封闭型数阵图1教学内容
数阵图一.教师版

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
第4讲 数阵图

第4讲数阵图认识几种常考的数阵图模型,理解并熟练掌握解题方法。
数阵图定义:将一些数字按照一定的要求排列而成的某些图形一、辐射型数阵图:从一个中点出发,向外作若干条射线,在每条射线上安放同样多个数使其和是一个不变的数。
方法一:试算法(大小配)掐头、去尾、取中间方法二:计算法各数之和+重叠数×重叠次数=线和×线数二、封闭的数阵图:计算法各数之和+重叠数×重叠次数=线和×线数三、复合型数阵图即是辐射型数阵图,又是封闭型数阵图。
将1-7这7个数字分别填入图中各个○内,使每条线段上的三个○内的数之和等于14将1-11填入下图的各个圆圈内,使每条线段上的三个圆圈内的数之和相等。
1、将1-5分别填入圆圈内,使每条线上3个圆圈的数字之和都等于92.将1-9分别填入圆圈内,是每条线上的三个数之和相等将1-6六个数字分别填入下图6个圆圈内,使每条边上的和都等于11.把1-12这十二个数,分别填在如右图中正方形四条边上的十二个圆圈内,使每条边上四个圆圈内数的和都等于22,试求出一个基本解。
1.把1-9个数分别填入○中,使每条边上四个数的和相等于17.2.把1-8个数分别填入○中,使每条边上三个数的和相等12.(1)将1-7七个数字填入下图的七个圆圈内,使每个大圆圈和每条直线上的三个数字之和相等。
(2)将1-6这6个数字分别填入下图的6个圆圈内,使得三条线段上的数字之和都相等。
下图中,是有三个正三角形,将1-9分别填入9个圆圈内,使得三个正三角形三个顶点之和都相等,通过四个圆的每条线段之和也相等1.将1-5这五个数分别填入如果中的圆圈内,使每条线段上三个圆圈内的和相等。
2.将1-10这十个数分别填入下图中的十个○内,使每条线段上四个○内数的和相等,3.将1-9这九个数分别填入图中○内,使每条线段三个数相等.。
奥数有趣的数阵图

有趣的数阵图一教学要求:1、使学生掌握解答有趣的数阵图的方法;2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力;教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图;它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵;二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相等,填在中间的公关位置,;再分别填入;2,所以我们先假设,顶点,再推出,其它的点3、教学例3:把1~9这九个数,填入到方格中,解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填;方法有多种;4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等;解题思路:有2行3列,而1+2+3+5+6+7=24,所以每行为12,这样分成1、5、6;2、3、7两组;每列和是24÷3=8,所以:1、7;2、6;3、5;答案多种;1、填上合适的数,2、用1~5填空;使每一边和为3、填上数,使横、竖、斜和为4、使横、竖、斜和相等;教学要求:12、培养学生活跃的思维能力教学过程:一、导入新课:同学们都会正确计算有余数的除法,其实有余数除法还蕴含着丰富的数学知识,所以我们运用它还可以解决不少的数学难题;今天,我们将继续学习余数的妙用二;二、探索新知:1、教学例4:体育课排队,老师让同学们按1、2、3、4、5循环报数,最后一个人报2,这一排有人;A、26B、27C、28D、32吉林省“金翅杯”小学数学竞赛试题解题思路:答案必须是5的倍数还要加2,所以我们经过计算发现可以选BD;2、教学例5:……共一百个数字;问:这100个数字中,8出现几次100个数字的和是多少解题思路:从数字的排列看,我们发现每6个数重复一次,所以周期数是6,总数是:100,我们就列算式:100÷6=16 (4)再看8排在第几位它排在第4位,所以8出现的次数是6+1=7次第二个问:我们可以先算出每一个周期的数字和是多少1+4+2+8+5+7=27所以:27×6=162再加上最后一次出现的数字:1+4+2+8=15得:162+15=1773、教学例6:1、2、3、4、5、6、7七盏灯各有一个开关,开始第2、4、6盏灯亮着,一个小朋友从第1到第7,再从第1到第7,拉了2000次,问这时那些灯亮着湖北省黄冈市第三届小学生智力竞赛试题解题思路:我们可以先找出每盏灯拉了多少次;列式:2000÷7=285……5那么:灯号:1234567次数:85285原来:关开关开关开关现在:关开关开关关开双数时,不变;单数时,就变;三、全课小结:我们,要合理利用有余数除法的余数,还有它的变化公式;余数=被除数-商×除数商=被除数-余数÷除数除数=被除数-余数÷商被除数=商×除数+余数四、课堂练习:1、老师把50张卡片依次发给甲、乙、丙、丁,第45章发给谁2、方方和明明用同一个数做除法,方方用12去除,明明用15去除,方方除得的商是32还余6,明明的计算结果你知道了吗安徽省马鞍山市三年级数学竞赛试题3、写1~100这100个数中,数字“6”写了多少次....奇思巧解1.、.要把..7.棵小树种成.....6.行.,.每行有...3.棵.,.应当怎么样种...... 2.、.有.9.颗外形完全相同的珠子..........,.其中..8.颗是珍珠....,.另一颗是假珠......,.且假..珠比珍珠重.....,.问用天平称.....,.至少称几次可把假珠找出来............3.、.有.100...个零件...,.分装成...10..袋.,.每袋装...10..个.,.其中..9.袋里面装的都是.......50..克.,.另.1.袋里面的零件每个都是..........49..千克..,.这.10..袋混在一起.....,.你能用...秤称一次....,,..就把装...49..千克重的那一袋零件找出来吗.............4.、.老两口带着儿子.......,.女儿..,.和一条狗外外出旅游.........,.途中过一条河......,.渡.口有一条空船......,.最多能载....50..千克..,.而老两口各重......50..千克..,.儿子和...女儿各重....25..千克..,.狗重..10..千克..,.请问他们怎么样才能渡过河去............. 5.、.在一个街心花园.......,.把.10..棵树载成五行......,.每行..4.棵.,.应当怎么样栽种....... 6.、.有.12..只形状大小完全一样的零件............,,..其中有一只重量较轻的不是............合格品...,.你能用天平只称三次就打出这只不合格的产品吗..................... 7.、.有.A .、.B .、.C .三个金属球.....,A ..最重..,C ..最轻..,A>B>C,.......另外有一个球......D,..试用无法码的天平称两次...........,.确定..D .依照重量排顺序排在每几位............ 8.、.有一个人带着一只狼.........,.一只羊...,.和一筐菜过河去.......,.当这个人在时......,.狼不吃羊....,.羊不敢吃菜.....,.渡过河时只有一条船.........,.能承载人及一件东........西.,.问怎么样渡能使人、狼、羊、菜..............,.安全渡过河去......9.、.有一只旧天平......,.只剩下二个砝码.......,.一只是...5.克.,.另一个是....30..克.,.如.果使用这台天平.......,.把.300...克的药粉分成三份........,.一份是...50..克.,.一份是...100...克.,.一份是...150...克.,.最少得称几次......10..、.21..只桶装饲料.....,.有.7.桶装的满满的......,.有.7.桶每桶只装了一半........,.有.7.桶空的...,.如果不允许把饲料倒来倒去............,.要求连桶带饲料平均分给三位.............饲养员...,.问你怎么办.....鸡兔同笼问题1.鸡兔同笼,上有三十五头、下有九十四足,问鸡兔各有几只2.鸡兔同笼,共有头100个,足316只,那么鸡有几只,兔有几只3.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有和5分的各有几个4.小明花了6角4分钱买8分和4分的邮票共10张,其中8分和4分的邮票各有多少张5.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔和铅笔各有多少盒6.松鼠妈妈采松籽,晴天每天可以采20个,有雨的天每天只能采12个,它连着8天共采松籽112个,这几天当中有几天在下雨7.某中学利用,暑假进行军训活动,晴天每日行35里,雨天每日行22里,13天共行403里,这期间雨天有几天8.44名学生去划船,一共乘坐10只船,其中大船可以坐6人,小船坐4人,问大船和小船各有几只9.学校开展植树活动,辅导员带领15名同学去种56棵树苗,男同学每人种4棵,女同学每人种3棵,这样刚好把树苗种完,这15名同学中有男女同学各几名10.三一班的同学在献爱心活动中共有34名同学捐款,共捐了89元,这些同学有捐2元的,有捐5元,求捐2元和捐5元的同学各有多少名1.有28位小朋友排成一行.从左边开始数第10位是爱华,从右边开始数他是第几位2.纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话3.名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人多少人4.大于100的整数中,被13除后商与余数相同的数有多少个5.四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人6.在1998的约数或因数中有两位数,其中最大的是哪个数7.英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分8.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有几个月9.将0,1,2,3,4,5,6,7,8,9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数10.有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11.某学校有学生518人,如果男生增加4%,女生减少3人,总人数就增加8人,那么原来男生比女生多几人12.陈敏要购物三次,为了使每次都不产生10元以下的找赎,5元、2元、1元的硬币最少总共要带几个硬币只有5元、2元、1元三种.13.右图是三个半圆构成的图形,其中小圆直径为8,中圆直径为12,14.幼儿园的老师把一些画片分给A,B,C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张15.两人做一种游戏:轮流报数,报出的数只能是1,2,3,4,5,6,7,8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次17.把23个数:3,33,333,…,33…323个3相加,则所得的和的末四位数是多少18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是19.从1,2,3,…,2004,2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于420.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少21.若a为自然数,证明10│a2005-a1949.22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.23.求被3除余2,被5除余3,被7除余5的最小三位数.24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.25.试证不小于5的质数的平方与1的差必能被24整除.26.有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是%的糖水100克,问每种应取多少克27.一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是28.有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成%的盐水,问最初的盐水是多少千克29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%;求第三次加入同样多的水后盐水的浓度;30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为%的盐水,问盐水C的浓度是多少答案1.从右边开始数,他是第19位.2.4 月2日上午9时.名工人.4.有5个.13×7+7=98<100,商数从8开始.但余数小于13,最大是12,有13×8+8=112,13×9+9=126,13×10+10=140,13×11+11=154,13×12+12=168,共5个数.5.至少有11人.人数最多的房间至少有3人,其余三个房间至少有8人,总共至少有11人.6.最大的两位约数是74.1998=2×3×3×3×377.第四次最少要得96分.88+90-88×4=96分8.最多有5个月有5个星期日.1月1日是星期日,全年就有53个星期日.每月至少有4个星期日,53-4×12=5,多出5个星期日,在5个月中. .和的前两位是1和0,两位数的十位是9.因此加数的个位最大是7和8.10.后两位数是14.285700÷11×13=1997余129余数129再加14就能被143整除.11.男生比女生多32人.男生4%是3+8=11人,男生有11÷4%=275人,女生有518-275=243人,275-243=32人.12.最少5元、2元、1元的硬币共11个.购物3次,必须备有3个5元、3个2元、3个1元.为了应付3次都是4元,至少还要2个硬币,例如2元和1元各一个,因此,总数11个是不能少的.准备5元3个,2元5个,1元3个,或者5元3个,2元4个,1元4个就能三次支付1元至9元任何钱数.班每人能得35张.设三班总人数是1,则B班人数是6/15,C班人数是6/14,因此A班人数是:15.第一个数报6.对方至少要报数1,至多报数8,不论对方报什么数,你总是可以做到两人所报数之和为9.123÷9=13……6.你第一次报数6.以后,对方报数后,你再报数,使一轮中两人报的数和为9,你就能在13轮后达到123. 17.甲26又2/3天,乙40天又1/321.甲、乙两地相距540千米,原来火车的速度为每小时90千米;25.一班48人,二班42人29.最少5个,最多7个。
第四讲-有趣的数阵图学生版-奥数教程-讲义

第四讲有趣的数阵图经典精讲:数阵图: 将一些数按照一定的要求排列成各种各样的图形。
数阵图是一种趣味性很强的填数游戏, 它的形式多样, 绚丽奇妙。
这里给同学们介绍三种形式的数阵图, 即封闭型数阵图、辐射型数阵图和复合型数阵图。
(一)辐射型数阵图(像雪花)从一个中心出发, 向外作若干条射线, 在每条射线上安放同样多个数, 使其和是一个不变的数。
突破关键:确定中间数, 多算的次数, 公共的和线数x公共的和=数和+中心数x重复次数【例1】把1—5 这五个数分别填在左下图中的方格中, 使得横行三数之和与竖列三数之和都等于9。
【例2】把1—7这七个数分别填入图1中的各○内, 使每条线段上三个○内数的和相等。
【课堂练习】将1~11这11个数分别填入图11中的方格内, 每个数只许用一次, 使相邻两个或三个方格内数的和都相等。
(二)封闭型数阵图(像围墙)多边形的每条边放同样多的数, 使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字, 公共的和边数x公和=数和+重叠数和【例3】把1~6这六个数分别填在下图中三角形三条边的六个○内, 使每条边上三个○内数的和相等。
(本题有24种填法, 你能想出几种?)【例4】将2—9这八个数分别填入右图的○里, 使每条边上的三个数之和都等于18。
【课堂练习】1.1—10这十个数, 分别填在图9中五边形五条边上的十个○内, 并使五条边上的三个○内数的和相等。
2.把1—8这8个数, 填入图13中的八个○内, 使每条线段上的四个数的和, 与每个四边形四个顶点上的四个数的和都相等。
(三)复合型数阵图既有辐射型数阵图的特点, 又有封闭型数阵图的特点。
突破点: 找出关键位置重复次数。
【例5】将1~7这七个数分别填入下图的○里, 使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。
【课堂练习】1.将1.2.3.4.5.6六个数字填入图中的小圆圈内, 使每个大圆上四个数字的和是16。
2. 将1—8这八个数, 分别填入图10中两个圆圈的八个○内, 使每个圆圈上五个○内数的和分别为20、21.22。
第三讲 数阵图(一)doc

第三讲 数阵图(一)教室 姓名 学号【知识要点】数阵图是将一些数按照一定的要求排列而成的某种图形。
数阵图根据图形的形状特点,可以分为辐射型数阵图和封闭型数阵图。
辐射型:(1)仔细观察图形,找出关键位置。
关键位置通常是重叠数,也可叫做中间数;(2)把题目中提供的数字和所要填的空格和图形关系联系起来看,注意倍数关系;(3)计算方法:已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。
封闭型:(1)仔细观察图形,找出关键数(即重叠数)。
在封闭型数阵图中,关键数往往有几个;(2)把题目提供的数字和所要填的空格和图形联系起来看,注意总和的倍数关系;(3)计算方法:已知各数之和+重叠数之和=每边各数之和×边数;【经典例题】★例1:将1——5这五个数分别填入图中的空格内,使两条直线上的三个数之和相等,若中间数为5,该怎么填?★例2:将1——5这五个数分别填入图中的空格内,使横行、竖列三个数之和都等于9.★例3:将1——6分别填在图中,使每条边上三个圆圈内的数的和等于9.★★例4:把1——7填入下图中,使每条线段上的三个○内的数的和相等。
★★例5:将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.★★★例6:在下图中填入合适的数,使三行、三列和两条对角线上的三个数的和都相等。
【池中戏水】★1、将1~9这九个数分别填入图中○内,使每条线段五个数的和等于23.★2、将1——5这五个数分别填入图中的圆圈内,使三角形每条边上的数之和都相等。
★3、把1~8个数分别填入○中,使每条边上三个数的和相等.★4、把1~11填入图中,使每条线上三个数的和相等.★5、把1~10填入图中,【江中畅游】★★1、将1——11这11个数分别填入图中的空格内,使横行、竖行、斜排上的几个数之和都等于14.★★2、在下图的空格内填上适当的数,使任意四个相邻格中的数的和等于22.【海中冲浪】★★★1、把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.【温馨提示】下节课我们将学习鸡兔同笼(一),请作好预习。
数阵图

页脚内容3
数量性状的分子标记(QTL 定位的原理和方法讲义) 5、把 1~10 填入图中,使五条边上三个○ 内的数的和相等。
例 2:把 20 以内的质数分别填入下图的一个○ 中,使得图中用箭头连接起来的四个数之和 都相等。
分析 :由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。 20 以内共有 2,3,5,7,11,13,17,19 八个质数,两两之和相等的有
9、把 1~16 填入下图中,使每条边上 4 个数的和相等,两个八边形上 8 个数的和也相等。
页脚内容10
数量性状的分子标记(QTL 定位的原理和方法讲义) 页脚内容11
b.
1
65
243
c. 1 56 3 42
2 64 1 53
d.
e.
2
46
3 51
f. 3 54 1 62
3 45 2 61
页脚内容2
数量性状的分子标记(QTL 定位的原理和方法讲义) 练习一
1、把 1~8 个数分别填入○中,使每条边上三个数的和相等。
2、把 1~7 填入下图中,使每条线段上三个○内的数的和相等。 3、把 1~11 填入图中,使每条线上三个数的和相等。
4、把 1~8,填入图中,使每条线及正方形四个顶点上的数的和相等。 页脚内容8
数量性状的分子标记(QTL 定位的原理和方法讲义)
5、把 1~16 这 16 个数,填入图中的 16 个○内,使五个正方形的四个顶点上○内数的和相等.
6、将 1-12 这十二个数分别填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字 之和 26。
分析: 因为 1+2+3+4+5+6 = 21,而每条边上的三个数的和为 9,则三条边上的和为 9 ×3 = 27,27-21 = 6,这个 6 就是由于三个顶点都被重复算了一次。所以三个顶点的和为 6, 在 1—6 中,只能选 1、2、3 填入三个顶点中,再将 4、5、6 填入另外的三个圈即可。
一年级春季第九讲有趣的数阵图
第九讲有趣的数阵图
本讲主要通过学两种类型的数阵图,即辐射型和封闭型的,认识数阵图并找到解答数阵图的方法
一、一般数阵图
方法:由数多的入手想
例将1-16这十六个数分别填入下面的方框中,使横行、竖行、斜行的和都相等。
1 15 14 4
12 6 7 9
8 10 11 5
13 3 2 16
分析:先由数多的入手,即从对角线上的已知数求出和为34,然后按顺序求解就可以了。
二、辐射型数阵图
方法:(1)先填中间数(重叠数)
(2)尝试法:如果所填数是连续数,那么可以:
留头、留尾、留中间
剩下的数:小手拉大手
如果不是连续数,从小到大去尝试中间数即可
例把1,2,3,4,5,6,7这七个数分别填入里,使每条
直线上的三个数相加的和都相等,你能做出几种答案,让我们一起试试吧!
分析:(1)先填重叠数,留头1,剩下的数小手拉大手分组,2和7,3和6,4和5.对应填入即可
(2)留尾7,1和6,2和5,3和4
(3)留中间4,1和7,2和6,3和5
三、封闭型数阵图
方法:(1)先填重叠数,封闭型往往有多个重叠数
(2)拆数法然后再观察
例上填上1-6,使每条线上的和为9
分析:可以看出有3个重叠数,是三角形三个角上的数,如果尝试,就不太好想,所以要拆数了,即把9拆成三个数的和,再拆的时候注意要按从小到大的顺序。
9=1+2+6=1+3+5=2+3+4
然后再去观察出现2次得数,即1,2,3.重叠数要填1、2、3即可,其它的数对应的填入即可。
拓展训练
把1-11这11个数填入图中的圆圈中,使每条直线上的三个数的
和是18
答案:中间填6。
第三讲数阵图要点
解: .
a. 1
65
2 43 3
b.
1
5
6
342
c.
2
6
4
1 53
d. 2
46
351
练一练:
e.
f.
3
3
54
45
162
2
61
把 1~8 个数分别填入○中 , 使每条边上三个数的和相等 .
答案 :
183
5
7
64 2
例( 2 ) 把 1~7 填入下图中 , 使每条线段上三个○内的数的和相等 .
分析 : 中心圆填入的数设为 x,x 参与 3 条线的连加, 设每条线数字和都 为 S. 由题意:
分析: 设未被标出的数为 a,则被标出的八个数之和为 1+ 2+, + 9-a = 45-a 。由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为
6k=3×( 45-a ), 2k= 45-a 。 2k 是偶数, 45-a 也应是偶数,所以 a 必为奇数。 若 a=1,则 k=22; 若 a=3,则 k=21; 若 a=5,则 k=20; 若 a=7,则 k=19; 若 a=9,则 k=18。 因为 k 不能被 a 整除,所以只有 a=7,k=19 符合条件。 由于每个面上四个顶点上的数字之和等于 19,所以与 9 在一个面上 的另外三个顶点数之和应等于 10。在 1,2,3, 4, 5, 6, 8 中,三个数 之和等于 10 的有三组: 10= 1+3+6 =1+4+5 =2+3+5, 解: 将这三组数填入 9 所在的三个面上,可得下图的填法。
二、典例剖析:
例( 1) 将 1~6 分别填在图中 , 使每条边上的三个○内的数的和都等于 9.
数阵图讲义——精选推荐
54321 776655443322117654321a首先我们观察下图:图中有4个大圆,每个圆周上都有四个数字,神奇的是,每个圆周上的四个数字之和都等于20。
不信,你就算算。
上面这幅图就是数阵图。
把给定的一些数按一定的要求或规律填在特定形状的图形中,这样的图形叫做数阵图。
数阵图绚丽迷人,变化多端,引人入胜。
常见的主要有三种:(1)辐射型(2)封闭型(3)复合型。
一般说来,数阵图主要讨论以下两个问题:(1) 满足某种条件的填法是否存在;(2) 在填法存在的情况下,把待定的数字补充完整。
这一讲我们学习辐射型数阵图。
【例1】 把1~5这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于8。
【分析与解】这是辐射型数阵图。
你可能觉得这道题太简单了,七拼八凑就会写出正确答案。
可是,你明白其中的道理吗?下面我们就一起来探索其中的道理,只有弄清其中的道理,才可能解答更复杂巧妙的数阵图问题。
中间方格的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“中心数”。
用字母a 表示。
因为横行的三个数之和与竖列的三个数之和都等于8。
所以横行的三个数之和加上竖列的三个数之和为(8+8=)16,即(1+2+3+4+5)+a =8+8,整理得:15+a =16。
为什么还要加上a 呢?因为 a 是中心数,相加时一共被加了两次,其余各数均被加了一次。
在计算1+2+3+4+5时已计算了一次,所以最后还要加上a 。
解得:a =1求出了中心数。
其余各数就好填了。
如图所示。
【例2】 把1~7这七个数分别填入下图的各个方格内,使每条线段上三个○内数的和相等。
654321cba【分析与解】首先,我们分析一下,这七个○内的数中,哪几个数是关键?由图我们看到,在计算每条线段上三个数的和的过程中,都要用到中心数。
另外,还要知道每条线段上三个数的和是几。
所以,确定中心数和每条线段上三个数的和是解答本题的关键。
为此,我们设图中的中心数为a ,每条线段上三个○内数的和为k ,则 3k=(1+2+3+4+5+6+7)+2a3k=28+2a下面,我们利用上面得到的关系式3k=28+2a 来确定中心数a 的值。
封闭型数阵图1
12×3=36 1+2+3+4+5+6=21 36-21=15 所给数中和为15的三个数: 4,5,6
例2:将1—6分别填在与例1相同的图中, 使每条边上三个圆圈内的数的和等于10.
1
6 4
10×3=30 1+2+3+4+5+6=21 30-21=9 1+3+5=9 或 2+3+4=9
5
3
2
或1+2+6=9
所给数1~6中和为9的三个数:1,3,5或2,3,4 或1,2,6
评注: 评注:在找到重叠数之后 还要把它们填入图形中看看 能不能成立, 能不能成立,并不是每组重 叠数都能成功的。 叠数都能成功的。
【例3】将1—6这六个数分别填入下图中 的小圆圈内,使每个大圆圈上的四个数之 和都等于13.
封闭型
例1:将1—6分别填在图中,使每条边上 三 2 4 5
9×3=27 1+2+3+4+5+6=21 3 27-21=6 1+2+3=6
所给数 1~6的和
重叠数之和
1~6中和为6的三个数:1,2,3
练习:
1.将1、2、3、4、5、6填在下图中,使 每条边上的三个数的和等于12.
13×2=26
2 1 3
1+2+3+4+5+6=21 26-21=5 2个数的和为5有:
5
6 4
1和4,2和3
尝试:①1和4 尝试:②2和3
1,2,3,4,5,6 1,2,3,4,5,6
√ ×
•【思考3】将1—10这十个数分别填入 图中的圆圈内,使每个大圆圈上的六 个数之和都等于33.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2个数的和为5有:
6 4
5
1和4,2和3
尝试:①1和4 尝试:②2和3
1,2,3,4,5,6 √ 1,2,3,4,5,6 ×
•【思考3】将1—10这十个数分别填入
图中的圆圈内,使每个大圆圈上的六
个数之和都等于33.
33×2=66
10
9
8
5
7 1+2+3+4+5+6+7+8+9+10=55
66-55=11
所给数1~6中和为9的三个数:1,3,5或2,3,4 或1,2,6
评注:在找到重叠数之后 还要把它们填入图形中看看 能不能成立,并不是每组重 叠数都能成功的。
【例3】将1—6这六个数分别填入下图中
的小圆圈内,使每个大圆圈上的四个数之
和都等于13.
13×2=26
2
1
3
1+2+3+4+5+6=21
26-21=5
3
6
4 1+10=11或2源自9=1112或3+8=11或4+7=11
或5+6=11
所给数中和为11的两个数:1和10;2和9;
3和8;4和7;5和6
封闭型
例1:将1—6分别填在图中,使每条边上
三个圆圈内的数的和等于9。 三条线上3
个9的和
1
9×3=27
6
5 1+2+3+4+5+6=21
所给数 1~6的和
2
4
3 27-21=6 重叠数之和
1+2+3=6
1~6中和为6的三个数:1,2,3
练习:
1.将1、2、3、4、5、6填在下图中,使 每条边上的三个数的和等于12.
4
3
2
12×3=36 1+2+3+4+5+6=21 36-21=15
5
1
所给数中和为15的三个数: 6 4,5,6
例2:将1—6分别填在与例1相同的图中, 使每条边上三个圆圈内的数的和等于10.
1
10×3=30
1+2+3+4+5+6=21
6
4
30-21=9
1+3+5=9 或 2+3+4=9
3
2
5
或1+2+6=9