人口模型(马尔萨斯__vs__logistic)描述

合集下载

Malthus模型和Logistic模型

Malthus模型和Logistic模型

Malthus模型和Logistic 模型随着社会的发展,人口问题与经济、资源、环境、社会的冲突日益成为制约国家发展的瓶颈,了解了人口增长函数,也就掌握了人口的发展动态和发展规律,这对国家的发展有重要意义。

1798年.英国人口学家和政治经济学家马尔萨斯以两个假设为前提:第一,食物为人类生存所必须;第二,人的性本能几乎无法限制,提出了闻名于世的人口指数增长模型,即Malthus人口模型:人口总数为p(t),人口的出生率为b,死亡率为d。

任取时段【t, t + dt ],在此时段中的出生人数为b p(t)dt ,死亡人数为d p(t)dt。

假设出生数及死亡数与p(t)及dt均成正比,而且以矩形取代了曲边梯形的面积。

在时段【t, t+dt ]中,人口增加量为p(t dt)- p(t)〜d p(t), 它应等于此时段中的出生人数与死亡人数之差,即d p(t) =b p(t) dt —d p(t) dt = a p(t) dt,其中a=b—d称为人口的净增长率。

于是p(t)满足微分方程^=ap(t). (1)dt若已知初始时刻t=t0时的人口总数为P0,那么p(t)还满足初始条件t=t0 时,p(t) =p0. (2)可以求得微分方程(1)满足初始条件⑵ 的解为(设a是常数) p(t)=p c e a(t _t0), ⑶即人口总数按指数增长。

模型参数的意义和作用:t0为初始时刻(初始年度),P0为初始年度t0的人口总数,a为每年的人口净增长率,b为人口出生率,d 为人口死亡率。

Malthus 人口模型所说的人口并不一定限于人,可以是认可一个生物群体,只要满足类似的性质即可。

现在讨论模型的应用和正确性。

例如,根据统计数据知在1961 年全世界人口为30.6 亿,1951 年-1961 年十年每年人口净增长率约为0.02。

取t o=1961, p o=3.06*109和a =0.02,就有9 0.02(t-t0)p(t)=3.06*10 *e ,用这个公式倒计算全世界在1700-1961 年间的人口总数,并把计算结果与实际统计数据作比较可以发现它们是比较符合的。

人口模型

人口模型

即可求得
b 2.695 1012。于是,世界人口的极限值
9 3.34 10 为初值,则2000年的 若以1965年的人口数
r 0.029 107.6 12 b 2.695 10
(亿)
世界人口将达到
0.029 3.34 109 y |t 2000 59.6 0.029(2000 1965) 0.009 0.02e
人口模型
模型1 马尔萨斯(Malthus)模型
英国的经济系家马尔萨斯首先提出了人口增长 模型。他的基本假设是:任一单位时刻人口的 增长量与当时的人口总数成正比。于是,设t ) 时刻的人口总数为 y(t,则单位时间内人口的 增长量即为 y (t t ) y (t ) t 根据基本假设,有
y (t t ) y (t ) ry (t ) (r为比例系数) t
dy 其中,dt
9
表示人口的理论增长率,而 则表示 人口的实际增长率。如果我们以1965年的人口数 3.34 10 为初值,并把某些生态学家估计的r的自然 值0.029及人口的实际增长率0.02代入上式,有
0.02=0.029-b(3.34 109 )
dy dt r by y
dy dt y
dy 2 ry by dt y |t t y0 0
(3)
这是一个可分离变量的一阶微分方程。解之, ry 可得 y (4)
by0 (r by0 )e r (t t0 )
0
这就是人口y随时间t的变化规律。下面,我们 就对(4)作进一步的讨论,并根据它对人口的 发展情况作一些预测。 3.模型的进一步讨论及其在人口预测中的应用 首先,由于
这个结果与2000年的世界实际人口是非常接近的。

人口增长模型14

人口增长模型14

人口增长模型简介人口增长模型是指根据人口变化规律和影响因素建立的数学模型,通过模拟和预测不同条件下的人口数量变化。

人口增长是一个复杂的系统,受到多方面因素的影响,包括出生率、死亡率、移民率等。

建立一个合理的人口增长模型对于政府制定人口政策、规划城市发展具有重要意义。

历史人口增长模型的研究可以追溯至18世纪。

英国数学家马尔萨斯在其著作《人口论》中首次提出了人口增长问题。

马尔萨斯认为人口会呈指数增长,而生产食物的增长是线性的,因此会导致人口增长超过食物供给能力,最终出现人口过剩。

这种观点引发了很多后续研究者对人口增长规律的探讨。

人口增长模型的类型基于不同的假设和数学方法,人口增长模型可以分为多种类型,其中比较常见的包括:马尔萨斯模型马尔萨斯模型是最早的人口增长模型之一。

它假设人口呈指数增长,而食物生产是线性增长。

这导致了人口的快速增长会超出食物供给能力,最终导致人口崩溃。

Logistic模型Logistic模型在马尔萨斯模型的基础上加入了环境资源有限的观点,即当资源接近极限时,人口增长率会减缓,最终趋于稳定。

这种模型更贴近实际情况,能更好地解释人口的增长规律。

Lotka-Volterra模型Lotka-Volterra模型是一种描述群体动态的模型,常用于描述捕食者-猎物关系。

将其应用在人口增长模型中,可以考虑到更多的因素对人口数量的影响,如资源竞争、捕食等。

应用人口增长模型在人口学、经济学、城市规划等领域有着广泛的应用。

通过建立合理的模型,可以预测人口数量、优化资源配置、制定人口政策等。

特别是在城市规划领域,人口增长模型可以帮助规划者更好地调整城市结构,提高城市的可持续发展性。

结语人口增长模型是对人口变化规律的抽象和数学化,它有助于我们更好地理解人口增长的规律性,为未来的决策提供科学依据。

通过不断优化和改进人口增长模型,我们可以更好地应对人口问题带来的挑战,实现人口与资源的平衡发展。

以上是对人口增长模型的简要介绍,希望能为您带来一些启发。

人口指数增长模型

人口指数增长模型

《数学模型》实验报告实验名称:如何预报人口的增长成绩:____________实验日期:2009年4月22日实验报告日期:2009年4月26日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到”地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义•本节介绍几个经典的人口模型•3.3.1模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1)模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2)模型建立及求解据模型假设,在t到时间内人口数的增长量为5两端除以,得到5即,单位时间人口的增长量与当时的人口数成正比令,就可以写出下面的微分方程:5如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得5两端积分,并结合初值条件得显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3)模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正•图3-24)模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的•这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的•人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.3.3.2模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在一一或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1)模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2)模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t)的减函数,特别是当P(t)达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令用代替指数增长模型中的导出如下微分方程模型:⑵这是一个Bernoulli方程的初值问题,其解为在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic 模型).其图形如图3-3所示.图3-33)模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4)模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线. 但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程一一这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑•、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。

马尔萨斯人口原理的内容

马尔萨斯人口原理的内容

马尔萨斯人口原理的内容
马尔萨斯人口原理的内容:马尔萨斯(Thomas Robert Malthus,1766-1834),英国资产阶级庸俗经济学家、牧师和教授.马尔萨斯主义(Malthusianism)是英国资产阶级经济学家马尔萨斯在《人口原理》一书中所创立的人口理论体系.马尔萨斯人口论是马尔萨斯于1798年所创立的关于人口增加与食物增加速度相对比的一种人口理论,其主要论点和结论为:认为生活资料按算术级数增加,而人口是按几何级数增长的,因此生活资料的增加赶不上人口的增长是自然的、永恒的规律,只有通过饥饿、繁重的劳动、限制结婚以及战争等手段来消灭社会‘下层’,才能削弱这个规律的作用.把资本主义制度所造成的一切问题和灾难归结为人口过剩的结果。

人口模型马尔萨斯vslogistic

人口模型马尔萨斯vslogistic

本节将建立几个简单的单种群增长模型,以简略分析一
下这方面离的散问化题为。连一续般,生方态系统的分析可以通过一些简单模
型的复合来研究便,研大究家若有兴趣可以根据生态系统的特征自
行建立相应的模型。
美丽的大自然
种群的数量本应取离散值,但由于种群数 量一般较大,为建立微分方程模型,可将种群 数量看作连续变量,甚至允许它为可微变量, 由此引起的误差将是十分微小的。
§ 4.1 Malthus模型与Logistic模型
世界人口

1625 1830 1930 1960 1974 1987 1999 哇!
人口(亿) 5
10
20 30 40 50 60
美丽的大自然
中国人口

1908 1933 1953 1964 1982 1990 2000
人口(亿) 3 4.7 6 7.2 10.3 11.3 12.95
求出方程的解 ——求出未知函数的解析表达式 ——利用各种数值解法、数值软件(如Matlab)求
近似解 不必求出方程的解
——根据微分方程的理论研究某些性质,或它的变 化趋势
§ 4.1 Malthus模型与Logistic模型
为了保持自然资料的合理开发与利用,人类必须保持并 控制生态平衡,甚至必须控制人类自身的增长。
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,

人口增长 连续模型

人口增长  连续模型
15
显然,这些数字说明马尔萨斯人口模型对长期的 预测是不正确的. 由上可以看出,马尔萨斯人口增长模型对17001961年的人口总数是对的,但对未来的人口总数预 测不正确,应予以修正.
二、logistic模型(阻滞增长模型)
由上面分析,马尔萨斯人口模型对1700-1961年 间人口总数的检验是对的,而未来的人口总数预测 又是错的,原因何在?
由此得:Logistic模型 dx r (1 x ) x dt xm x(t ) | x t t0 0
x( t ) ) 体现了对人口增长的阻滞作用. 因子 (1 xm
( 6)
8
解之得:x ( t )
xm xm r ( t t0 ) 1 ( 1)e x0
6
产生上述现象的主要原因是:随着人口的增加, 自然资源,环境条件等因素对人口继续增长的阻滞 作用越来越显著.如果当人口较少时(相对于资源而 言),人口增长率还可以看作常数的话,那么当人口增 加到一定数量后,增长率就会随着人口的继续增加 而逐渐减少,许多国家人口增长的实际情况完全证 实了这一点. 看来为了使人口预报,特别是长期预报更好地符 合实际情况,必须修改指数增长模型关于人口增长率 是常数这个基本假设.
dx r ( t , x( t )) x( t ) dt (1)
我们将逐步深入讨论上面这个模型
3
一,马尔萨斯(malthus)模型(指数增长模型)
英国人口学家马尔萨斯(1766—1834)根据百余 年的人口统计资料,于1798年提出了著名的人口指数 增长模型. 基本假设 人口增长率是常数, 或者说,单位时间内人口的增长量与当时人口成正比. 在(1)式中令 r (t , x(t )) =r(常数) 得 dx(t ) r x( t ) (2) dt x ( t ) t t x0

中学数学建模案例分析——以人口模型为例

中学数学建模案例分析——以人口模型为例

借助正方体模型,可以把研究对象置于更大的背景之中,从而在整体上更好地看清各部分之间的关系.掌握正方体的结构特征,以正方体为模型可以“生成”许多优美的空间问题,许多空间问题如果将它置于正方体模型之中,其结果甚至可以一望而解.正如上述全国Ⅰ卷高考题,如果善用正方体模型,很容易根据其完美的对称性发现截面面积取最值时的特殊位置.(2)深入学科的软件支持工欲善其事,必先利其器.教师在教学过程要善于合理地利用“利器”——深入学科的数学教学软件,如几何画板、GeoGebra以及Z Z+智能教育平台系列中的超级画板等,利用信息技术独特的优势来优化空间立体几何的教学呈现方式,帮助学生突破认知障碍,发展直观想象的素养.学立体几何的目的绝对不是学会用以不变应万变的“向量法”解出高考题,而应当让学生体验到“做数学”的乐趣.在立体几何软件和平台的支持下,基于信息技术的立体几何教学可以更好地落实三维教学目标,帮助学生认识反映现实的几何空间,学会几何思维方法,培养学生的空间想象能力及逻辑推理能力,让学生在数学抽象和直观想象两大核心素养中自如切换.参考文献[1]邵光华.论空间想象能力与几何教学[J].课程·教材·教法,1996(7):32-36[2]周顺钿.正方体模型的开发和利用[J].数学通报,2017(8):35-41[3]徐章韬,刘郑,刘观海等.信息技术支持下的学科教学知识之课例研究[J].中国电化教育,2013(1):94-99中学数学建模案例分析——以人口模型为例李虎广东省中山市第一中学(528403)2017年,《普通高中数学课程标准》正式颁布,数学建模素养为六大数学核心素养之一.布鲁姆的认知目标分类体系中,把认知学习领域目标分为识记、理解、运用、分析、综合及评价,其中运用、分析、综合及评价属于高阶思维活动,对人的发展起到更重要的作用.数学建模是很好地培养学生高阶思维的素材.人口数量和人口结构与一个国家的经济紧密相关.合理预测人口数量对一系列政策的制定有导向性作用.人口预测的研究吸引了大批的科研人员,经典的人口模型也非常多,本文针对高中生可以接受的情况,介绍了两个经典模型,一个是马尔萨斯模型,一个是Logistic人口模型,并应用模型对未来几年的人口进行了预测.通过两个模型,以期培养学生的批判性思维和用发展的眼光看问题的能力,旨在提升学生的数学建模素养.1 问题提出问题:在知道当前或过去某个时刻的人口数量的情况下,如何预测未来某个时刻的人口数量?2 经典人口模型2.1 马尔萨斯人口模型用()p t表示t时刻的人口数,r表示年平均增长率,则()()()p t t p t rp t t+∆−=∆,起始时刻为0t,记00()p t p=.令0t∆→,得00()()()p t rp tp t p′==,,则0()()e r t tp t p−=.人民教育出版社A版必修1第124页例4有这个模型的介绍,题目中选取了1950-1959年数据,利用年平均增长率的平均值来估计r的值,求得解析式为0.022155196e ty=,是一个指数型函数模型,教材利用这一模型预测了中国1989年人口数量将超过13亿,笔者查阅中华人民共和国国家统计局数据,显示1989年人口数据是112704万人,可见预测出现了很大的偏差.从教材上看,1950-1959年数据拟合效果非常好,问题出在哪里?笔者认为,马尔萨斯模型作为经典的人口模型,有必要给学生介绍其来历,而不是简单地告诉学生一个结论,虽然学生当时学生不懂,但是埋下了常微分方程的种子,在学生的知识储备达到一定程度,它就会生根发芽.这个模型有自身的缺陷,把问题抛出来,让学生利用课余时间去查阅资料,了解误差产生的来源,培养学生查阅资料,搜集文献,综合思考问题的能力,找出模型的缺陷,锻炼学生综合和评价等高阶思维.2.2 Logistic 人口模型马尔萨斯模型中假定了r 是常数,而r 是随着时间变化而变化的.考虑r 是变化的,将r 看成t 的函数.下面以我国人口模型为例,介绍Logistic 模型.假设我国最多能够支撑的人口数量为K ,()P t 表示t 时刻的人口数量,()()(1)p t r t r K=−,则人口满足下面的模型:00()()(1)()()P t P t r P t KP t P′=− = ,,求解得()P t = 0()1e r t t KC −−+,00K P C P −=.本模型中有两个参数r K ,.需要通过往年的数据来拟合这两个参数.首先查阅《中国人口统计年鉴》和中国人口统计报告筛选符合要求的数据,1980年始,我国确定计划生育为我国的一项基本国策,由于国家的政策对人口数量的变化有很大影响,因此必须避免国家政策的影响;同时,在1981年我国的人口突破10亿大关.考虑上述条件,将1981年以前的人口数据剔除,得到下面数据表格,如表1.表1 中国历年人口总数年份 (年) 人口 (万人) 年份 (年) 人口 (万人) 年份 (年) 人口 (万人) 1981 100072 1982 101654 1983 103008 1984 104357 1985 105851 1986 107507 1987 109300 1988 111026 1989 112704 1990 114333 1991 115823 1992 117171 1993 118517 1994 119850 1995 121121 1996 122389 1997 123626 1998 124761 1999 125786 2000 126743 2001 127627 2002 128453 2003 129227 2004 129988 2005 130756 2006 131448 2007 132129 2008 132802 2009 133450 2010 134091 2011 134735 2012 135404 2013 137054 2014 136782 2015 137462 2016 138271 2017 139008 2018 139538r K ,确定方法1:选择012t t t ,,三年的人口数据012P P P ,,, 其中1021t t t t β−=−=, 由101(1)e r K P KP β−=+−,211(1)e r K P KP β−=+−,111P K =+011()e r P K β−−,211111()e r P K P K β−=+−, 12011111()e r P P P P β−−=−, 故0112111ln 11P P r P P β−=−,101e 11e r r K P P ββ−−−=−.计算得0.0593r =,144930K =万人.0.0593144930()1449301(1)e 100072tP t −=+−,0t >.利用此模型预测最近二十年人口,并计算误差值,如表2.表2 中国各年份实际人口数、预测值及预测误差年份 实际人口 /万人 预测人口 /万人 误差 /万人 百分比 1999 125786 125572 214 0.001701 2000 126743 126545 198 0.001562 2001 127627 127476 151 0.001183 2002 128453 128367 86 0.00067 2003 129227 129217 10 7.74E-05 2004 129988 130028 -40 -0.00031 2005 130756 130803 -47 -0.00036 2006 131448 131541 -93 -0.00071 2007 132129 132244 -115 -0.00087 2008 132802 132914 -112 -0.00084 2009 133450 133552 -102 -0.00076 2010 134091 134158 -67 -0.0005 2011 134735 134735 0 0 2012 135404 135283 121 0.000894 2013 137054 135803 1251 0.009128 2014 136782 136297 485 0.003546 2015 137462 136766 696 0.005063 2016 138271 137211 1060 0.007666 2017 139008 137633 1375 0.009892 201813953813803415040.010778由表2可以看出预测值和真实值很接近,误差都保持在很小的范围.说明本模型很好的反映了这一阶段我国人口的变化情况.r K ,确定方法2:将这个连续的模型离散化,用回归分析来求解此模型.(1)()()()P t P t rr P t P t K+−=−,即年增长率可以看成年份的线性函数,用线性回归即可(如图1).利用MATLAB 进行回归求解(代码见附录),得到0.0509r =,150590K =,所以()P t =0.05091505901505901(1)e 100072t−+−,0t >.图1 1981年至2018年预测值与人口实际值的拟合图Logistic 人口模型是对马尔萨斯模型的进一步完善,更符合实际情形,误差也在合理的范围内.笔者认为从发展的角度看,应该把此模型和马尔萨斯模型放在一起让学生了解,让学生去比较判断.从模型的建立可以看到,要建立此模型需要确定参数,如何估计参数,需要搜集数据,用到数据拟合.让学生去思考,去搜集,可以培养学生搜集、整理数据等数据处理能力,同时又要用到信息技术,需要去学习软件对应的拟合函数,对学生的综合能力提升有较高的教育价值.模型的拟合效果好不好,涉及评价环节,有哪些评价指标?此模型的缺陷是什么?适用范围又是什么呢?还有哪些较好的人口预测模型,缺陷是什么?有没有一个完美的人口预测模型呢?让学生把此建模问题扩展开,作为一个项目来研究,扩充自己的知识面,同时提升自己的批判性思维.这样的学习方式,更符合脑科学的规律.3 人口预测若采用0.0593144930()1449301(1)e 100072tP t −=+−,0t >来预测未来8年国内的人口数,得到如下结果(表3).表3 未来8年人口数预测表(1)年份 人口 /万人 2019 138413 2020 138772 2021 139112 2022 139435 2023 139740 2024 140028 2025 140302 2026140560若采用0.0509150590()1505901(1)e 100072tP t −=+−,0t >来预测未来8年国内的人口数,得到如下结果(表4).表4 未来8年人口数预测表(2)年份 人口 /万人 2019 140349 2020 140825 2021 141279 2022 141714 2023 142130 2024 142527 2025 142907 20261432702018年国内人口数为139538(万),可见后面这个模型更精确一些,因为建模中充分考虑了数据的整体性.4 模型价值本文介绍了经典的马尔萨斯人口模型,该模型是一个指数型函数模型,在教材的指数函数应用章节中有体现,但是该模型是在资源极大丰富,没有政策和疾病影响等情况下进行的.显然不符合目前的人口增长情况.但是作为一个经典的人口模型,学生需要去了解.为了克服上述模型带来的预测误差较大问题,本文介绍了第二种人口模型,即Logistic 人口模型,对上述模型的缺点进行了弥补.从预测效果来看很好的反应了1980-2018年间国内人口的变化情况.因为这一阶段各项政策基本稳定,医疗,公共服务,男女比例等问题相对均衡.目前国内全面开放二孩政策,对人口数增长有一定促进作用,长期来看人口的增速会有所加强,但国内人口老龄化也在加剧,死亡率可能在一定时期加大.可以鼓励学生去搜集数据,研究二孩政策对未来几年人口的影响,以及人口老龄化对未来社会,经济生活带来的影响.可以成立小组,让学生彼此之间合作,虽然开始做起来会比较困难,相信随着学生不断地去尝试,慢慢会体会到其中的乐趣.参考文献[1]王勇.Logistic 人口模型的求解问题[J].哈尔滨商业大学学报(自然科学版),2006(5):58-59 [2]任运平,杨建雅.Logistic 人口模型的改进[J].运城高等专科学校学报,1999(6):23-24附录 MATLAB 程序代码参数r K,估计代码:t=0:1:37; %令1981年为0,2018年为37,间隔为1年P=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1981年到2018年的人口数据P1=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008]; %1981年到2017年的人口数据P2=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1982年到2018年的人口数据rn=(P2-P1)./P2;%每一年的人口增长率cs=polyfit(P2,rn,1);%最小二乘法的拟合公式r=cs(2),K=-r/cs(1)%r K,的值预测函数拟合图代码:t=1981:1:2018;P=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1981年到2018年的人口数据t1=0:1:37;YP=150590./(1+(150590/100072-1)*exp(-0.0509*t1));%1981年到2018年人口预测值plot(t,P,'*',t,YP,'-r') %实际值与预测值得拟合图title('1981年到2018年预测值与人口实际值的拟合图')%画拟合图(本文系中山市2018年重点项目课题《高中数学学科核心素养之数学建模的教学实践研究》(课题编号:A2018021)的阶段性研究成果)例谈信息技术与高中数学教学的深度融合许如意福建省晋江市紫峰中学(362200)在2018年泉州市教育系统高中教师教育教学信息化应用技能岗位练兵竞赛中,笔者有幸以《阿波罗尼斯圆》通过了淘汰率高达80%的初赛环节,进入复赛,并在后续比赛中获奖.下面以《阿波罗尼斯圆》这一节课中信息技术的使用情况为例,谈谈自己对信息技术与高中数学课程深度融合的思考,以期抛砖引玉.1 信息技术与高中数学教学深度融合的案例在《阿波罗尼斯圆》这节课中,基于人教A版必修2习题4.1的B组题3(已知点M与两个定点(00)O,,(30)A,的距离之比为12,求点M的轨迹方程),我们设置了一个类比椭圆、双曲线的轨迹,猜想平面内到两个定点的距离之比等于常数的点的轨迹,并利用信息技术验证猜想,然后给出一般结论的教学环节.在这个环节需要一个合适的专业数学软件来支持教学设想的顺利展开.根据所在学校的硬件条件以及学生的情况(有开设《几何画板》校本选修课),我们选择了《几何画板》,并设计了如下方案.方案1①根据定点(00)O,,(30)A,与定比12,计算出阿波罗尼斯圆的方程并画出圆,作出两定点;②在圆上任意取一个点M,连接MO MA,,度量MOMA;③隐藏圆,追踪点M的轨迹,这样就形成了一个阿波罗尼斯圆的动画.《普通高中数学课程标准(2017)》提出:重视信息技术运用,实现信息技术与数学课程的深度融合.教师应重视信息技术的运用,优化课堂教学,转变教学与学习方式.例如,为学生理解概念创设背景,为学生探索规律启发思路,为学生解决问题提供直观,引导学生自主获取资源.上述方案能达到课程标准所提出的“为学生探索规律启发思路”吗?能体现信息技术与数学课程的深度融合吗?在方案设置好之后,笔者进行了反思.方案一只能体现在定点(00)O,,(30)A,与定比12条件下的阿波罗尼斯圆,而学生在验证环节,需要改变定点或定比来探索一般情况下动点M的轨迹.因此,笔者将方案1进行了修改.方案2①设置参数1t,用参数1t表示MOMA;②在x轴上任意取一点F,度量其横坐标值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几乎完全吻合,见图4.2。
图4-2
Malthus模型和Logistic模型的总结
Malthus模型和Logistic模型均为对微分方程(4.4) 所作的模拟近似方程。前一模型假设了种群增长率r为一常 数,(r被称为该种群的内禀增长率)。后一模型则假设环 境只能供养一定数量的种群,从而引入了一个竞争项。
模型检验
用Logistic模型来描述种群增长的规律效果如何呢?1945 年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数 学生物学家高斯(E·F·Gauss)也做了一个原生物草履虫实验, 实验结果都和Logistic曲线十分吻合。
大量实验资料表明用Logistic模型来描述种群的增长,效
以1790-1900年的数据拟合(4.3)式,用 Matlab软件计算得:r=0.2743/10年,
Matlab计算示范 ln x(t) ln x0 rt y a rt (4.3) ( y ln x(t), a ln x0 )
以1790-1900年共计12个数据为例进行拟合: t=[0:11]; %输入数据 x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76]; plot (t, x, ’o’); %画散点图 y=log(x); p=polyfit(t,y,1)
用模拟近似法建立微分方程来研究实际问题时必须对 求得的解进行检验,看其是否与实际情况相符或基本相符。 相符性越好则模拟得越好,否则就得找出不相符的主要原 因,对模型进行修改。
Malthus模型与Logistic模型虽然都是为了研究种群数量的 增长情况而建立的,但它们也可用来研究其他实际问题,只要这 些实际问题的数学模型有相同的微分方程即可,下面我们来看两 个较为有趣的实例。
原理 著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t) ,则有
dN N
dt
为物质的衰变常数。
初始条件
N t t0
N0
N (t)
N e (tt0 ) 0
t
t0
1
ln
N0 N
t
t0
1
ln
N0 N
半衰期 T 1 ln 2
碳-14 T 5568 年
即使海洋全部变成陆地,每人也只有9.3平方英尺的活动范围,
而到2670年,人M口a达lth3u6×s模10型15个实,际只上好只一有个在人群站体在总另一人的
肩上排成二层所净它了数生生物以增应。不物存等长当M故太群存原率与a马大 体 空 因lt不人23尔..h553时的间,x u1可口0萨1才各,就1s能数模斯合成有可始量型模理员限能终有假型,之的发保关设是到间自生持。的不总由然生马常人尔完数于资存萨数斯口善增有源竞模型,的人大限及争口预。时的食等测 ,
T 45亿年 铀238
镭226
(无放射性)
铅206 钋210
T 1600 年 铅210 (放射性)
T 138天 T 22年
假设
(1)镭的半衰期为1600年,我们只对17 世纪 的油画感兴趣,时经300多年,白铅中镭至少 还有原量的90%以上,所以每克白铅中每分钟
现象。
2
几何级数的增长
N/人
1.5
1
0.5
0 1950
2000
2050 t/年
2100
2150
2200
练习一:用P61的部分或者全部数据拟合Malthus模型, 计算并作图,观察并分析结果。
模型2 Logistic模型
人口净增长率应当与人口数量有关,即: r=r(x)
从而有:
dx
dt
r(x)x
本节将建立几个简单的单种群增长模型,以简略分析一
下这方面离的散问化题为。连一续般,生方态系统的分析可以通过一些简单模
型的复合来研究便,研大究家若有兴趣可以根据生态系统的特征自
行建立相应的模型。
美丽的大自然
种群的数量本应取离散值,但由于种群数 量一般较大,为建立微分方程模型,可将种群 数量看作连续变量,甚至允许它为可微变量, 由此引起的误差将是十分微小的。
§ 4.1 Malthus模型与Logistic模型
世界人口

1625 1830 1930 1960 1974 1987 1999 哇!
人口(亿) 5
10
20 30 40 50 60
美丽的大自然
中国人口

1908 1933 1953 1964 1982 1990 2000
人口(亿) 3 4.7 6 7.2 10.3 11.3 12.95
输出结果: p 0.2743 1.4323
表示: y 0.2743t 1.4323
ln x0 1.4323 x0 4.1884 x(t ) 4.1884e0.2743t
模型预测
假如人口数真能保持每34.6年增加一倍,那么人口数将
以几何级数的方式增长。例如,到2510年,人口达2×1014个,
人口模型
微分方程模型
在许多实际问题中,当直接导出变量之间的函数关系较 为困难,但导出包含未知函数的导数或微分的关系式较为 容易时,可用建立微分方程模型的方法来研究该问题.
本节将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
把未知变量表示为已知量的函数——跟已知量的 导数有关
例5 赝品的鉴定
历史背景:
在第二次世界大战比利时解放以后,荷兰野战军保安机关开始搜捕纳粹同 谋犯。他们从一家曾向纳粹德国出卖过艺术品的公司中发现线索,于1945年 5月29日以通敌罪逮捕了三流画家范·梅格伦(H·A·Vanmeegren),此人 曾将17世纪荷兰名画家扬·弗米尔(Jan Veermeer)的油画“捉奸”等卖给 纳粹德国戈林的中间人。可是,范·梅格伦在同年7月12日在牢里宣称:他从 未把“捉奸”卖给戈林,而且他还说,这一幅画和众所周知的油画“在埃牟 斯的门徒”以及其他四幅冒充弗米尔的油画和两幅德胡斯(17世纪荷兰画家) 的油画,都是他自己的作品,这件事在当时震惊了全世界,为了证明自己是 一个伪造者,他在监狱里开始伪造弗米尔的油画“耶稣在门徒们中间”,当 这项工作接近完成时,范·梅格伦获悉自己的通敌罪已被改为伪造罪,因此他 拒绝将这幅画变陈,以免留下罪证。
模型1 马尔萨斯(Malthus)模型
假设:人口净增长率r是一常数
符号:x( t ) t时刻时的人口,可微函数 x0 t 0时的人口
则 r x(t t) x(t) x(t )t
于是x(t)满足如下微分方程:
dx
dt
rx
x(0) x0
(4.1)
(3.1)的解为: x(t ) x0ert
求出方程的解 ——求出未知函数的解析表达式 ——利用各种数值解法、数值软件(如Matlab)求
近似解 不必求出方程的解
——根据微分方程的理论研究某些性质,或它的变 化趋势
§ 4.1 Malthus模型与Logistic模型
为了保持自然资料的合理开发与利用,人类必须保持并 控制生态平衡,甚至必须控制人类自身的增长。
然而,事情到此并未结束,许多人还是不肯相信著名的“在埃牟斯的门 徒”是范·梅格伦伪造的。事实上,在此之前这幅画已经被文物鉴定家认定为 真迹,并以17万美元的高价被伦布兰特学会买下。专家小组对于怀疑者的回 答是:由于范·梅格伦曾因他在艺术界中没有地位而十分懊恼,他下决心绘制 “在埃牟斯的门徒”,来证明他高于三流画家。当创造出这样的杰作后,他 的志气消退了。而且,当他看到这幅“在埃牟斯的门徒”多么容易卖掉以后, 他在炮制后来的伪制品时就不太用心了 。这种解释不能使怀疑者感到满意, 他们要求完全科学地、确定地证明“在埃牟斯的门徒”的确是一个伪造品。 这一问题一直拖了20年,直到1967年,才被卡内基·梅伦(CarnegieMellon)大学的科学家们 基本上解决。
用P61给出的近两个世纪的美国人口统计数据(以百万作 单位),对模型作检验。
r , x0
参数估计: r,x0可用已知数据利用线性最小二乘法进行估计
(4.2)式两边取对数,得:
ln x(t) ln x0 rt y a rt (4.3) ( y ln x(t), a ln x0 )
镭-226
T 1600 年
铀-238 T 45亿年 铅-210 T 22年
, N (t) 能测出或算出,只要知道 N0 就可算出
断代。
这正是问题的难处,下面是间接确定N0 的方法。
油画中的放射性物质
白铅(铅的氧化物)是油画中的颜料之一,应 用已有2000余年,白铅中含有少量的铅(Pb210)和 更少量的镭(Ra226)。白铅是由铅金属产生的,而 铅金属是经过熔炼从铅矿中提取来出的。当白铅 从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。
(4.4)
x(0) x0
增长对的(马4.种6尔)群式萨个还斯体有,模另当一型种解引群释入数,一量由过次于多空项时间(,和竞由资争于源人项都均是)资有,源限令占的有,r(率不x)的可=r下能-a降供x及养环无境限
恶化此、时疾得病到增微多等分原方因程,:出生率将降低而死亡率却会提高。设环境能供养
的x积被m(成 称种-(x4恰正为群4..为55数比统))环量,计被可境的正筹称还d改上d好算为xtdd能L界符律xt写o供为合的gx成rim(养sx统原rt(m:ix的c计 因(rm得马(模ax就种规 。近x据r)到 尔型为 模 程 实 是)最(是x群xx律似实或)的 萨拟了 型 师 采际)简x引数是,地际生就 斯合得 , 原 用问单或进量未得将物背是 模方题出 我 则 尽的一,总知到x景马 型法dm的一 们 。 可d形次数(函x了看t,尔 的来个 不 工 能数式增项4数实成它萨 最.求有 妨 程 简学(是6长r(,验常无)(斯 简14的实 采 师 单模常。竞.但结数法指6模 单统际 用 们 的型数)争x根果)用出x型 的计m时意 一 在 方,项的),,筹。 改x,义 下 建 法此)支x种算对 进的工立。表总时持律(群示,4,增.当5是这)长前由就率的荷是与兰种(两数群4者学.数6的生)量乘也,
相关文档
最新文档