人口模型(马尔萨斯__vs__logistic)分解

合集下载

毕设之人口增长模型讲解(可编辑修改word版)

毕设之人口增长模型讲解(可编辑修改word版)

毕业设计——第一章绪论1.研究背景2.国内外研究现状3.人口概念介绍人口增长模型及其应用孙建锋第二章人口增长模型的概述1.马尔萨斯模型(人口指数增长模型)2.Logistic 模型(人口阻滞增长模型)3.年龄移算法模型4.L eslie 人口增长模型5.灰色 GM(1,1)预测模型6.人口发展方程7.各模型的优缺点对比第三章基本人口预测1.出生人数的预测2.死亡人数的预测3.分年龄分性别人口数预测4.人口总数预测第四章人口实例预测1.数据准备2.模型应用与求解3.结果分析4.结论及相关建议第一章绪论1.1研究背景人口问题是联系社会经济发展最基本、最复杂问题,受到世界各国诸多领域的关注.就人口规模的发展而言存在极大地差异,如,某些发展中国家人口生育率过高;而某些发达国家的生育率过低,甚至为负増长,这些现象会引发一系列社会经济问题,如,失业、老龄化,进而影响社会稳定.人口问题事关国计民生,是影响经济社会发展全局的重大问题。

以人为本的科学发展观必然要求我们在一切发展序列中首先关注人口发展,中国人口发展在中国经济社会发展框架中具有绝对优先的工具价值和目的意义。

人口发展对一个国家经济、社会协调和可持续发展具有重要影响。

发现人口问题、制定相应政策、采取合适措施对人口发展进行调节,是政府保证经济社会协调和可持续发展的重要内容。

众所周知,人口众多是我国基本的国情,人口问题一直以来就是中国经济发展的绊脚石,中国是人口第一大国,固然有地大物博,资源丰富的美誉,但按人口数量平均下来,也就成了人均占有量不足的基本国情。

中国在世纪之交的2000 年进行了全国第五次人口普查,国家许多重大社会、政治,经济问题的研究都要依据人口的数量。

为此,进行人口预测是有效地控制人口发展与资源关系不可缺少的手段之一,同时也是人口决策的重要依据.对人口进行预测,做到人口有计划地发展不仅能有效地处理好人类与资源的关系,而且对于经济发展的预测,各个生态专项规划及制定建设决策都有重要的借鉴意义,也是我国经济稳定、高效、协调发展的保证。

Malthus模型和Logistic模型

Malthus模型和Logistic模型

Malthus模型和Logistic 模型随着社会的发展,人口问题与经济、资源、环境、社会的冲突日益成为制约国家发展的瓶颈,了解了人口增长函数,也就掌握了人口的发展动态和发展规律,这对国家的发展有重要意义。

1798年.英国人口学家和政治经济学家马尔萨斯以两个假设为前提:第一,食物为人类生存所必须;第二,人的性本能几乎无法限制,提出了闻名于世的人口指数增长模型,即Malthus人口模型:人口总数为p(t),人口的出生率为b,死亡率为d。

任取时段【t, t + dt ],在此时段中的出生人数为b p(t)dt ,死亡人数为d p(t)dt。

假设出生数及死亡数与p(t)及dt均成正比,而且以矩形取代了曲边梯形的面积。

在时段【t, t+dt ]中,人口增加量为p(t dt)- p(t)〜d p(t), 它应等于此时段中的出生人数与死亡人数之差,即d p(t) =b p(t) dt —d p(t) dt = a p(t) dt,其中a=b—d称为人口的净增长率。

于是p(t)满足微分方程^=ap(t). (1)dt若已知初始时刻t=t0时的人口总数为P0,那么p(t)还满足初始条件t=t0 时,p(t) =p0. (2)可以求得微分方程(1)满足初始条件⑵ 的解为(设a是常数) p(t)=p c e a(t _t0), ⑶即人口总数按指数增长。

模型参数的意义和作用:t0为初始时刻(初始年度),P0为初始年度t0的人口总数,a为每年的人口净增长率,b为人口出生率,d 为人口死亡率。

Malthus 人口模型所说的人口并不一定限于人,可以是认可一个生物群体,只要满足类似的性质即可。

现在讨论模型的应用和正确性。

例如,根据统计数据知在1961 年全世界人口为30.6 亿,1951 年-1961 年十年每年人口净增长率约为0.02。

取t o=1961, p o=3.06*109和a =0.02,就有9 0.02(t-t0)p(t)=3.06*10 *e ,用这个公式倒计算全世界在1700-1961 年间的人口总数,并把计算结果与实际统计数据作比较可以发现它们是比较符合的。

数学应用典型案例模型1马尔萨斯人口增长(指数增长)模型

数学应用典型案例模型1马尔萨斯人口增长(指数增长)模型

xc e hx
C
其中 C 为任意常数,可由初始条件确定。
捕食----被捕食模型有着广泛的应用。当一个包含两个群体的系统中,只要
两个群体相互依存、相互制约,均可用捕食----被捕食模型来描述。例如,鲨鱼
与食用鱼、寄生虫与其宿主、害虫与其天敌、肿瘤细胞与正常细胞等都可用该模
型来描述。下图表明了狐狸----野兔(数量)随着时间 t 所发生的周而复始的变
化,正是这种变化维持着该系统的生态平衡。
在狐狸----野兔生态系统中,生态系统的平衡点就是使 dx 0, dy 0 的点。 dt dt

a byx 0 c hxy 0
(3-2)
只求非零解,可知平衡点为: x c , y a 。也就是说,当野兔数量保持在 c ,
设人类生存空间及可利用资源(食物、水、空气)等环境因素所能容纳的最 大人口容量为 K(称为饱和系数).人口数量 N(t)的增长速率不仅与现有人口 数量成正比,而且还与人口尚未实现的部分(相对最大容量 K 而言)所占比例 K N 成比例,比例系数为固有增长率 r.于是,修改后的模型为
K
dN

hb
h
狐狸数量保持在 a 时,就能维持狐狸----野兔生态系统的平衡。 b
图 3-2
例 狐狸----野兔模型为
dx dt

0.03x

0.001xy
dy dt

0.9 y 0.002xy
(3-3)
试问:狐狸、野兔的数目各为多少时,该系统才达到平衡?
解:由 dx 0 ,得 y狐狸 0.03 3(0 只);
模型 3 捕食——被捕食模型 所用知识:微分方程组 内容介绍:

人口模型

人口模型

即可求得
b 2.695 1012。于是,世界人口的极限值
9 3.34 10 为初值,则2000年的 若以1965年的人口数
r 0.029 107.6 12 b 2.695 10
(亿)
世界人口将达到
0.029 3.34 109 y |t 2000 59.6 0.029(2000 1965) 0.009 0.02e
人口模型
模型1 马尔萨斯(Malthus)模型
英国的经济系家马尔萨斯首先提出了人口增长 模型。他的基本假设是:任一单位时刻人口的 增长量与当时的人口总数成正比。于是,设t ) 时刻的人口总数为 y(t,则单位时间内人口的 增长量即为 y (t t ) y (t ) t 根据基本假设,有
y (t t ) y (t ) ry (t ) (r为比例系数) t
dy 其中,dt
9
表示人口的理论增长率,而 则表示 人口的实际增长率。如果我们以1965年的人口数 3.34 10 为初值,并把某些生态学家估计的r的自然 值0.029及人口的实际增长率0.02代入上式,有
0.02=0.029-b(3.34 109 )
dy dt r by y
dy dt y
dy 2 ry by dt y |t t y0 0
(3)
这是一个可分离变量的一阶微分方程。解之, ry 可得 y (4)
by0 (r by0 )e r (t t0 )
0
这就是人口y随时间t的变化规律。下面,我们 就对(4)作进一步的讨论,并根据它对人口的 发展情况作一些预测。 3.模型的进一步讨论及其在人口预测中的应用 首先,由于
这个结果与2000年的世界实际人口是非常接近的。

马尔萨斯模型公式马尔萨斯模型

马尔萨斯模型公式马尔萨斯模型

马尔萨斯模型公式马尔萨斯模型马尔萨斯模型人类社会进入21世纪以来,在科学技术和生产力飞速发展的同时,世界人口也空前的规模增长。

我国是世界第一人口大国,地球上每九个人中就有一个中成富强民主文明的社会主义国家的想需要,而且对全人类社会的美好理想来说,也是义不容辞的责任。

认识人口数量的变化规律,建立人口模型,做出准确的预报,是有效控制人口增长的前提。

年1790 1800 1810 1820 1830 1840 1850 1860 人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 年1870 1880 1890 1900 1910 1920 1930 1940 人口38.6 50.2 62.9 76 92 10.6.5 123.2 131.7 年1950 1960 1970 1980 1990 2000 人口150.7 179.3 204 226.5 251.4 281.4 表1 美国人口统计数据1)马尔萨斯模型最简单的人口模型是人所共知的:记今年人口为x0,k年后人口为xk,年增长率为r,则xk x0(1 r)k (1)显然,这个公式的基本条件是年利率r保持不变。

模型建立记时刻t的人口为x t,当考察一个国家或一个较大地区的人口时,x t是一个较大的整数。

为了利用积分这一数学工具,将x t视为连续、可微函数。

记初始时刻(t=0)的人口为x0。

假设人口增长率为常数r,即单位时间内x t的增量等于x t乘以r。

考虑到t到t t时间内的增量,显然有x t t x t rx t t令 t 0,得到x t满足微分方程dx rx,x 0 x0 (2)dt由这个方程容易解出x t x0ert (3)R>0时(3)式表示人口将按指数规律时间无限增长,称为指数增长模型。

参数估计(3)的参数r和x0可以用表1的数据估计。

为了用简单的线性最小二乘法,将(3)事取对数,可得y rt a,y lnx,a lnx0 (4)以1790年至1900年的数据拟合(4)式,用MATLAB软件计算可得r=0.2743/10年,x0=4.1884。

人口模型(马尔萨斯__vs__logistic)

人口模型(马尔萨斯__vs__logistic)
输出结果: p 0.2743 1.4323
表示: y 0.2743t 1.4323
ln x0 1.4323 x0 4.1884 x(t ) 4.1884e0.2743t
模型预测
假如人口数真能保持每34.6年增加一倍,那么人口数将
以几何级数的方式增长。例如,到2510年,人口达2×1014个,
(4.2)
x(t ) x0ert
(4.2)
当r>0时,表明人口将按指数规律无限增长,因此又称为人 口指数模型。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时 间是固定的。
令种群数量翻一番所需的时间为T,则有:2 x0 x0erT 故 T ln 2
r
模型检验
x(t ) x0ert
(4.2)
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,

马尔萨斯定律与人口增长模型

马尔萨斯定律与人口增长模型

马尔萨斯生物定律与人口增长模型马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数)(t N 的变化率与生物总数成正比,其数学模型为⎪⎩⎪⎨⎧==00)()()(N t N t rN dt t dN (1) 其中r 为常数. 方程(1)的解为)(00)(t t r e N t N -=(2)因此,遵循马尔萨斯生物总数增长定律得任何生物都是随时间按指数方式增长,在此意义下,马尔萨斯方程(1)又称指数增长模型。

人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(1)式称为马尔萨斯人口方程。

英国人口学家马尔萨斯根据百余年的人口统计资料,于1798年提出了人口指数增长模型。

根据国家统计局1990年10月30日发布的公告,1990年7月1日我国人口总数为11.3368亿,今年的人口平均增长率为14.8‰. 假设人口的增长率保持不变,那么2000年我国的人口数量将达到13.45亿。

事实上,将 0148.0,2000,19900===r t t 代入到(2)式得45.133368.11)()19902000(0148.0==-e t N (亿)显然根据马尔萨斯人口方程预测2000年我国人口数量与全国第五次人口普查公报公布的12.9533亿,相差较大。

造成误差过大的主要原因是人口的增长率r 不是常数,它是随时间而变化的,很多试验和事实也证明r 是时变的。

为此修改马尔萨斯人口方程为⎪⎩⎪⎨⎧=--=000)()())(()(N t N t N t t B A dt t dN (3) 其中)()(0t t B A t r r --==为时变人口增长率,B A ,为定常参数。

求解微分方程(3),得其特解为200)(21)(0)(t t B t t A e N t N ---=(4)要利用(4)式对人口进行预测,首先应估计参数B A ,。

第三次人口普查结果(1982年):我国人口总数为10.3188亿,人口增长率为2.10%;第四次人口普查结果(1990年):我国人口总数为11.3368亿,人口增长率为1.48%;第五次人口普查结果(2000年):我国人口总数12.9533亿,人口增长率为1.07%。

人口模型马尔萨斯vslogistic

人口模型马尔萨斯vslogistic

本节将建立几个简单的单种群增长模型,以简略分析一
下这方面离的散问化题为。连一续般,生方态系统的分析可以通过一些简单模
型的复合来研究便,研大究家若有兴趣可以根据生态系统的特征自
行建立相应的模型。
美丽的大自然
种群的数量本应取离散值,但由于种群数 量一般较大,为建立微分方程模型,可将种群 数量看作连续变量,甚至允许它为可微变量, 由此引起的误差将是十分微小的。
§ 4.1 Malthus模型与Logistic模型
世界人口

1625 1830 1930 1960 1974 1987 1999 哇!
人口(亿) 5
10
20 30 40 50 60
美丽的大自然
中国人口

1908 1933 1953 1964 1982 1990 2000
人口(亿) 3 4.7 6 7.2 10.3 11.3 12.95
求出方程的解 ——求出未知函数的解析表达式 ——利用各种数值解法、数值软件(如Matlab)求
近似解 不必求出方程的解
——根据微分方程的理论研究某些性质,或它的变 化趋势
§ 4.1 Malthus模型与Logistic模型
为了保持自然资料的合理开发与利用,人类必须保持并 控制生态平衡,甚至必须控制人类自身的增长。
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0ert
(4.2)
当r>0时,表明人口将按指数规律无限增长,因此又称为人 口指数模型。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时 间是固定的。
令种群数量翻一番所需的时间为T,则有:2 x0 x0erT 故 T ln 2
r
模型检验
x(t ) x0ert
(4.2)
模型1 马尔萨斯(Malthus)模型
假设:人口净增长率r是一常数
符号:x( t ) t时刻时的人口,可微函数 x0 t 0时的人口
则 r x(t t) x(t) x(t )t
于是x(t)满足如下微分方程:
dx
dt
rx
x(0) x0
(4.1)
(3.1)的解为: x(t ) x0ert
§ 4.1 Malthus模型与Logistic模型
世界人口

1625 1830 1930 1960 1974 1987 1999 哇!
人口(亿) 5
10
20 30 40 50 60
美丽的大自然
中国人口

1908 1933 1953 1964 1982 1990 2000
人口(亿) 3 4.7 6 7.2 10.3 11.3 12.95
以1790-1900年的数据拟合(4.3)式,用 Matlab软件计算得:r=0.2743/10年,
Matlab计算示范 ln x(t) ln x0 rt y a rt (4.3) ( y ln x(t), a ln x0 )
以1790-1900年共计12个数据为例进行拟合: t=[0:11]; %输入数据 x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76]; plot (t, x, ’o’); %画散点图 y=log(x); p=polyfit(t,y,1)
模型检验
用Logistic模型来描述种群增长的规律效果如何呢?1945 年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数 学生物学家高斯(E·F·Gauss)也做了一个原生物草履虫实验, 实验结果都和Logistic曲线十分吻合。
大量实验资料表明用Logistic模型来描述种群的增长,效
例5 赝品的鉴定
历史背景:
在第二次世界大战比利时解放以后,荷兰野战军保安机关开始搜捕纳粹同 谋犯。他们从一家曾向纳粹德国出卖过艺术品的公司中发现线索,于1945年 5月29日以通敌罪逮捕了三流画家范·梅格伦(H·A·Vanmeegren),此人 曾将17世纪荷兰名画家扬·弗米尔(Jan Veermeer)的油画“捉奸”等卖给 纳粹德国戈林的中间人。可是,范·梅格伦在同年7月12日在牢里宣称:他从 未把“捉奸”卖给戈林,而且他还说,这一幅画和众所周知的油画“在埃牟 斯的门徒”以及其他四幅冒充弗米尔的油画和两幅德胡斯(17世纪荷兰画家) 的油画,都是他自己的作品,这件事在当时震惊了全世界,为了证明自己是 一个伪造者,他在监狱里开始伪造弗米尔的油画“耶稣在门徒们中间”,当 这项工作接近完成时,范·梅格伦获悉自己的通敌罪已被改为伪造罪,因此他 拒绝将这幅画变陈,以免留下罪证。
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,
果还是相当不错的。例如,高斯把5只草履虫放进一个盛有
0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%
的速率增长,此后增长速度不断减慢,到第五天达到最大量
375个,实验数据与r=2.309,a=0.006157,x(0)=5的Logistic曲
线:
x(t)
375 1 74e2.309t
然而,事情到此并未结束,许多人还是不肯相信著名的“在埃牟斯的门 徒”是范·梅格伦伪造的。事实上,在此之前这幅画已经被文物鉴定家认定为 真迹,并以17万美元的高价被伦布兰特学会买下。专家小组对于怀疑者的回 答是:由于范·梅格伦曾因他在艺术界中没有地位而十分懊恼,他下决心绘制 “在埃牟斯的门徒”,来证明他高于三流画家。当创造出这样的杰作后,他 的志气消退了。而且,当他看到这幅“在埃牟斯的门徒”多么容易卖掉以后, 他在炮制后来的伪制品时就不太用心了 。这种解释不能使怀疑者感到满意, 他们要求完全科学地、确定地证明“在埃牟斯的门徒”的确是一个伪造品。 这一问题一直拖了20年,直到1967年,才被卡内基·梅伦(CarnegieMellon)大学的科学家们 基本上解决。
原理 著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t) ,则有
dN N
dt
为物质的衰变常数。
初始条件
N t t0
N0
N (t)
N e (tt0 ) 0
t
t0
1
ln
N0 N
t
t0
1
ln
N0 N
半衰期 T 1 ln 2
碳-14 T 5568 年
即使海洋全部变成陆地,每人也只有9.3平方英尺的活动范围,
而到2670年,人M口a达lth3u6×s模10型15个实,际只上好只一有个在人群站体在总另一人的
肩上排成二层所净它了数生生物以增应。不物存等长当M故太群存原率与a马大 体 空 因lt不人23尔..h553时的间,x u1可口0萨1才各,就1s能数模斯合成有可始量型模理员限能终有假型,之的发保关设是到间自生持。的不总由然生马常人尔完数于资存萨数斯口善增有源竞模型,的人大限及争口预。时的食等测 ,
用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。
Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可,下面我们来看两 个较为有趣的实例。
用P61给出的近两个世纪的美国人口统计数据(以百万作 单位),对模型作检验。
r , x0
参数估计: r,x0可用已知数据利用线性最小二乘法进行估计
(4.2)式两边取对数,得:
ln x(t) ln x0 rt y a rt (4.3) ( y ln x(t), a ln x0 )
现象。
2
几何级数的增长
N/人
1.5
1
0.5
0 1950
2000
2050 t/年
2100
2150
2200
练习一:用P61的部分或者全部数据拟合Malthus模型, 计算并作图,观察并分析结果。
模型2 Logistic模型
人口净增长率应当与人口数量有关,即: r=r(x)
从而有:
dx
dt
r(x)x
镭-226
T 1600 年
铀-238 T 45亿年 铅-210 T 22年
, N (t) 能测出或算出,只要知道 N0 就可算出
断代。
这正是问题的难处,下面是间接确定N0 的方法。
油画中的放射性物质
白铅(铅的氧化物)是油画中的颜料之一,应 用已有2000余年,白铅中含有少量的铅(Pb210)和 更少量的镭(Ra226)。白铅是由铅金属产生的,而 铅金属是经过熔炼从铅矿中提取来出的。当白铅 从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。
物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数
量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。
对(4.6)分离变量:
1 1
x
xm
x
dx
rdt
两边积分并整理得:
x
1
xm Ce rt
令x(0)=x0,求得:
C xm x0 xm 1
x0
x0
故(4.6)的满足初始条件x(0)=x0的解为:
输出结果: p 0.2743 1.4323
表示: y 0.2743t 1.4323
ln x0 1.4323 x0 4.1884 x(t ) 4.1884e0.2743t
模型预测
假如人口数真能保持每34.6年增加一倍,那么人口数将
以几何级数的方式增长。例如,到2510年,人口达2×1014个,
为了审理这一案件,法庭组织了一个由著名化学家、物理学家和艺术史学
家组成的国际专门小组查究这一事件。他们用X射线检验画布上是否曾经有
过别的画。此外,他们分析了油彩中的拌料(色粉),检验油画中有没有历 经岁月的迹象。科学家们终于在其中的几幅画中发现了现代颜料钴兰的痕迹, 还在几幅画中检验出了20世纪初才发明的酚醛类人工树脂。根据这些证据, 范·梅格伦于1947年10月12日被宣告犯有伪造罪,被判刑一年。可是他在监 狱中只待了两个多月就因心脏病发作,于1947年12月30日死去。
相关文档
最新文档