出△O1A1B1,点B1的坐标是(﹣4,1);③把△OAB绕原点O按逆时针旋转90°,画出旋转后的△O2A2B2,点B2的坐标是(3,﹣4).【考点】作图-旋转变换;作图-平移变换.【分析】①根据第三象限内点的坐标特征写出B点坐标;②利用网格特点和平移性质写出A、B、O的对应点A1、B1、O1的坐标,然后描点得到△O1A1B1;③利用网格特点和旋转的性质画出A、B、O的对应点A2、B2、O2,从而得到△O2A2B2.【解答】解:①点B的坐标是(﹣4,﹣3);②如图,△O1A1B1为所作,点B1的坐标是(﹣4,1);③如图,△O2A2B2为所作,点B2的坐标是(3,﹣4).故答案为(﹣4,﹣3),(﹣4,1),(3,﹣4).20.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D,E.(1)求证:AE=2CE;(2)求证:DE=EC.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE;(2)通过BE=AE,得到∠ABE=∠A=30°,求得∠CBE=∠ABE=30°,根据角平分线的性质即可得到结论.【解答】解:(1)连接BE,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=90°﹣∠A=60°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)∵BE=2CE,AE=2CE;∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=∠ABE=30°,∵DE⊥AB,∠C=90°,∴DE=CE.21.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.【考点】一元一次不等式的应用.【分析】首先设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品,利用使此车间每天所获利润不低于15600元,得出不等关系进而求出即可.【解答】解:设车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.根据题意可得,12x×100+10(10﹣x)×180≥15600,解得;x≤4,∴10﹣x≥6,∴至少要派6名工人去生产乙种产品才合适.22.某校张老师寒假准备带领他们的“三好学生”外出旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人400元,经协商,甲旅行社表示:“如果带队张老师买一张全票,则学生可半价”;乙旅行社表示:“所有游客全部享受6折优惠.”则:(1)设学生数为x(人),甲旅行社收费为y甲(元),乙旅行社收费为y乙(元),两家旅行社的收费各是多少?(2)哪家旅行社收费较为优惠?【考点】一次函数的应用.【分析】(1)设我校区级“三好学生”的人数为x人.则选甲旅行社时总费用=400+400×50%x,选乙旅行社时总费用=400×60%(x+1);(2)当400+400×50%x<400×60%(x+1)时,甲旅行社较为优惠.反之,乙旅行社优惠,相等时,两旅行社一样.【解答】解:(1)根据题意得,甲旅行社时总费用:y甲=400+400×50%x,乙旅行社时总费用:y乙=400×60%(x+1);(2)设我校区级“三好学生”的人数为x人,根据题意得:400+400×50%x<400×60%(x+1),解得:x>10,当学生人数超过10人,甲旅行社比较优惠,当学生人数10人之内,乙旅行社比较优惠,刚好10人,两个旅行社一样.23.如图,已知△ABC中AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点P点Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点P点Q的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上相遇?【考点】三角形综合题.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS 即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)①∵t=1(秒),∴BP=CQ=3(厘米)∵AB=12,D为AB中点,∴BD=6(厘米)又∵PC=BC﹣BP=9﹣3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t===1.5(秒),此时V Q===4(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24(秒)此时P运动了24×3=72(厘米)又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.。
2017-2018学年广东省深圳市宝安中学八年级(下)期中数学试卷(解析版)

A . 30 或 39B . 30C . 39D .以上答案均不对2017-2018学年深圳市宝安中学八年级(下)期中数学试卷一、选择题(共12题,每题3分,共36分) 1若x y ,则下列式子错误的是 ( )A . x 「1 • y —1B . -3x . -3yC .x 1 . y 1D. x y ->— 3 3 x + y2.若把分式中的 x 和y 都扩大到原来的 3倍,那么分式的值 ( ) A .扩大3倍B .缩小3倍C .缩小6倍D..不变3.下列式子中,从左到右的变形是因式分解的是( )2A . (x —1)(x —2)=x-3x 2 B .x 2 -3x^2 =(x —1)(x —2)2 2 2C . x 4x 4 =x(x -4) 4D . x y=(x y)(x - y)作射线AP 交边BC 于点D ,若CD =4 , AB =15,则厶ABD 的面积是()A A'BA . 15B . 30C . 45D . 606 .已知a , b , c 是三角形的三边,那么代数式 2 2(a -b) -c 的值()A .大于零B .小于零C .等于零D .不能确定7对于非零实数1 1a 、b ,规定 a : b =—若 2 - (2x -1)=1,则 x 的值为()b aA 5r 5c 3 1A .-B .-C .D .—6426& 已知实数x , y 满足 |x_7|,y _16 =0 , 则以x , y 的值为两边长的等腰三角形的周长是( )4•下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是(5.如图,在Rt :ABC 中,/C =90 ,以顶点A 为圆心,适当长为半径画弧,分别交AC , AB 1于点M , N ,再分别以点 M , N 为圆心,大于? MN 的长为半径画弧, 两弧交于点P ,9.如图,将. ABC 绕点A 按逆时针方向旋转120得到△ ABC (点B 的对应点是点B ,点C 的对应点是点C ),连接BB :若AC //BB ,则.CAB •的度数为()A . 15B . 30C . 45D . 6010.若(x 2)是多项式4x 2 5x - m 的一个因式, 则m 等于( )A . -6式x b .kx 4的解集是()A . x . -2B . x 012 .如图,已知 ABC 中,.匕C =90 , AC =BC =魯2 ,将.'ABC 绕点A 顺时针方向旋转 60 到厶AB C •的位置,连接C B ,贝U C B 的长为( )A . 2 7 2B . ~2-C . 3-1D . 1二、填空题(共4题,每题3分,共12分)2 213 .分解因式:(a -b ) -4b 二 ________11 .如图,一次函数 y = x b 与一次函数 y^kx 4的图象交于点P (1,3D . x ::: 1B14.如图所示,.AOP 二/BOP =15 , PC / /OA 交 0B 于 C , PD _ 0A 于 D ,若 PC = 4 ,315 •已知关于x 的分式方程一2黑 0有增根且m = 0,则m 二.x-2 x -4-----------16.如图,在RtAABC 中,.ACB =90,将. ABC 绕顶点C 逆时针旋转得到厶ABC , M 是BC 的中点,P 是A B •的中点,连接PM ,若BC = 2,. BAC =30, 则线段PM 的最大值是 _______ .(1) 2x 2 -4x 2(2) (a 2 b 2)2 -4a 2b 218. (8分)分式化简 2 a 2 —9 (1) (a 3a)-a _3(2) (11 m 1)2 m 4 m 2m 17. ( 8分)因式分解19. (8分)(1)解分式方程:一L 一_1 =1x _1 x -1 (2)解不等式组:3x 1, 413 x :::4220. (5分)先化简,再求值: (V —14? 1 -,其中x是不等式组2x…一4的整数解.X-1 x 2x x 3x-2, 121. (7分)某汽车站站北广场将于2018年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵.(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务.。
广东省深圳市宝安区宝安中学初中部2020年八年级(下)期中考试数学试卷(含答案)

宝安中学(集团)初中部2019-2020学年度第二学期八年级期中考试数学试卷一、选择题(每题3分,共36分)1.已知a<b ,则下列不等式一定成立的是( ) A.33+>+b aB.b a 22>C.b a 33-<-D.0<-b a2.下列图形中,中心对称图形个数是( )A.1个B.2个C.3个D.4个3.下列从左到右的变形中,因式分解正确的是( ) A.1)2(21422+-=+-x x x xB.)2(22-=-x x x xC.1)1)(1(2-=-+x x xD.22)2(42+=++x x x4.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于( ) A.360°B.540°C.720°D.900°5.已知点P (3-m ,1-m )在第二象限,则m 的取值范围在数轴上表示正确的是( )A. B. C. D.6.等腰三角形的一个角是80°,则它的顶角的度数是( ) A.80°B.80°或20°C.80°或50°D.20°7.下列各组线段中,不能构成直角三角形的是( ) A.321、、B.532、、C.532、、D.321、、8.已知mn n m =-22,则nmm n -的值等于( ) A.1B.0C.1-D.41-9.下列命题为真命题的是( ) A.若ab >0,则a >0,b>0B.两个锐角分别相等的两个直角三角形全等C.在一个角的内部,到角的两边距离相等的点在这个角的平分线上D.一组对边平行,另一组对边相等的四边形是平行四边形10.学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品,已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价格为x 元,依据题意列方程正确的是( ) A.105.1600600=-xx B.106005.1600=-xx C.5.160010600=-+x x D.5.110600600=+-x x 11.如图,在△ABC 中,∠C =90°,以点B 为圆心,任意长为半径画弧,分别AB 、BC 于点M 、N .分别以点M 、N 为圆心,以大于21MN 的长度为半径画弧,两弧相交于点P ,过点P 作线段BD ,交AC 于点D ,过点D 作DE ⊥AB 宇2点E ,则下列结论:①CD =ED ;②∠ABD =21∠ABC ;③BC =BE ;④AE =BE 中,一定正确的是( ) A.①②③ B.①②④C.①③④D.②③④12.如图,为一幅重叠放置的三角板,其中∠ABC =∠EDF =90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC =3,则此时OG 的长度为( ) A.223B.323C.23 D.23323- 二、填空题(每题3分,共12分) 13.要使分式41-+x x 有意义,则x 的取值应满足 . 14.如图,一次函数3+-=x y 与一次函数m x y +=2图像交于点(2-,n ),则关于x 的不等式32+-<+x m x 的解集为 .15.如图,口ABCD 中,对角线AC 、BD 交于点O ,OE ⊥AC 于点E ,已知△DCE 的周长为14.则口ABCD 的周长为 .16.如图,在直角坐标系中,正方形OABC 的顶点B 的坐标为(3,3),直线CD 交直线OA 于点D ,直线OE 交线段AB 于E ,且CD ⊥OE ,垂直为点F ,若图中阴影部分的面积是正方形OABC 的面积的31,则△OFC 的周长为 .三、解答题(共52分)17.(8分)因式分解:(1)2422+-x x (2))(16)3y x y x ---(18.(6分)解不等式组⎪⎩⎪⎨⎧+≥++≤-33221)12x x x x (,并求出不等式组的整数解之和.19.(6分)先化简再求值:a a a a a a 44822222-÷⎪⎭⎫- ⎝⎛+-+,其中a 满足方程0142=++a a .20.(6分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (4-,3),B (3-,1),C (1-,3) (1)请按下列要求画图:①平移△ABC ,使A 的对应点A 1 的坐标为(4-,3-),请画出平移后的△111C B A ;②△222C B A 与△ABC 关于原点中心对称,画出△222C B A ;(2)若将△111C B A 绕点M 旋转可得到△222C B A ,请直接写出旋转中心M 点的坐标 .21.(8分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同. (1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能买粽子多少个?22.(9分)如图,在△ABC 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若△AMN 的周长为6,求BC 的长; (2)若∠MON =30°,求∠MAN 的度数;(3)若∠MON =45°,BM =3,BC =12,求MN 的长度.23.(9分)已知:直线643+=x y 与x 轴、y 轴分别相交于点A 和点B ,点C 在线段AO 上.将△ABO 沿BC 折叠后,点O 恰好落在AB 边上点D 处. (1)求出OC 的长?(2)如图,点E 、F 是直线BC 上的两点,若△AEF 是以EF 为斜边的等腰直角三角形,求点F 的坐标;(3)取AB 的中点M ,若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、M 、P 、Q 为顶点的四边形为平行四边形?若存在,请求出所有满足条件的Q 点坐标;若不存在,请说明理由.参考答案一、选择题:二、填空题:三、解答题17.(1)2)1(2-x (2))4)(4)((--+--y x y x y x18.30≤≤x ,整数解之和为6 19.化简为2)2(1+a ,代入求值得3120. (1)画图略(2)M (0,3-)21.(1)咸鸭蛋价格为1.2元,粽子价格为3元(2)最多购买粽子10个 22.(1)BC =6(2)∠MAN =120°(3)MN =5 23.(1)CO =3(2)F (6-,6-)或(2-,2) (3)Q (1-,421)或(1,427)或(7-,43)。
2023-2024学年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷(含解析)

2023-2024学年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷一.选择题(共10小题,每小题3分,共30分)1.(3分)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑、白棋子摆成的图案中,是中心对称图形的是( )A.B.C.D.2.(3分)式子从左到右的变形中,属于因式分解的是( )A.x2﹣1=x•x﹣1B.x2+2xy+1=x(x+2y)+1C.a2b+ab3=ab(a+b2)D.x(x+y)=x2+xy3.(3分)下列不等式变形正确的是( )A.由a>b,得a﹣2<b﹣2B.由a>b,得a2>b2C.由a>b,得|a|>|b|D.由a>b,得﹣2a<﹣2b4.(3分)一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是( )A.﹣1<x<3B.﹣1<x≤3C.﹣1≤x<3D.﹣1≤x≤35.(3分)如果分式中的x、y都扩大到原来的2倍,那么下列说法中,正确的是( )A.分式的值不变B.分式的值缩小为原来的C.分式的值扩大为原来的2倍D.分式的值扩大为原来的4倍6.(3分)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A.8cm B.13cmC.8cm或13cm D.11cm或13cm7.(3分)下列命题中正确的有( )个.(1)等腰三角形的角平分线、中线、高互相重合;(2)在角的内部,到角的两边距离相等的点在这个角的平分线上;(3)有一个角等于60°的等腰三角形是等边三角形;(4)等腰三角形的两边长分别为5和6,则这个三角形的周长为16.A.1B.2C.3D.48.(3分)随着生活水平的提高和环保意识的增强,小亮家购置了新能源电动汽车,这样他乘电动汽车比乘公交车上学所需的时间少用了15分钟,已知电动汽车的平均速度是公交车的2.5倍,小亮家到学校的距离为8千米.若设乘公交车平均每小时走x千米,则可列方程为( )A.B.C.D.9.(3分)如图,Rt△ABC中,∠ACB=90°,BC=4,AC=3,将△ABC绕点B逆时针旋转得△A'BC',若点C'在AB上,则AA'的长为( )A.B.4C.D.510.(3分)把一副三角尺按如图①所示位置放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,DC=14,把三角尺DCE绕点C按顺时针方向旋转15°得到△D1CE1如图②),此时AB 与CD1相交于点O,则线段AD1的长为( )A.B.10C.12D.二.填空题(共5小题,每小题3分,共15分)11.(3分)因式分解5a2﹣a= .12.(3分)由深圳到广州的一条铁路全程约为146千米,高铁全程运行时间为a小时,则高铁的速度是每小时 千米.13.(3分)△ABC中,BC=6,∠A=∠B=60°,那么△ABC的面积是 .14.(3分)如图,平面直角坐标系中,直线y=kx+b与直线y=mx+2相交于点A(﹣3,﹣1),则不等式mx+2<kx+b的解集为 .15.(3分)如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1,则AD的长是 .三.解答题(共7小题)16.(7分)解下列一元一次不等式(组):(1)5x≥3x+1;(2)并把它的解集表示在数轴上.17.(5分)解方程.18.(7分)先化简,再求值:,其中x=2.19.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,1)、C(5,3).(1)将△ABC向上平移1格,向左平移5格,得到△A′B′C′,请画出△A′B′C′;(2)写出B′和C′的坐标;(3)计算△A′B′C′的面积.20.(8分)端午节是中国传统节日,人们有吃粽子的习俗.某商场预测今年端午节期间A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量与节后用200元购进的数量相同.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价是多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,那么该商场节前最多购进多少千克A粽子?21.(10分)【提出问题】某数学活动小组对多项式乘法进行如下探究:①(x+2)(x+3)=x2+5x+6;②(x﹣4)(x+1)=x2﹣3x﹣4;③(y﹣5)(y﹣3)=y2﹣8y+15.通过以上计算发现,形如(x+p)(x+q)的两个多项式相乘,其结果一定为x2+(p+q)x+pq.(p,q为整数)因为因式分解是与整式乘法是方向相反的变形,所以一定有x2+(p+q)x+pq=(x+p)(x+q),即可将形如x2+(p+q)x+pq的多项式因式分解成(x+p)(x+q)(p、q为整数).例如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2).【初步应用】(1)用上面的方法分解因式:x2+6x+8= ;【类比应用】(2)规律应用:若x2+mx+8可用以上方法进行因式分解,则整数m的所有可能值是 ;【拓展应用】(3)分解因式:(x2﹣4x)2﹣2(x2﹣4x)﹣15.22.(10分)(一)问题探究已知:在锐角△ABC中,∠ABC=45°,把线段AC绕点A沿逆时针方向旋转n°得到线段AD,把线段AB绕点A沿顺时针方向旋转n°得到线段AE,分别连结CD、BE、BD、CE.(1)如图①,当0°<n<90°时,线段BD与CE的数量关系是 (直接写出结论,不说理由);(2)如图②,当n=90°时,①探究线段BD与CE的数量关系,并说明理由;②若AB=7,BC=3,求BD的长;(二)解决问题如图③,在四边形ACBD中,AB=7,BC=3,∠ABC=∠ACD=∠ADC=45°,请直接写出线段BD 的长.(不说理由)2023-2024学年广东省深圳市宝安区沙井中学八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑、白棋子摆成的图案中,是中心对称图形的是( )A.B.C.D.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、D不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:C.2.(3分)式子从左到右的变形中,属于因式分解的是( )A.x2﹣1=x•x﹣1B.x2+2xy+1=x(x+2y)+1C.a2b+ab3=ab(a+b2)D.x(x+y)=x2+xy【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不符合因式分解的定义,不是因式分解,,故本选项不符合题意;B、不符合因式分解的定义,不是因式分解,,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、是整式乘法,不是因式分解,故本选项不符合题意.故选:C.3.(3分)下列不等式变形正确的是( )A.由a>b,得a﹣2<b﹣2B.由a>b,得a2>b2C.由a>b,得|a|>|b|D.由a>b,得﹣2a<﹣2b【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【解答】解:A、由a>b,根据不等式的性质1,两边同时减去2可得a﹣2>b﹣2,故此变形错误;B、由a>b,得a2>b2,错误,两边所乘的整式不相同,也不相等,故此变形错误;C、由a>b,得|a|>|b|,错误,例如:﹣2>﹣5,但是|﹣2|<|﹣5|,故此变形错误;D、由a>b,得﹣2a<﹣2b正确;故选:D.4.(3分)一个不等式组的解集在数轴上的表示如图,则这个不等式组的解集是( )A.﹣1<x<3B.﹣1<x≤3C.﹣1≤x<3D.﹣1≤x≤3【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵﹣1处是实心圆点且折线向右,3处是空心圆点且折线向左,∴﹣1≤x<3.故选:C.5.(3分)如果分式中的x、y都扩大到原来的2倍,那么下列说法中,正确的是( )A.分式的值不变B.分式的值缩小为原来的C.分式的值扩大为原来的2倍D.分式的值扩大为原来的4倍【分析】直接利用分式的性质化简得出答案.【解答】解:把分式中的x、y都扩大到原来的2倍,则原式可变为:==,故分式的值扩大为原来的2倍.故选:C.6.(3分)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A.8cm B.13cmC.8cm或13cm D.11cm或13cm【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.7.(3分)下列命题中正确的有( )个.(1)等腰三角形的角平分线、中线、高互相重合;(2)在角的内部,到角的两边距离相等的点在这个角的平分线上;(3)有一个角等于60°的等腰三角形是等边三角形;(4)等腰三角形的两边长分别为5和6,则这个三角形的周长为16.A.1B.2C.3D.4【分析】利用等腰三角形的性质、角平分线的判定、等边三角形的判定等知识分别判断后即可确定答案.【解答】解:(1)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,故原命题错误,不符合题意;(2)在角的内部,到角的两边距离相等的点在这个角的平分线上,正确,符合题意;(3)有一个角等于60°的等腰三角形是等边三角形,正确,符合题意;(4)等腰三角形的两边长分别为5和6,则这个三角形的周长为16或17,故原命题错误,不符合题意,正确的有2个,故选:B.8.(3分)随着生活水平的提高和环保意识的增强,小亮家购置了新能源电动汽车,这样他乘电动汽车比乘公交车上学所需的时间少用了15分钟,已知电动汽车的平均速度是公交车的2.5倍,小亮家到学校的距离为8千米.若设乘公交车平均每小时走x千米,则可列方程为( )A.B.C.D.【分析】根据乘电动汽车与乘公交车速度间的关系,可得出乘电动汽车平均每小时走2.5x千米,利用时间=路程÷速度,结合乘电动汽车比乘公交车上学所需的时间少用了15分钟,即可得出关于x的分式方程,此题得解.【解答】解:∵电动汽车的平均速度是公交车的2.5倍,乘公交车平均每小时走x千米,∴乘电动汽车平均每小时走2.5x千米.依题意得:=+,即=+.故选:D.9.(3分)如图,Rt△ABC中,∠ACB=90°,BC=4,AC=3,将△ABC绕点B逆时针旋转得△A'BC',若点C'在AB上,则AA'的长为( )A.B.4C.D.5【分析】连接AA',由旋转的性质得出AC'、A'C'的长度,利用勾股定理即可得出答案.【解答】解:∵将△ABC绕点B逆时针旋转得△A′BC',∴∠A'C'B=∠C=90°,A'C'=AC=3,AB=A'B,根据勾股定理得:AB==5,∴A'B=AB=5,∴AC'=AB﹣BC'=1,在Rt△AA'C'中,由勾股定理得:AA'==,故选:A.10.(3分)把一副三角尺按如图①所示位置放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12,DC=14,把三角尺DCE绕点C按顺时针方向旋转15°得到△D1CE1如图②),此时AB 与CD1相交于点O,则线段AD1的长为( )A.B.10C.12D.【分析】由旋转的性质可得CD=C1D=14,∠BCE1=15°,由等腰直角三角形的性质可求AO=BO=6=CO,由勾股定理可求解.【解答】解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°,∴∠DCE=60°,△ACB是等腰直角三角形,∵把三角尺DCE绕点C按顺时针方向旋转15°得到△D1CE1,∴CD=C1D=14,∠BCE1=15°,∴∠BCO=45°=∠ABC,∴∠BOC=90°,即CO⊥AB,又∵△ACB是等腰直角三角形,∴AO=BO=6=CO,∴OD1=8,∴AD1===10,故选:B.二.填空题(共5小题,每小题3分,共15分)11.(3分)因式分解5a2﹣a= a(5a﹣1) .【分析】直接提取公因式a即可.【解答】解:原式=a(5a﹣1).故答案为:a(5a﹣1).12.(3分)由深圳到广州的一条铁路全程约为146千米,高铁全程运行时间为a小时,则高铁的速度是每小时 千米.【分析】根据“路程=速度×时间”进行变式、求解.【解答】解:∵路程=速度×时间,∴高铁的速度是每小时千米,故答案为:.13.(3分)△ABC中,BC=6,∠A=∠B=60°,那么△ABC的面积是 .【分析】过点A作AD⊥BC于D,先证明△ABC是等边三角形,得到,再由勾股定理得到,据此利用三角形面积计算公式求解即可.【解答】解:如图所示,过点A作AD⊥BC于D,在△ABC,∠A=∠B=60°,∴△ABC是等边三角形,∴,∴,∴,故答案为:.14.(3分)如图,平面直角坐标系中,直线y=kx+b与直线y=mx+2相交于点A(﹣3,﹣1),则不等式mx+2<kx+b的解集为 x<﹣3 .【分析】不等式mx+2<kx+b的解集就是y=mx+2的图象在y=kx+b的图象的下边的部分对应的自变量的取值范围.【解答】解:∵直线y=kx+b与直线y=mx+2相交于点A(﹣3,﹣1),∴不等式mx+2<kx+b的解集为x<﹣3.故答案为:x<﹣3.15.(3分)如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1,则AD的长是 9 .【分析】根据等边三角形的性质得出AB=BC=AC,∠ABC=∠C=∠BAC=60°,根据全等三角形的判定得出△ABE≌△CAD,根据全等三角形的性质得出AD=BE,∠CAD=∠ABE,求出∠BPQ=∠BAC =60°,求出∠PBQ=30°,根据含30°角的直角三角形的性质求出BP,即可求出答案.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠C=∠BAC=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴AD=BE,∠CAD=∠ABE,∵∠BAC=60°,∴∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,∵BQ⊥AD,∴∠BQP=90°,∵在Rt△BQP中,∠BQP=90°,PQ=4,∠PBQ=180°﹣90°﹣60°=30°,∴BP=2PQ=2×4=8,∵PE=1,∴AD=BE=BP+PE=8+1=9,故答案为:9.三.解答题(共7小题)16.(7分)解下列一元一次不等式(组):(1)5x≥3x+1;(2)并把它的解集表示在数轴上.【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵5x≥3x+1,∴5x﹣3x≥1,则2x≥1,∴x≥;(2)由2x﹣1<﹣x+2,得:x<1,由<,得:x>﹣5,则不等式组的解集为﹣5<x<1,将不等式组的解集表示在数轴上如下:17.(5分)解方程.【分析】利用去分母将原方程化为整式方程,解得x的值后进行检验即可.【解答】解:原方程去分母得:x+2(x﹣3)=﹣3,整理得:3x﹣6=﹣3,解得:x=1,检验:当x=1时,x﹣3=1﹣3=﹣2≠0,故原分式方程的解为x=1.18.(7分)先化简,再求值:,其中x=2.【分析】先计算分式的除法,再算分式的减法,然后把x的值代入化简后的式子进行计算,即可解答.【解答】解:=•﹣=﹣===,当x=2时,原式==.19.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,1)、C(5,3).(1)将△ABC向上平移1格,向左平移5格,得到△A′B′C′,请画出△A′B′C′;(2)写出B′和C′的坐标;(3)计算△A′B′C′的面积.【分析】(1)根据平移的性质确定点A′、B′、C′的位置,然后顺次连接即可;(2)结合图象即可获得答案;(3)根据三角形面积公式求解即可.【解答】解:(1)如下图,△ABC即为所求;(2)由图象可知,B′(﹣1,2)、C′(0,4);(3)△A′B′C′的面积.20.(8分)端午节是中国传统节日,人们有吃粽子的习俗.某商场预测今年端午节期间A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A粽子的数量与节后用200元购进的数量相同.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价是多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,那么该商场节前最多购进多少千克A粽子?【分析】(1)设该商场节后每千克A粽子的进价是x元,则节前每千克A粽子的进价是(x+2)元,根据节前用240元购进A粽子的数量与节后用200元购进的数量相同.列出分式方程,解方程即可;(2)设该商场节前购进m千克A粽子,则节后购进A粽子(400﹣m)千克,根据总费用不超过4600元,列出一元一次不等式,解不等式即可.【解答】解:(1)设该商场节后每千克A粽子的进价是x元,则节前每千克A粽子的进价是(x+2)元,根据题意得:,解得x=10,经检验,x=10 是原分式方程的解,且符合题意,答:该商场节后每千克A粽子的进价是10元;(2)由(1)可知,x+2=12,设该商场节前购进m千克A粽子,则节后购进A粽子(400﹣m)千克,根据题意得:12m+10(400﹣m)≤4600,解得:m≤300,答:该商场节前最多购进300千克A粽子.21.(10分)【提出问题】某数学活动小组对多项式乘法进行如下探究:①(x+2)(x+3)=x2+5x+6;②(x﹣4)(x+1)=x2﹣3x﹣4;③(y﹣5)(y﹣3)=y2﹣8y+15.通过以上计算发现,形如(x+p)(x+q)的两个多项式相乘,其结果一定为x2+(p+q)x+pq.(p,q为整数)因为因式分解是与整式乘法是方向相反的变形,所以一定有x2+(p+q)x+pq=(x+p)(x+q),即可将形如x2+(p+q)x+pq的多项式因式分解成(x+p)(x+q)(p、q为整数).例如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2).【初步应用】(1)用上面的方法分解因式:x2+6x+8= (x+2)(x+4) ;【类比应用】(2)规律应用:若x2+mx+8可用以上方法进行因式分解,则整数m的所有可能值是 ±6或±9 ;【拓展应用】(3)分解因式:(x2﹣4x)2﹣2(x2﹣4x)﹣15.【分析】(1)按照已知条件中方法进行分解因式即可;(2)先找出乘积为8的两个整数有哪些,然后按照条件中的方法,求出m的值即可;(3)按照已知条件中的方法,先把﹣15分解成﹣5×3,然后把多项式进行第一次分解因式,再把﹣5分解成﹣5×1,3分解成﹣3×(﹣1),进行第二次分解因式即可.【解答】解:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:(x+2)(x+4);(2)∵8=1×8=2×4=(﹣1)×(﹣8)=(﹣2)×(﹣4),∴x2+(8+1)x+8=(x+8)(x+1),x2+(2+4)x+8=(x+2)(x+4),x2+(﹣1﹣8)x+8=(x﹣1)(x﹣8),x2+(﹣2﹣4)x+8=(x﹣2)(x﹣4),∴m=8+1=9或2+4=6或﹣1﹣8=﹣9或﹣2﹣4=﹣6,∴整数m的值可能是±6或±9,故答案为:±6或±9;(3)(x2﹣4x)2﹣2(x2﹣4x)﹣15=(x2﹣4x)2+(﹣5+3)(x2﹣4x)+(﹣5)×3=(x2﹣4x﹣5)(x2﹣4x+3)=[x2+(﹣5+1)x+(﹣5)×1][x2+(﹣3﹣1)x+(﹣3)×(﹣1)]=(x﹣5)(x+1)(x﹣3)(x﹣1).22.(10分)(一)问题探究已知:在锐角△ABC中,∠ABC=45°,把线段AC绕点A沿逆时针方向旋转n°得到线段AD,把线段AB绕点A沿顺时针方向旋转n°得到线段AE,分别连结CD、BE、BD、CE.(1)如图①,当0°<n<90°时,线段BD与CE的数量关系是 BD=CE (直接写出结论,不说理由);(2)如图②,当n=90°时,①探究线段BD与CE的数量关系,并说明理由;②若AB=7,BC=3,求BD的长;(二)解决问题如图③,在四边形ACBD中,AB=7,BC=3,∠ABC=∠ACD=∠ADC=45°,请直接写出线段BD 的长.(不说理由)【分析】(1)由“SAS”可证△AEC≌△ABD,可得BD=CE;(2)①由“SAS”可证△AEC≌△ABD,可得BD=CE;②由勾股定理可求解.(3)由“SAS”可证△ADB≌△ACH,可得BD=CH=7﹣3.【解答】解:(1)∵把线段AC绕点A沿逆时针方向旋转n°得到线段AD,把线段AB绕点A沿顺时针方向旋转n°得到线段AE,∴AB=AE,AC=AD,∠CAD=∠BAE,∴∠CAE=∠BAD,∴△AEC≌△ABD(SAS),∴BD=CE,故答案为:BD=CE;(2)①BD=CE,理由如下:∵把线段AC绕点A沿逆时针方向旋转n°得到线段AD,把线段AB绕点A沿顺时针方向旋转n°得到线段AE,∴AB=AE,AC=AD,∠CAD=∠BAE,∴∠CAE=∠BAD,∴△AEC≌△ABD(SAS),∴BD=CE;②∵AB=AE,∠BAE=90°,∴∠ABE=∠AEB=45°,BE=AB=7,∴∠EBC=∠ABE+∠ABC=90°,∴EC===,∴BD=;(3)如图③,过点A作AH⊥AB,交BC的延长线于H,∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∵∠ABC=45°,AH⊥AB,∴∠ABC=∠H,∴AB=AH=7,∴BH=7,∴CH=BH﹣BC=7﹣3,∵∠DAC=∠BAH=90°,∴∠DAB=∠CAH,∴△ADB≌△ACH(SAS),∴BD=CH=7﹣3.。
广东省深圳市宝安区宝安中学2023-2024学年八年级下学期期中数学试题(解析版)

2023-2024学年第二学期期中学情调查问卷八年级数学第一部分选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.若分式有意义,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】本题考查分式有意义的条件.根据分母不为0求解即可.【详解】解:根据题意得.解得.故选:A.2. 下列手机手势解锁图案中,是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据中心对称图形的概念判断.【详解】解:A、不是中心对称图形,故不符合题意;B、中心对称图形,故符合题意;C、不是中心对称图形,故不符合题意;D、不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查的是中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 下列各式从左到右的变形,因式分解正确的是()A. B.C. D.是25xx-+x5x≠-5x=2x≠2x=50x+≠5x≠-()2231234ab a a b-=-22()2a ab a a b+-=+-1313a aa⎛⎫+=+⎪⎝⎭228(2)(4)a a a a--=+-【答案】D【解析】【分析】本题考查了因式分解的定义.把一个多项式化成几个整式的积的形式叫做因式分解,根据因式分解的定义逐项判断即可.【详解】解:A 、,分解不彻底,故本选项不符合题意;B 、右边不是整式的积形式,不属于因式分解,故本选项不符合题意;C 、右边不是整式的积形式,不属于因式分解,故本选项不符合题意;D 、从左到右的变形属于因式分解,故本选项符合题意.故选:D .4. 已知点在第二象限,则的取值范围在数轴上表示正确的是( )A.B. C.D.【答案】D【解析】【分析】根据第二象限内点的特征,列出一元一次不等式组,解不等式组,即可求解,本题考查了,点的坐标,求一元一次不等式组的解集,在数轴上表示不等式的解集,解题的关键是:熟练掌握相关知识点.【详解】解:∵点在第二象限,∴,解得:,故选:.5. 如图是脊柱侧弯检测示意图,在体检时为方便测出Cobb 角的大小,需将转化为与它相等的角,则图中与相等的角是()的()()()2231234322ab a a b a b b -=-=+-()3,1P m m --m ()3,1P m m --3010m m -<⎧⎨->⎩13m <<D O ∠O ∠O ∠A. B. C. D. 【答案】B【解析】【分析】根据直角三角形的性质可知:与互余,与互余,根据同角的余角相等可得结论.【详解】由示意图可知:和都是直角三角形,,,,故选:B .点睛】本题考查直角三角形的性质的应用,掌握直角三角形的两个锐角互余是解题的关键.6. 如图:有、、三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A. 户最长B. 户最长C. 户最长D. 三户一样长【答案】D【解析】【分析】可理解为将最左边一组电线向右、向上平移所得,由平移的性质即可得出结论.【BEA∠DEB ∠ECA ∠ADO∠O ∠ADO ∠DEB ∠ADO ∠DOA △DBE 90O ADO ∴∠+∠=︒90DEB ADO ∠+∠=︒DEB O ∴∠=∠a b c a b c【详解】解:∵a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,∴将a 向右、向上平移即可得到b 、c ,∵图形的平移是全等的,即不改变图形大小和形状,∴三户一样长.故选:D .【点睛】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.7. 下列说法,错误的是( )A. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等B. 有两个角都是的三角形是等边三角形C. 三角形的三边分别为a 、b 、c ,若满足,那么该三角形是直角三角形D. 用反证法证明“三角形的三个内角中最多有一个直角”应假设“三角形的三个内角中没有直角”【答案】D【解析】【分析】本题考查反证法、命题的真假判断、逆命题的概念.根据线段垂直平分线的性质、等边三角形的定理、勾股定理的逆定理、反证法的应用判断即可.【详解】解:A 、三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等,说法正确,故此选项不符合题意;B 、有两个角都是的三角形是等边三角形,说法正确,故此选项不符合题意;C 、三角形的三边分别为a 、b 、c ,若满足,那么该三角形是直角三角形,说法正确,故此选项不符合题意;D 、用反证法证明“三角形的三个内角中最多有一个直角”应假设“三角形的内角中至少有两个角是直角”,原说法错误,故此选项符合题意.故选:D .8. 宝安凤凰山森林公园位于“宝安第一山”凤凰山脚下,公园树木丰茂,景色优美,所以小青想带她初三的表姐去游玩放松释放压力,计划15点10分从学校出发,已知两地相距5.1千米,她们跑步的平均速度为190米/分钟,步行的平均速度为80米/分钟,若她们要在16点之前到达,那么她们至少需要跑步多少分钟?设他跑步的时间为分钟,则列出的不等式为( )A. B. C. D. 60︒222a c b -=60︒222a c b -=x 19080(50)5100x x +-≥19080(50)5100x x +-≤19080(50) 5.1x x +-≥19080(50) 5.1x x +-≤【解析】【分析】根据“步行时间步行速度跑步时间跑步速度”列不等式即可.本题主要考查由实际问题抽象出一元一次不等式,解题的关键是根据题意确定其中蕴含的不等关系.【详解】解:∵计划15点10分从学校出发,要在16点之前到达∴总时间为分钟设他跑步的时间为分钟,则他步行时间为分钟,根据题意,得:,故选:A .9. 如图,为上一点,连接,平分交于点,且,,,,则的长为( )A B. C. 2 D. 3【答案】C【解析】【分析】由平分,,证明,可得,,再由等角对等边可得,代入数值进行计算即可得到答案.本题考查了全等三角形的判定与性质,等边对等角,正确掌握相关性质内容是解题的关键..【详解】解:平分,,∴∵∴,,,,,,.⨯+⨯5100≥50x ()50x -19080(50)5100x x +-≥E AC BE CD ACB ∠BE D BE CD ⊥A ABE ∠=∠10AC =6BC =BD 1.2 1.5CD ACB ∠BE CD ⊥BCD ECD ≌6CE BC ==BD DE =BE AE =CD ACB ∠BE CD ⊥90BCD ECD BDC EDC ∠=∠∠=∠=︒,CD CD=BCD ECD≌6CE BC ∴==BD DE =1064AE AC CE ∴=-=-=A ABE ∠=∠ 4BE AE ∴==∴122BD DE BE ===10. 如图,在等腰直角三角形中,,,将边绕点逆时针旋转至,连接,,若,,则线段的长度为( )A. B. 4 C. D. 5【答案】C【解析】【分析】本题考查了等腰三角形的性质,旋转的性质,勾股定理,全等三角形的判定与性质.过点作于点,证明,由全等三角形的性质得出,由旋转的性质及等腰三角形的性质求出,由勾股定理可得出答案.【详解】解:过点作于点,是等腰直角三角形,,,,,,又,,,将边绕点逆时针旋转至,,又,,,ABC AB BC =90CBA ∠=︒AB A AB 'BB 'CB '90CB B '∠=︒5AB =B B'A BE BB '⊥E ()AAS ABE BCB ' ≌BE BC '=5AB AB BC '===A BE BB '⊥E ABC AB BC =90CBA ∠=︒90ABE B BC '∴∠+∠=︒90EAB ABE ∠+∠=︒ B BC EAB '∴∠=∠90AEB BB C '∠=∠=︒ ()AAS ABE BCB ∴' ≌BE B C '∴= AB A AB '5AB AB BC '∴===AE BB '⊥ BE B E B C ''∴==222B C B B BC ''+=,(负值舍去),∴故选:C .第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 一个多项式,把它因式分解后有一个因式为,请你写出一个符合条件的多项式:______.【答案】(答案不唯一)【解析】【分析】本题主要考查多项式的因式分解.根据提取公因式、平方差公式或完全平方公式等知识解答即可.【详解】解:∵一个多项式,把它因式分解后有一个因式为,设另一个因式为,∴.故答案为:(答案不唯一).12. 已知点与关于原点对称,则___________.【答案】【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】解:∵点与关于原点对称,∴,,∴.故答案为:.【点睛】本题主要考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.13. 如图,在中,,的垂直平分线交于点E ,垂足为平分,若2525B C '∴=BE ∴=2B B BE '==(1)x -2x x -()1x -x ()21x x x x -=-2x x -()2,A b -(),3B a a b +=1-()2,A b -(),3B a 2a =3b =-()231a b +=+-=-1-ABC 30B ∠=︒BC AB D CE ,ACB ∠,则的长为____________.【答案】2【解析】【分析】本题考查的是线段的垂直平分线的性质,含角的直角三角形的特征,等腰三角形的判定与性质,三角形内角和,根据线段的垂直平分线的性质得到,根据直角三角形的性质计算即可.【详解】解:是的垂直平分线,,,平分,,,故答案为:2.14. 2024年春晚,刘谦表演的扑克牌魔术“约瑟夫环”,是数学与神奇的完美结合,通过一定指令的操作,会得到一个数学规律.请依照下列定义,若,则的取值范围为______.【答案】##【解析】【分析】本题主要考查了解不等式,根据题干提供的信息,得出,解不等式即可.【详解】解:∵,∴,∴,4BE =AE 30︒4EC EB ==DE BC 4EC EB ∴==30ECB B ∴∠=∠=︒CE ACB ∠30ECB ACE ∴∠=∠=︒60ACB ∠=︒∴18090A B ACB ∴∠=︒-∠-∠=︒122AE EC ∴==(,)2b a f a b a +=-(2,)1f x ≥x 0x ≤0x≥2212x +-≥(,)2b a f a b a +=-2(2,)22x f x +=-2212x +-≥解得:,故答案为:.15. 如图,在长方形中,点E 、F 分别在边、上,将四边形沿翻折,点的对应点点恰好落在上,点的对应点是点.请从A 、B 两题中任选一题作答.A .若,则的最小值为__________;B .若,,则的最小值为__________.【答案】①.②. 【解析】【分析】选择A .如图,过点作于点,延长到点,使,连接交于点,连接、、,由翻折可得,再证得,即可推出,利用三角形三边关系可得,由于当点与点重合时,,此时的值最小,故的值也最小,运用勾股定理即可求得答案.选择B .连接,,过作,交于,延长至,使,连接,可得,可证,从而,再证,可求,由当、、三点共线时,最小,即可求解.【详解】选择A .解:如图,过点作于点,延长到点,使,连接交于点,连接、、,四边形是正方形,,,,垂直平分,0x ≤0x ≤ABCD BC AD ABEF EF B G CD A H 4AB BC CD DA ====BH EF +3AB CD ==6AD BC ==2BH EF +F FK BC ⊥K BC M CM BC =AM CD N MG GA BG ()SAS ABG HGB ≌()ASA FEK BGC ≌BH EF AG MG +=+BH EF AM +≥G N AG MA AM +=AG MA +BH EF AM +=AG BG F FM BC ⊥BC M BC N BC CN =AN BG NG =ABG BGH ≌ AG BH =EFM GBC ∽ 2GB EF =A G N AG NG +F FK BC ⊥K BC M CM BC =AM CD N MG GA BG ABCD 90BAD ABC BCD ∴∠=∠=∠=︒AB BC =CD BM ∴⊥CD ∴BM,由翻折得,,,,,由翻折知,又,,,,,四边形是矩形,,,,,,,,,当点与点重合时,,此时的值最小,的值也最小,,,,,的最小值是故答案为:选择B .解:如图,连接,,过作,交于,延长至,使,连接,MG BG ∴=AB HG =ABG HGB ∠=∠BG GB = ()SAS ABG HGB ∴ ≌GA BH ∴=EF BG ⊥FK BC ⊥ 90FKE BCG ∴∠=∠=︒90EFK FEK GBC FEK ∴∠+∠=∠+∠=︒EFK GBC ∴∠=∠90BAD ABC BKF ∠=∠=∠=︒ ∴ABKF AB FK ∴=FK BC ∴=()ASA FEK BGC ∴ ≌EF BG ∴=EF MG ∴=BH EF AG MG ∴+=+AG MG AM +≥ BH EF AM ∴+≥∴G N AG MA AM +=AG MA +BH EF AM ∴+=90ABM ∠=︒ 4AB =28BM BC ==AM ∴==BH EF ∴+AG BG F FM BC ⊥BC M BC N BC CN =AN,,,,四边形是矩形,,,,由折叠得:,,,,,,,即:,在和中,(),;由折叠得:,,,,,,,;当、、三点共线时,最小,当时最小,90EMF ∴∠=︒3AB FM ==212BN BC ==90FEM EFM ∴∠+∠=︒ ABCD 90BCG ABE ∴∠=∠=︒BG NG ∴=EMF GCB ∠=∠BE GE =AB HG =EF BG ⊥90ABE EGH ∠=∠=︒EBG EGB ∴∠=∠90CBG FEM ∠+∠=︒ABE EBG EGH EGB ∴∠-∠=∠-∠ABG HGB ∠=∠ABG HGB △BG GB ABG HGB AB HG =⎧⎪∠=∠⎨⎪=⎩ABG HGB ∴ ≌SAS AG BH ∴=EF BG ⊥∴90CBG FEM ∠+∠=︒EFM GBC ∴∠=∠EFM GBC ∴∽ EF FM GB BC∴=2142EF GB ∴==2GB EF ∴=2BH EF AG NG ∴+=+ A G N AG NG +∴AG NG AN +=.故答案为:【点睛】本题考查了以折叠为背景的线段最小值问题,折叠的性质,三角形全等的判定及性质,三角形相似的判定及性质,矩形的性质,正方形的性质,勾股定理,掌握相关的判定方法及性质,作出辅助线是解题的关键.三、解答题(本题共7小题,共55分)16. 解不等式组.【答案】.【解析】【分析】本题考查的是解一元一次不等式组.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①,得:,解不等式②,得:,则不等式组的解集为.17. 按下列程序计算,把答案填写在表格内,并观察有什么规律,想想为什么有这样的规律?(1)填写表内空格:填写表内空格:输入32…输出答案11…(2)你发现了什么规律,并说明理由.【答案】(1)见解析(2)无论输入什么数,输出的结果为1.理由见解析【解析】【分析】本题主要考查了代数式求值,整式的四则混合计算,正确理解题意是解题的关键.(1)根据程序流程图,代入数据进行计算,根据所求可以发现输出的结果为1;AN ∴====()4168643x x x x ⎧+≤+⎪⎨--<⎪⎩①②23x -≤<2x ≥-3x <23x -≤<x2-3-(2)设输入的数字为n ,只需要证明即可.【小问1详解】解:当时,输出的结果为:;当时,输出的结果为:;填表如下:输入32…输出答案1111…由表可知,无论输入什么数,输出的结果为1;【小问2详解】解:设输入的数字为x ,由程序计算得:.∴无论输入什么数,输出的结果为1.18. 阅读与思考:在现今信息化时代,智能手机几乎人手必备,应用到了生活的各个领域,锁屏密码为保护我们个人隐私起到了不可或缺的作用,而诸如“1234”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为或,取个人年龄作为的值,当时,,,此时可以得到数字密码1214或1412.(1)根据上述方法,若多项式为,请你结合个人年龄设置一个锁屏密码,当______时,锁屏密码为______;(2)若王老师选取的多项式为,已知王老师手机的锁屏密码是6位数字353334,请尝试分析王老师当前年龄是多少岁,并说明理由.【答案】(1)(答案不唯一)(2)王老师当前年龄是岁,理由见详解【解析】【分析】本题考查了因式分解的应用以及新定义内容,读懂题意是解题的关键.()21x x x x +÷-=2x =-()()()()()22222222121⎡⎤-+-÷---=÷-+=-+=⎣⎦3x =-()()()()()23333633231⎡⎤-+-÷---=÷-+=-+=⎣⎦x2-3-()211x x x x x x +÷-=+-=21x -(1)(1)x x -+(1)(1)x x +-x 13x =112x -=114x +=221x x ++x =3x x -121313,34(1)模仿题干的解题过程,先把,再结合个人具体年龄作进一步分析,即可作答.(2)先把,结合,即可作答.【小问1详解】解:依题意,当年龄为岁时,则∴锁屏密码为;故答案为:;【小问2详解】解:王老师当前年龄是岁,理由如下:∵王老师手机的锁屏密码是6位数字353334,且结合∴∴王老师当前年龄是岁.19. 某校八年级为了丰富同学们的课余生活,决定举行一场校园义卖活动,小深和小圳都参加了这次活动,他们分别售卖类物品和类物品,若类卖了10件和类卖了20件一共可卖220元;若类卖了16件和类卖了30件一共可卖336元.(1)请求出类物品和类物品每件的售价分别是多少元?(2)为了鼓励更多同学参与,能筹到更多善款,学校决定设立奖励机制,如果两人合作筹集到善款总额不少于500元,则可获得电影票一张作为奖励.假设类和类一共卖了70件,则类至少要卖多少件,小深和小圳才能获得奖励?【答案】(1)A 类物品每件的售价是6元,B 类物品每件的售价是8元(2)B 类物品至少要卖40件,小深和小圳才能获得奖励【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设A 类物品每件的售价是x 元,B 类物品每件的售价是y 元,根据“A 类卖了10件和B 类卖了20件一共可卖220元;A 类卖了16件和B 类卖了30件一共可卖336元”,列出关于x ,y 的二元一次方程组求解即可;()()22111x x x x ++=++()()()32111x x x x x x x -=-=+-13534133x x x +==-=,,()()22111x x x x ++=++12113x +=1313121313,34()()()32111x x x x x x x -=-=+-()()11x x x +>>-13534133x x x +==-=,,34A B A B A B A B A B B(2)设B 类物品卖了m 件,则A 类物品卖了件,利用总价=单价×数量,结合总价不少于500元,可列出关于m 的一元一次不等式,解之取其中的最小值,即可得出结论.【小问1详解】设A 类物品每件的售价是x 元,B 类物品每件的售价是y 元,根据题意得:,解得:.答:A 类物品每件的售价是6元,B 类物品每件的售价是8元;【小问2详解】设B 类物品卖了m 件,则A 类物品卖了件,根据题意得:,解得:,∴m 的最小值为40.答:B 类物品至少要卖40件,小深和小圳才能获得奖励.20. 如图,已知,,请结合下述要求完成作图并回答相应问题:(1)如图1,点在线段的延长线上且,请使用不含刻度的直尺与圆规过点作射线,使得(不写作法,保留作图痕迹并书写相应结论);(2)如图2,将线段水平向右进行平移个单位得到线段,请使用不含刻度的直尺与圆规过点作射线的垂线,与交于点(不写作法,保留作图痕迹并书写相应结论),若点在点的左侧,,,则______.【答案】(1)见解析(2)图见解析,【解析】()70m -10202201630336x y x y +=⎧⎨+=⎩68x y =⎧⎨=⎩()70m -()6708500m m -+≥40m ≥Rt ACB △90ACB ∠=︒P AC CP CA =P PQ PQ AB ∥AB m ED E CD EF CD F F B 12CD = 5.5FB =m = 3.25【分析】本题考查了尺规作图,平行四边形的判定和性质.(1)作,利用“同位角相等,两直线平行”即可得到;(2)利用尺规作图即可作出过点作射线的垂线,再证明四边形和是平行四边形,据此列式计算即可求解.【小问1详解】解:如图,射线即为所作:;【小问2详解】解:如图,射线即为所作:连接,∵将线段水平向右进行平移个单位得到线段,∴,,∴四边形是平行四边形,∴,,由作图知,∴,∵,∴,∴四边形是平行四边形,∴,QPD A ∠=∠PQ AB ∥E CD EF ABDE ACFE PQ EF AE AB m ED AB DE =DE AB ∥ABDE AE BD m ==AE CD ∥EF CD ⊥90EFB ∠=︒90ACB ∠=︒AC EF ∥ACFE CF AE m ==∴,即,∴,故答案为:.21. 如图,是边长为6的等边三角形,动点E 、F 分别以每秒1个单位长度的速度从出发,点沿折线运动,点沿运动(点到达点时停止运动),当点到达点后,点的运动速度变为每秒2个单位长度运动直至到点后停止运动,设运动时间为秒,点、的距离为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中,两出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出当时的取值范围.【答案】(1); (2)图见解析,当时,随的增大而增大;(3)当时的取值范围为.【解析】【分析】本题主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.(1)根据动点、运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,再根据图象写出函数的一个性质即可;12CD CF BF BD =++= 5.512m m ++=3.25=m 3.25ABC B E B A C →→F B C →F C E A E C x E F y y x x 3y ≥x ()()0621869y x x y x x ⎧=≤≤⎪⎨=-+<≤⎪⎩06x ≤≤y x 3y ≥x 37.5x ≤≤E F x(3)根据两个函数关系式分别求出当时的值,结合图象即可解决问题.【小问1详解】解:当点、分别在、上运动时,为边长等于的等边三角形,点,的距离等于、的长,当时,关于的函数表达式为;当点停止,点在上运动时,点,的距离等于,当时,关于的函数表达式为,关于的函数表达式为;【小问2详解】解:由(1)中得到的函数表达式可知:当时,;当时,;当时,,分别描出三个点,,,然后顺次连线,如图:该函数的其中一个性质:当时,随的增大而增大.(答案不唯一,正确即可)【小问3详解】解:把分别代入和中,得:,,解得:或,由图象知,当时的取值范围为.22. 在一节数学探究课中,同学们遇到这样的几何问题:如图1,等腰直角三角形和共顶点3y =x E F AB BC BEF △x ∴E F BE BF ∴06x ≤≤y x y x =F E BC E F ()626182x x --=-∴69x <≤y x 182y x =-y ∴x ()()0621869y x x y x x ⎧=≤≤⎪⎨=-+<≤⎪⎩0x =0y =6x =6y =9x =0y =()0,0()6,6()9,006x ≤≤y x 3y =y x =182y x =-3x =3182x =-3x =7.5x =∴3y ≥x 37.5x ≤≤ABC ADEA ,且三点共线,,连接,点G 为的中点,连接和,请思考与具有怎样的数量和位置关系?【模型构建】小颖提出且并给出了自己思考,以G 是中点入手,如图2,通过延长与相交于点F ,证明,得到,随后通过得即,又,所以且.(1)请结合小颖的证明思路利用结论填空:当时,_____;______.【类比探究】(2)如图3,若将绕点A 逆时针旋转α度(),请分析此时上述结论是否成立?如果成立,如果不成立,请说明理由.【拓展延伸】(3)若将E 绕点A 逆时针旋转β度(),当时,请直接写出旋转角β度数为_______.【答案】(1(2)见解析 (3)45°或225°【解析】【分析】(1)根据前面的结论,得到且,,得到,(2)延长到点F ,使,连接,证明,过点B 作,交于点M ,N ,再证明 .(3)当共线时,根据(2)得到四边形是平行四边形,根据,,得到,得四边形是矩形,继而得到,此时旋转角等于的度数即的,,A C D 90ACB ADE ∠=∠=︒BE BE CG DG CG DG CG DG =CG DG ⊥BE CG DE BGC EGF ≌BC EF =AD BC DE EF -=-AD AC DE EF -=-CD FD =CG FG =CG DG ⊥CG DG =63AD BC ==,CG =BE =ADE V 045a <<°ADE V 0360β<<︒BG CG =CG DG ⊥CG DG =45CDG ∠=︒CG =BE ===CG CG GF =,,EF DE DC ()SAS BGE EGF ≌BM DE ∥,CG AD ()SAS CAD FED ≌,,AE CE AC BCEF BC AC ⊥BC EF ∥EF AC ⊥BCEF BG CG =CAB ∠;当共线时,且共线在的延长线上时,根据(2)得到四边形是平行四边形,根据,,得到,得四边形是矩形,继而得到,此时旋转角等于的度数即;计算即可.本题考查了等腰直角三角形的性质,矩形的判定和性质,三角形全等的判定和性质,旋转的性质,熟练掌握矩形的性质,旋转的性质,三角形全等的判定和性质是解题的关键.【详解】(1)根据前面的结论,得到且,,得到,∵,∴∴,∵,,∴,,∴,,.(2)延长到点F ,使,连接,∵,∵∴,∴,,45β=︒,,AE CE AC CA BCEF BC AC ⊥BC EF ∥EF AC ⊥BCEF BG CG =180CAB ︒+∠18045225β=︒+︒=︒CG DG ⊥CG DG =45CDG ∠=︒CG =63AD BC ==,33AC BC CD AD AC ==-==,CG =63AD BC ==,45CAB CAE ∠=∠=︒AE AB ==90BAE ∠=︒BE ===CG CG GF =,,EF DF DC CGB FGE ∠=∠BG EGBGC EGFCG FG=⎧⎪∠=∠⎨⎪=⎩()SAS BGE EGF ≌CBG FEG ∠=∠EF CB CA ==过点B 作,交于点M ,N ,∴,,∴,设的交点为Q ,则,∴,∴,∴,∵∴,∴,,∵,,∴,∴,∴且.故结论仍然成立.(3)如图,当共线时,∵,,,∴四边形是矩形,BM DE ∥,CG AD DEB MBE ∠=∠90EDN BNA ∠=∠=︒FED CBM ∠=∠,CB AD BQN AQC ∠=∠9090BQN AQC ︒-∠=︒-∠CAD CBM ∠=∠FED CAD ∠=∠CA FE CAD FEDDA DE =⎧⎪∠=∠⎨⎪=⎩()SAS CAD FED ≌CD FD =ADC FDE ∠=∠CG FG =90ADC CDE ∠+∠=︒90FDE CDE ∠+∠=︒90CDF ∠=︒CG DG ⊥CG DG =,,AE CE AC BC AC ⊥BC EF ∥BC EF =BCEF∴,此时旋转角等于的度数即;当共线时,且共线在的延长线上时,根据(2)得到四边形是平行四边形,∵,,,∴四边形是矩形,∴,此时旋转角等于的度数即;故答案为:或.BG CG =CAB ∠45β=︒,,AE CE AC CA BCEF BC AC ⊥BC EF ∥BC EF =BCEF BG CG =180CAB ︒+∠18045225β=︒+︒=︒45︒225︒。
广东省深圳市宝安区2016-2017学年八年级下学期数学期中考试试卷及参考答案

A . PC⊥OA,PD⊥OB B . OC=OD C . ∠OPC=∠OPD D . PC=PD 8. 如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为( )
A . 140 B . 70 C . 35 D . 24
9. 明明准备用自己节省的零花钱充值共享单车“摩拜”,他现在已存有45元,计划从现在起以后每个月节省30元,直到
的文学名著价格都一样,所采购的动漫书价格都一样).
(1) 求每本文学名著和动漫书各多少元? (2) 若学校要求购买文学名著比动漫书多20本,动漫书和文学名著总数不超过72本,如何购买总费用最少?最少是
多少?
23. 如图①已知△ACB和△DCE为等腰直角三角形,按如图的位置摆放,直角顶点 C重合.
(1) 求证:AD=BE; (2) 将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD= 求AB 的长;
A . ±2 B . 2 C . ﹣2 D . 4
4. 下列从左边到右边的变形,是因式分解的是( ) A . (a+3)(a﹣3)=a2﹣9 B . x2+x﹣5=x(x+1)﹣5 C . x2+1=x(x+
5. 函数
中自变量x的取值范围在数轴上表示正确的是( )
) D . x2+4x+4=(x+2)2
21. 如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
(1) 求证:CF=EB. (2) 若AF=2,EB=1,求AB的长. 22. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备采购文学名著 和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购
宝安区期中八年级数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. 3.14B. 2√3C. -√2D. 5/22. 下列等式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + b³D. (a-b)³ = a³ - b³3. 已知一次函数y=kx+b(k≠0),当x=1时,y=3;当x=2时,y=5,则该函数的解析式为()A. y=2x+1B. y=2x-1C. y=x+2D. y=x-24. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 已知等腰三角形ABC中,AB=AC,∠B=60°,则∠C的度数为()A. 30°B. 45°C. 60°D. 90°6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 等腰梯形7. 已知一元二次方程x²-5x+6=0,下列说法正确的是()A. 该方程有两个不相等的实数根B. 该方程有两个相等的实数根C. 该方程没有实数根D. 该方程有一个实数根8. 下列函数中,是反比例函数的是()A. y=2x+3B. y=x²C. y=3/xD. y=√x9. 在等腰三角形ABC中,AB=AC,AD为底边BC上的高,则∠BAD的度数为()A. 30°B. 45°C. 60°D. 90°10. 下列方程中,表示圆的方程是()A. x²+y²=1B. x²+y²=4C. x²+y²=9D. x²+y²=16二、填空题(每题5分,共25分)11. 3√2 - 2√3 + √2 = ______12. 2(x-3)² - 5(x-3) + 2 = ______13. 已知一次函数y=kx+b(k≠0),当x=0时,y=4;当x=2时,y=0,则该函数的解析式为y=______。
广东省深圳市深圳中学共同体2023-2024学年八年级下学期期中数学试题(解析版)

2023−2024学年第二学期期中考试八年级数学试卷说明:1.答题前,务必将自己的姓名、学号等填写在答卷规定的位置上.2.考生必须在答题卷上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共6页,考试时间90分钟,满分100分.一、选择题(共10小题,每小题3分,共30分)1. 以下图形中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查的是中心对称图形与轴对称图形的概念,根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.根据定义逐一分析即可.【详解】解:A .该图形轴对称图形,不是中心对称图形,故此选项不合题意;B .该图形既是轴对称图形,也是中心对称图形,故此选项符合题意;C .该图形既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D .该图形既不是轴对称图形,也不是中心对称图形,故此选项不符合题意.故选:B .2. 下列各式从左到右的变形属于因式分解的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查因式分解的判断.熟练掌握因式分解的定义,是解题的关键.根据因式分解的定义:把一个多项式化为几个整式的积的形式,进行判断即可.是180︒2323623x y x y=⋅21212x x x x x ⎛⎫++=++ ⎪⎝⎭()()2933x x x -=-+()()2336x x x x +-=--【详解】解:A 、等式左边不是多项式,不是因式分解,不符合题意;B 、右边表示整式积的形式,不是因式分解,不符合题意;C 、是因式分解,符合题意;D 、是整式的乘法,且计算错误,不是因式分解,不符合题意;故选C .3. 若,则下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A 错误,其余选型根据不等式的性质判定即可.【详解】A: a >b ,则a-5>b-5,故A 错误;B:a >b, -a <-b ,则-2a <-2b , B 选项正确.C :a >b , a+3>b+3,则>,则C 选项错误.D :若0>a >b 时,a 2<b 2,则D 选项错误.故选B 【点睛】本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.4. 将分式中的x ,y 的值同时扩大2倍,则分式的值( )A. 扩大2倍B. 缩小到原来的C. 保持不变D. 无法确定【答案】C【解析】【分析】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.利用分式的基本性质,进行计算即可解答.【详解】解:将分式中的、的值同时扩大倍为,即分式的值保持不变,故选:C .2323623x y x y =⋅21212x x x x x ⎛⎫++=++⎪⎝⎭()()2933x x x -=-+()()2336x x x x +-=--a b >55-<-a b 22a b -<-3322a b ++<22a b >32a +32b +x y x y-+12x y x y-+x y 22222x y x y x y x y --=++5. 不等式组的解集在数轴上表示正确的是( )A.B. C.D.【答案】A【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式组的解集表示在数轴上即可.【详解】解:由得,由得,解集在数轴上表示为:,则不等式组的解集为.故选:A .【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6. 如图,已知,,用尺规作图的方法在上取一点P ,使得,则下列选项正确的是( )A. B.C. D.【答案】D【解析】24010x x +>⎧⎨-≤⎩240x +>2x >-10x -≤1x ≤21x -<≤ABC AB BC <BC PA PC BC +=【分析】本题考查的是线段的垂直平分线的性质与作图,先判定,可得点P 在线段的垂直平分线上,从而可得答案.【详解】解:∵,,∴,根据线段垂直平分线定理的逆定理可得,点P 在线段的垂直平分线上,故可判断D 选项正确.故选D .7. 如图,在中,,,,是高,则的长为( )A. 4B. 6C. 8D. 10【答案】B【解析】【分析】本题考查了直角三角形角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.求出,再根据直角三角形角所对的直角边等于斜边的一半可得,,再根据代入数据计算即可得解.【详解】解:,是高,,,,,∵,∴,,.故选:B .8. 如图所示,一次函数是常数,与正比例函数是常数,的图象相交于点,下列判断错误的是( )PA PB =AB PB PC BC +=PA PC BC +=PA PB =AB ABC 90ACB ∠=︒2B A ∠=∠2BD =CD AD 30︒30A BCD ∠=∠=︒30︒4BC =28AB BC ==AD AB BD =-90ACB ∠=︒ CD 2B A ∠=∠90BCD B ∴∠+∠=︒A B ∠∠=︒+9030BCD A ∴∠=∠=︒2BD =24BC BD ==28AB BC ==826AD AB BD ∴=-=-=,y kx b k b =+(0k ≠)y mx m =(0m ≠)()1,2MA. 关于的方程的解是B. 关于的不等式的解集是C. 当时,函数的值比函数的值大D. 关于的方程组 的解是 【答案】B【解析】【分析】根据条件结合图象对各选项进行判断即可.【详解】解:一次函数是常数,与正比例函数是常数,的图象相交于点,关于的方程的解是,选项A 判断正确,不符合题意;关于的不等式的解集是,选项B 判断错误,符合题意;当时,函数的值比函数的值大,选项C 判断正确,不符合题意;关于的方程组的解是,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程组,一次函数与一元一次不等式,一次函数的性质,知道方程组的解就是两个相应的一次函数图象的交点坐标是解题的关键.9. 如图,在中,,,,将绕点C 顺时针旋转得到,其中点与点A 是对应点,点与点B 是对应点.若点恰好落在边上,则点A 到直线的距离等于()x mx kx b =+1x =x mx kx b ≥+1x >0x <y kx b =+y mx =,x y 0y mx y kx b -=⎧⎨-=⎩12x y =⎧⎨=⎩ ,y kx b k b =+(0k ≠)y mx m =(0m ≠)()1,2M ∴x mx kx b =+1x =x mx kx b ≥+1x ≥0x <y kx b =+y mx =,x y 0y mx y kx b -=⎧⎨-=⎩12x y =⎧⎨=⎩()Rt ABC △90ACB ∠=︒30CAB ∠=︒23B C =ABC A B C ''△A 'B 'B 'AB A C 'A. 1B. C. 2 D. 【答案】A【解析】【分析】如图,过作于 求解 ,结合旋转:证明 可得为等边三角形,求解 再应用勾股定理可得答案.【详解】解:如图,过作于由, 结合旋转:为等边三角形,∴,∴,A AQ A C ¢^,Q 4,3AB AC =60,,90,B A B C BC B C A CB ¢¢¢¢¢Ð=Ð=°=Ð=°BB C '△60,A CA ¢Ð=°A AQ A C ¢^,Q 290,30,3ACB BAC BC ∠=︒∠=︒=4,3AB AC \=60,,90,B A B C BC B C A CB ¢¢¢¢¢\Ð=Ð=°=Ð=°BB C ¢\V 60,30,BCB ACB ¢¢\Ð=°Ð=°60,A CA ¢\Ð=°30CAQ ∠=︒12CQ AC ==∴A 到的距离为1.故选:A .【点睛】本题考查的是旋转的性质,含的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,作出适当的辅助线构建直角三角形是解本题的关键.10. 如图,将两个全等等腰直角三角形摆成如图所示的样子,其中,,、分别与交于D 、E 两点,将绕着点A 顺时针旋转90°得到,则下列结论:①;②平分;③若,当时,则平分,则,其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据旋转变换只改变图形的位置不改变图形的形状与大小可得和全等,根据全等三角形对应角相等可得,然后求出,判断出①正确;根据全等三角形对应边相等可得,,判断出②正确;根据,证明,求解得到③错误;根据角的度数得到,然后利用“角角边”证明,根据三角形面积公式即可求得,判断出④正确.【详解】解:∵,,∴,,的1AQ \=A C '30︒AB AC AG FG ===90BAC AGF ∠=∠=︒AF AG BC ACE △ABH BH BC ⊥AD HDE ∠3BD =2DE CE =AB =+AB HAD ∠ABD ADE S =△△ABH ACE △BAH CAE ∠=∠45ABH ∠=︒DH DE =ADH ADE ∠=∠222BD CE DE +=AB BC =AB ADB AEC ∠=∠()AAS ABD ACE △△≌AB AC AG FG ===90BAC AGF ∠=∠=︒45ABC C FAG ∠=∠=∠=︒BC由旋转性质可知,∴,,,,,∴,故①正确;∵,∴,即,∴,在和中,,∴,∴,,∴平分,故②正确;在中,,,,∴,当,时,∴,∴,∴,∵,,∴,∴,故③错误;∵平分,,∴,∵,,ABH ACE ≌ 45ABH ACE ∠=∠=︒BH CE =AH AE =BAH CAE ∠=∠454590HBD ABH ABC ∠=∠+∠=︒+︒=︒BH BC ⊥BAH CAE ∠=∠45BAH BAD CAE BAD BAC FAG ∠+∠=∠+∠=∠-∠=︒45DAH ∠=︒DAH DAE ∠=∠ADH ADE V AD AD DAH DAE AH AE =⎧⎪∠=∠⎨⎪=⎩()SAS AHD ADE ≌ DH DE =ADH ADE ∠=∠AD HDE ∠Rt BDH △222BD BH DH +=BH CE =DH DE =222BD CE DE +=3BD =2DE CE =22234CE CE +=CE DE =3BC BD DE CE =++=+AB AC =90BAC ∠=︒AB BC =AB =+AB HAD ∠45HAD ∠=︒22.5BAD BAH ∠=∠=︒=45ABC ∠︒45FAG ∠=︒∴,,∴,∴,在和中,,∴,∴,∵,∴,设A 到边距离为h ,∵,,∴∴,故④正确;综上①②④正确,故选C【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,以及勾股定理,二次根式的乘法运算,熟记各性质并准确识图是解题的关键.二.填空题(共5小题,每小题3分,共15分)11. 把多项式x 3﹣4x 分解因式的结果为_______.【答案】x (x +2)(x -2)【解析】【分析】先提取公因式x ,然后再利用平方差公式进行二次分解.【详解】解:x 3-4x ,67.5BAE BEA ∠=∠=︒67.5ADE ∠=︒ADE BEA ∠=∠ADB AEC ∠=∠ABD △ACE △ADB AEC ABD ACE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE △△≌BD CE =222BD CE DE +=DE =BC 12ABD S BD h =⨯⨯ 12ADE S DE h =⨯⨯ ABD ADE S BD S DE == ABD ADE S =△△=x (x 2-4),=x (x +2)(x -2)故答案为:x (x +2)(x -2).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,关键在于要进行二次分解因式.12. 若在解分式方程去分母时产生增根,则______.【答案】【解析】【分析】本题考查分式方程的增根,解决本题时需注意,要将增根,代入分式方程化为整式方程后的方程即可得到答案.【详解】解:方程两边都乘,得,∵原方程增根为,∴把代入整式方程,得,故答案为.13. 某地为美化环境,计划种植树木1000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前2天完成任务,则实际每天植树__________棵.【答案】125【解析】【分析】设原计划每天植树x 棵,则实际每天植树(1+25%)x 棵,根据工作时间=工作总量÷工作效率,结合实际比原计划提前2天完成任务,列出分式方程,解之经检验后即可得出x 的值,再将其代入(1+25%)x 中即可求出结论.【详解】】解:设原计划每天植树x 棵,则实际每天植树(1+25%)x 棵,依题意得:解得:x =100,经检验,x =100是原方程的解,且符合题意,∴(1+25%)x =125,即实际每天植树125棵,故答案为:125.122x k x x -=++k =3-2x =-122x k x x -=++2x +1x k -=2x =-2x =-213k =--=-3-100010002(125%)x x-=+【点睛】本题考查了分式方程应用,找准等量关系,正确列出分式方程是解题的关键.14. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:①阅读过《水浒传》的人数等于阅读过《西游记》的人数的整数倍②阅读过《水浒传》的人数是阅读过《三国演义》的人数的1.5倍③阅读过《三国演义》的人数多于阅读过《西游记》的人数的1.5倍若阅读过《西游记》的人数为4,则阅读过《水浒传》的人数的最小值为______.【答案】12【解析】【分析】本题考查了一元一次方程的应用以及一元一次不等式的应该,根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程)是解题的关键.设阅读过《三国演义》的人数为,则阅读过《水浒传》的人数为,根据“阅读过《水浒传》的人数等于阅读过《西游记》的人数的整数倍,且阅读过《三国演义》的人数多于阅读过《西游记》的人数的1.5倍”,可列出关于的一元一次方程及一元一次不等式,解之可得出,结合为正整数,可得出的最小值,再将其代入中,即可求出结论.【详解】解:设阅读过《三国演义》的人数为,则阅读过《水浒传》的人数为,根据题意得:,,又为正整数,的最小值为3,的最小值为12,即阅读过《水浒传》的人数的最小值为12.故答案为:12.15. 如图,在中,,,,将沿着射线方向平移得到,A 与D 为对应点,连接,在整个平移过程中,若,则平移的距离为______.【答案】【解析】的x 1.5x x 49n >n n 1.54x n =x 1.5x 1.544 1.5x n x =⎧⎨>⨯⎩4 1.54 1.59n ∴>⨯⨯=n Q n ∴4n ∴ABC 45BAC ∠=︒60ACB ∠=︒5BC =ABC BC DEF CD 45CDE ∠=︒5+【分析】先画图,结合平移的性质与三角形的外角的性质判断在的延长线上,如图,过作于,求解,证明,,从而可得答案.【详解】解:当在上时,∵,,∴,∵,与矛盾,舍去,∴在的延长线上,如图,过作于,∵,∴,而,∴,∵,,∴∴∵,,∴,,∴E BC B BQ AC ⊥Q DF AC ==454590CDF ∠=︒+︒=︒180906030DCF ∠=︒-︒-︒=︒E BC AB DE ∥45A ∠=︒45EHC A ∠=∠=︒45CDE ∠=︒CHE CDE ∠>∠E BC B BQ AC ⊥Q 60ACB ∠=︒30CBQ ∠=︒5BC =52CQ =BQ ==45A ∠=︒BQ AC ⊥AQ BQ ==DF AC ==45EDF A ∠=∠=︒60F ACB ∠=∠=︒454590CDF ∠=︒+︒=︒180906030DCF ∠=︒-︒-︒=︒25CF DF ==+∴平移距离为:,故答案为:【点睛】本题考查的是平移的性质,平行线的性质,含的直角三角形的性质,等腰直角三角形的判定与性质,勾股定理的应用,熟记基础图形的性质是解本题的关键.三、解答题(本大题共7小题,共55分,16题8分,17题8分,18题7分,19题7分,20题8分,21题8分,22题9分)16. (1)因式分解:(2)解不等式组:【答案】(1);(2)原不等式组的解集为【解析】【分析】本题考查的是因式分解,一元一次不等式组的解法,掌握相应的解题方法是关键;(1)先提取公因式,再利用完全平方公式分解因式即可;(2)分别解不等式组中的两个不等式,再确定两个解集的公共部分即可.【详解】(1)解:原式;(2)由①得:,由②得:,∴,∴原不等式组的解集为.17. (1)先化简:,再从中选合适的整数带入求值.(2)解分式方程:.【答案】(1);(2)【解析】5+5+30︒22363x xy y -+322113x x +>⎧⎪-⎨<⎪⎩()23x y -12x -<<()2232x xy y =-+()23x y =-322113x x +>⎧⎪⎨-<⎪⎩①②1x >-213x -<2x <12x -<<2214411m m m m m ⎛⎫-+-÷ ⎪--⎝⎭12m -≤≤1112x x x ++=-2m m -131x =【分析】本题考查的是分式的化简求值,分式方程的解法,掌握解不等式与分式方程的基本步骤是解本题的关键;(1)先计算括号内的分式的减法,再计算除法运算,得到化简的结果,结合分式有意义的条件确定字母的值,再代入计算即可;(2)先去分母化为整式方程,再解整式方程并检验即可.【详解】(1)解:原式∵且,,∴将代入到中(2)解:去分母得:,∴,解得:经检验,是原方程的根.18. 在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系是格点三角形(顶点在网格线的交点上);(1)作出关于原点O 成中心对称的,并写出三个顶点坐标(_____),(______),(______);()()21212m m m m m =--⋅--2mm =-12m -≤≤0m ≠1m ≠2m ≠1m =-1m =-2m m -123m m =-1112x x x ++=-()()()122x x x x x +-+=-22222x x x x x x -+-+=-1x =1x =ABC ABC 111A B C △111A B C △1A 1B 1C(2)把向上平移4个单位长度得到,画出;(3)与成中心对称,请直接写出对称中心的坐标(________).【答案】(1)作图见解析;;;(2)见解析(3)【解析】【分析】此题考查中心对称图形的画法,平移图形的画法,中心对称的性质及平移的性质,对称中心的确定方法,正确掌握中心对称的性质及平移的性质是解题的关键.(1)根据中心对称的性质作出点A 、B 、C 的对应点,,,然后顺次连接即可;(2)根据平移特点先作出点,,平移后的对应点,,,然后顺次连接即可;(3)连接两组对称点的交点即为对称中心,然后根据中点坐标公式求出此点的坐标即可.【小问1详解】解:如图,为所求作的三角形;根据图可知,,,.故答案为:;;.【小问2详解】解:如图,为所求作的三角形;【小问3详解】解:连接、,则、的交点即为对称中心,∵,,111A B C △222A B C △222A B C △222A B C △ABC 3,05,3-1,1-()0,21A 1B 1C 1A 1B 1C 2A 2B 2C 111A B C △()13,0A ()15,3B -()11,1C -3,05,3-1,1-222A B C △2BB 2CC 2BB 2CC ()5,3B -()25,1B∴对称中心的坐标为,即对称中心的坐标为.故答案为:.19. 如图,在中,为边上的垂直平分线,与的平分线交于点,过点作交的延长线于点,作,交于点.(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)【解析】【分析】()连接、,利用已知条件证明,即可得到;()根据()中的条件证得,根据全等三角形的性质得到,于是得到结论,代入即可求解;本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的性质和判定,能综合运用性质进行推理是解题的关键.5531,22-++⎛⎫ ⎪⎝⎭()0,2()0,2ABC DE BC BAC ∠E E EF AB ⊥AB F EG AC ⊥AC G BF CG =6AB =15AC =CG 4.5CG =1BE CE ()Rt Rt HL EFB EGC ∠ ≌BF CG =21()Rt Rt HL AEF AEG ∠ ≌AG AF =2AC AB GC =+【小问1详解】如图,连接,,∵平分,,,∴,,∵为边上的垂直平分线,∴,在和中,,∴,∴,【小问2详解】由()得,,,同理:,∴,∴,∵,,∴.20. 某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为90万元,今年销售额只有80万元(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用少于105万元且多于99万元的资金购进这两款汽车共15辆,有哪几种进货方案?的BE CE AE BAC ∠EG AC ⊥EF AB ⊥EF EG =90EFB EGC ∠=∠=︒DE BC BE CE =Rt EFB △Rt EGC ∠ BE CE EF EG =⎧⎨=⎩()Rt Rt HL EFB EGC ∠ ≌BF CG =1BF CG =EF EG =90EFB EGC ∠=∠=︒()Rt Rt HL AEF AEG ∠ ≌AF AG =2AC AG GC AF GC AB BF GC AB GC GC AB GC =+=+=++=++=+6AB =15AC =4.5CG =【答案】(1)今年5月份A 款汽车每辆售价为8万元(2)共有3种进货方案:A 款7辆,B 款8辆;A 款8辆,B 款7辆;A 款9辆,B 款6辆【解析】【分析】本题考查的是分式方程的应用,一元一次不等式组的应用,确定相等关系与不等关系是解本题的关键;(1)设今年5月份A 款汽车每辆售价为x 万元,则去年同期A 款汽车每辆售价为万元,利用去年销售额为90万元,今年销售额只有80万元,建立方程求解即可;(2)设购进m 辆A 款汽车,则购进辆B 款汽车,利用公司预计用少于105万元且多于99万元的资金购进这两款汽车共15辆,再建立不等式组解题即可.【小问1详解】解:设今年5月份A 款汽车每辆售价为x 万元,则去年同期A 款汽车每辆售价为万元,依意得:,解得:,经检验,是原方程的解,且符合题意.答:今年5月份A 款汽车每辆售价为8万元【小问2详解】设购进m 辆A 款汽车,则购进辆B 款汽车,依题意得:,解得:,又∵m 为正整数,∴m 可以为7,8,9∴共有3种进货方案.①购买A 款7辆,B 款8辆:②购买A 款8辆,B 款7辆;③购买A 款9辆,B 款6辆.21. 阅读下面的材料:把一个分式写成两个分式的和叫作把这个分式表示成“部分分式”.例:将分式表示成部分分式,解:设,将等式右边通分,得,依据题意,得,解得,所以请你适用上面所学到的方法,解决下面的问题:()1x +()15m -()1x +90801x x=+8x =8x =()15m -()()7.56151057.561599m m m m ⎧+-<⎪⎨+->⎪⎩610m <<2131x x --213111x M N x x x -=+-+-()()()()()()211111M x N x M N x N M x x x -++++-=+--31M N N M +=⎧⎨-=⎩21M N =-⎧⎨=-⎩21321111x x x x ---=+-+-(1)(A ,B 为常数),则______,______;(2)一个容器装有水,按照如下要求把水倒出:第1次倒出水,第2次倒出的水量是的,第3次倒出的水量是的,第4次倒出的水量是的…第n 次倒出的水量是的…按照这种倒水的方法,这的水是否能倒完?如果能,多少次能倒完?如果不能,请说明理由;(3)按照(2)的条件,现在开始重新实验,按照如下要求把水倒出:第1次倒出水,第2次倒出的水量是,第3次倒出的水量是,第4次倒出的水量是,请问经过多少次操作后,杯内剩余水量能否变成原来水量的?试说明理由.【答案】(1),(2)这水永远倒不完,证明见解析(3)经过99次操作之后能达到,证明见解析【解析】【分析】本题考查的是分式运算的规律探究,分式方程的解法,掌握探究的方法并应用规律解题是关键.(1)根据题干提示进行通分,从而可得,,从而可得答案;(2)根据题意先列式表示倒出的水,再求和,根据结果即可判断;(3)先列式表示剩余水量,再建立方程求解即可.【小问1详解】解:∵,∴,∴,∴,∴,,解得:,;()111A B n n n n =+++A =B =1L 1L 21L 2131L 3141L 4151L n 11n +1L 1L 31L 151L 351L 6310019911-1L 0A B +=1A =()111A B n n n n =+++()()()()11111A n Bn n n n n n n +=++++()()()1111A n Bn n n n n ++=++()()()111A B n A n n n n ++=++0A B +=1A =1A =1B =-【小问2详解】∵∴这水永远倒不完;【小问3详解】∴解得经检验,是原方程的根;答:经过99次操作之后能达到.22. 如图与为正三角形,点为射线上的动点,作射线与直线相交于点,将射线绕点逆时针旋转,得到射线,射线与直线相交于点.(1)如图①,点与点重合时,点,分别在线段,上,求证:;(2)如图2,当点在的延长线上时,,分别在线段的延长线和线段的延长线上,请写出,,三条线段之间的数量关系,并说明理由(3)点在线段上,若,,当时,请直接写出的长.1111111223341n n +⨯+⨯+⋯⋯+⨯+1111111223341n n =+-+-+⋅⋅⋅⋅⋅⋅+-+11n 1=-+11n n =≠+1L ()()111111335572121n n ----⋅⋅⋅⋅⋅⋅-⨯⨯⨯-+11111111112335572121n n ⎛⎫=--+-+-+⋯+- ⎪-+⎝⎭121nn =-+121n n +=+110021199n n +=+99n =99n =ABC ACD O CA OM BC E OM O 60︒ON ON CD F O A E F BC CD AEC AFD ≌O CA E F CB CD CE CF CO O AC 8AB =7BO =1CF =BE【答案】(1)证明见解析(2),证明见解析(3)或或【解析】【分析】本题属于三角形的综合题,考查了全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等,解题的关键是学会添加辅助线,构造全等三角形解决问题,学会分类讨论的思想解决问题.(1)根据正方形的性质可得,,根据旋转的性质可得,推得,根据“”即可证明;(2)过点作交与点,根据等边三角形的判定和性质可得,推得,根据全等三角形的判定和性质可得,即可推得;(3)作于,根据等边三角形的性质可得,根据勾股定理求得【小问1详解】证明:如图①中,∵与为正三角形,∴,,∵将射线绕点逆时针旋转,∴,∴,∴,∵,,∴;【小问2详解】解:,理由如下:如图②,过点作交与点,CO CF CE =+426====AB AC BC AD CD 60BAC BCA ADC DAC ∠=∠=∠=∠=︒60EAF ∠=︒EAC FAD ∠=∠ASA O OH BC ∥DF H ==OC CH OH EOH FOC ∠=∠EH CF =CO CF CE =+BH AC ⊥H 11422AH AC AB ===BH =ABC ACD ====AB AC BC AD CD 60BAC BCA ADC DAC ∠=∠=∠=∠=︒OM O 60︒60EAF ∠=︒60EAC CAF CAF FAD ∠+∠=∠+∠=︒EAC FAD ∠=∠60ACB ADF ∠=∠=︒AC AD =()ASA AEC AFD ≌CO CF CE =+O OH BC ∥DF H∴,,∵,∴是等边三角形,∴,,,∴,∵,,∴∴,∴,∴;【小问3详解】解:作于.∵,为正三角形,,∴,∴,如图中,当点在线段上,点在线段上时.∵,∴,60HOC BCA ∠=∠=︒60OHC ADC ∠=∠=︒60ACD ∠=︒COH ==OC CH OH 60COF ∠=︒EOH EOC FOC EOC ∠+∠=∠+∠EOH FOC ∠=∠60OHC OCF ∠=∠=︒OH OC =()AAS OHE OCF ≌EH CF =CH CE EH =+CO CF CE =+BH AC ⊥H 8AB =ABC BH AC ⊥11422AH AC AB ===BH ===1-③O AH E BC 7BO=1OH ===∴,过点作,交于,∴是等边三角形,∴,,∵,∴,∵,,∴,∴,∵,∴,∵,,∴,∴;如图中,当点在线段上,点在线段上,点在线段的延长线上时,同法可证:,∴,∴;如图中,当点在线段上,点在线段上,点在线段上时.415OC OH CH OH AH =+=+=+=O ON AB BC N ONC 5ON OC CN ===60ONC OCF ∠=∠=︒60NOE EOC EOC COF ∠+∠=∠+∠=︒∠=∠NOE COF ON OC =ONC OCF ∠=∠()ASA ONE OCF ≌=CF NE CN CE NE =+=+OC CE CF 5CN =1CF =514CE CN CF =-=-=844BE BC CE =-=-=2-③O AH E BC F DC -=CE CF OC 516CE =+=862BE BC CE =-=-=3-③O CH F DC E BC同法可证:,∵,,∴,∴;如图中,当点在线段上,点在线段延长线上,点在线段上时.同法可知:,而,∴,∴;综上所述,满足条件的的值为或或.的=+OC CE CF 413OC CH OH =-=-=1CF =312CE OC CF =-=-=826BE BC CE =-=-=4-③O CH F DC E BC -=CE CF OC 413OC CH OH =-=-=314CE OC CF =+=+=844BE BC CE =-=-=BE 426。