2020年深国交G1入学考试数学复习资料:综合专题 精讲精练(解析版)
2020年最新深圳国际交流学院G1入学考试数学训练2

2020年最新深圳国际交流学院G1入学考试数学训练一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.32.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=5705.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.46.甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是()A.甲车间每小时加工服装80件B.这批服装的总件数为1140件C.乙车间每小时加工服装为60件D.乙车间维修设备用了4小时7.如图,在平面直角坐标系中,A(1,2),B(1,﹣1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.a≤﹣1或a≥2 B.≤a≤2C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤28.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)二.填空题(共5小题)9.因式分解:x3﹣9x=.10.已知=+,则实数A=.11.如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD∥x轴、双曲线y=(x>0)经过A,B两点,则菱形ABCD的面积为.12.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题)14.计算:+﹣﹣()﹣1.15.如图,AB为⊙O的直径,弦CD∥AB,E是AB延长线上一点,∠CDB=∠ADE.(1)DE是⊙O的切线吗?请说明理由;(2)求证:AC2=CD•BE.16.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?17.如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0 【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.3.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()。
2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(含答案)

2020年深国交G1入学考试数学冲刺 题型专练 几何综合与实践专题(1. 综合与实践问题探究:(1)如图①,点A 是线段BC 外一动点,若AB =a ,BC =b ,求线段AC 长的最大值(用含a ,b 的式子表示);(2)如图①,点A 是线段BC 外一动点,且AB =1,BC =4,分别以AB 、AC 为边作等边①ABD 、等边①ACE ,连接CD 、BE .①求证:CD =BE ;①求线段BE 长的最大值;问题解决:(3)如图①,在平面直角坐标系中,已知点A (2,0)、B (5,0),点P 、M 是线段AB 外的两个动点,且P A =2,PM =PB ,①BPM =90°,求线段AM 长的最大值及此时点P 的坐标.第1题图(1)解:①点A 是线段BC 外一动点,且AB =a ,BC =b , 则AC ≤AB +BC ,且当点A 位于CB 的延长线上时,线段AC 的长取得最大值,此时AC 的长的最大值为:AB +BC =a +b ;(2)①证明:①①ABD ,①ACE 都是等边三角形,①AD =AB ,AC =AE ,①BAD =①EAC =60°,①①DAC =①BAE ,在①CAD 和①EAB 中,⎩⎪⎨⎪⎧AD =AB ①CAD =①EAB AC =AE,①①CAD ①①EAB (SAS),①CD =BE ;①解:①CD =BE ,①线段BE 长的值最大值即为线段CD 长的最大值,此时BE 的最大值为:BD +BC=AB +BC =5;(3)解:如解图①,连接BM ,①PB =PM ,①MPB =90°,第1题解图①①可以将①APM 绕点P 顺时针旋转90°得到①PBN ,连接AN ,则①APN 是等腰直角三角形,①PN =P A =2,BN =AM ,①线段AM 的长的最大值即为线段BN 长的最大值, 由(1)的结论可知,当点N 在线段BA 的延长线上时,线段BN 的值最大,且此时的最大值为AB +AN 的值.①A (2,0),B (5,0),①OA =2,OB =5,AB =3,①AN =2AP =22,①最大值为22+3;如解图①中,作PE ①x 轴于点E ,第1题解图①①①APN 是等腰直角三角形,①PE =AE =12AN =2, ①OE =OA -AE =2-2,①P (2-2,2), 即线段AM 的最大值为22+3,此时P 的坐标为(2-2,2).2.综合与探究问题背景在综合实践课上,老师让同学们根据如下问题情境,写出两个教学结论:如图①,点C在线段BD上,点E在线段AC上.①ACB=①ACD=90°,AC=BC;DC=CE,M,N分别是线段BE,AD上的点.“兴趣小组”写出的两个教学结论是:①①BCE①①ACD;①当CM,CN分别是①BCE和①ACD 的中线时,①MCN是等腰直角三角形.解决问题(1)请证明“兴趣小组”所写的两个结论的正确性.类比探究受到“兴趣小组”的启发,“实践小组”的同学们写出如下结论:如图②,当①BCM=①ACN时,①MCN是等腰直角三角形.(2)“实践小组”所写的结论是否正确?请说明理由.感悟发现“奋进小组”认为:当点M,N分别是BE,AD的三等分点时,①MCN仍然是等腰直角三角形请你思考:(3)“奋进小组”所提结论是否正确?答:.(填“正确”、“不正确”或“不一定正确”.)(4)反思上面的探究过程,请你添加适当的条作,再写出使得①MCN是等腰直角三角形的数学结论.(所写结论必须正确,写出1个即可,不要求证明)图①图②备用图。
2020年深国交G1入学考试数学复习资料:填空综合训练-12(30题)

填空综合训练-121.如图,数轴上有六个点,且EF DE CD BC AB ====,则与点C 所表示的数最接近的整数是。
2.因式分解:=+++611623x x x 。
3.方程1252-=+x x 的解是4.(1)计算:=++⨯20202020202020202018638443(.(2)如n 8333444422666666555555555555555=+++++⨯++++++,那么n =.5.若322255(21)()3x ax x x ax x b --+=+--+,其中a ,b 为整数,则ab 的值为6.已知不等式⎩⎨⎧+><14a x x ,满足不等式的所有整数解之和为5,则实数a 的取值范围是7.已知一元二次方程02=++c bx x ,且c b ,在5,4,3,21,中取值(可重复),使得组成的方程有实数根的概率为8.若方程a x x =-|24|2有且只有三个不同实根,则=a9.若m 为实数,关于x 的方程0162=-+-m x x 的两个非负实数根为a 、b ,则代数式)2)(2(22b a --的最大值为.10.已知20201+=x a ,19201+=x b ,21201+=x c ,则=---++ac bc ab c b a 22211.已知一元二次方程01)6(322=-+--+a x a a x 的两个根互为相反数,则=a 12.如图是一组密码的一部分。
为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”。
目前,已破译出“今天考试”的真实意思是“努力发挥”。
若“今”所处的位置为),(y x ,你找到的密码钥匙是(,),破译“正做数学”的真实意思是“”。
13.如图,已知9321A A A A 是一个正九边形,a A A =21,b A A =31,则51A A 的值为。
14.已知直线:l 12-=x y 与y 轴交于点A ,若将直线l 绕点A 旋转090,则得到的直线的解析式为15.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为.16.如图,已知在ABC RT ∆中,90C ∠= ,D 是BC 边上一点,AD =,CAD ABC α∠=∠=,且1tan 2α=,则BD 的长为.17.如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线)0(>=x x k y 上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为.。
2020年最新深圳国际交流学院G1入学考试数学模拟试卷6

学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○……2020年最新深圳国际交流学院G1入学考试数学模拟试卷6一、选择题.(30分)1.﹣的相反数为( ) A .﹣4B .C .4D .2.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( ) A .9.5×1012千米 B .95×1011千米C .3.8×1013千米D .3.8×1014千米3.如图,AB ∥CD ,EF 平分∠GED ,∠1=50°,则∠2=( ) A .50°B .60°C .65°D .70°4.下列各运算中,计算正确的是( )A.a 15÷a 5=a 3B.(2a 2)2=4a 4C.(a -b)2=a 2-b 2D.4a ·3a 2=12a 25.下面图形中,是中心对称图形的是( )A .B .C .D .6.由4个相同的小正方体组成的几何体如图所示,则它的左视图是( )A .B .C .D .7.如图,在△ABC 中,∠ACB=90∘,∠A=30∘,BC=4,以点C 为圆心,CB 长为半径作弧,交AB 于点D;再分别以点B 和点D 为圆心,大于21BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( ) A .5 B .6C .7D .88.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =26°,则∠CAB 的度数为( )A .26°B .74°C .64°D .54°9.圆锥的母线长为10,侧面积为60π,则这个圆锥的底面周长为( ) A .10πB .12πC .16πD .20π10.已知二次函数y =(x −m )2+n 的图象如图所示,则一次函数y =mx +n 与反比例函数y =mnx 的图象可能是( )二、填空题.(18分) 11.分式方程1211=-++x x x 的解是 。
2020年最新深圳国际交流学院G1入学考试数学训练试题

2020年最新深圳国际交流学院G1入学考试数学训练知识点1 :函数的定义与自变量的取值范围1.(3分)下列图象能表示y是x的函数的是()A.B.C.D.2.(3分)在函数y=+中,自变量x的取值范围是()A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤3知识点2 :一次函数的定义,图像与性质3.(3分)若y=(m﹣1)x2﹣|m| +3是关于x的一次函数,则m的值为()A.1 B.﹣1 C.±1 D.±24.(3分)以下关于直线y=2x﹣4的说法正确的是()A.直线y=2x﹣4与x轴的交点坐标为(0,﹣4)B.坐标为(3,3)的点不在直线y=2x﹣4上C.直线y=2x﹣4不经过第四象限D.函数y=2x﹣4中,y的值随x的增大而减小5.(3分)A(x1,y1)和B(x2,y2)是一次函数y=(k2+1)x+2图象上的两点,且x1<x2,则y与y2的大小关系是()1A.y1=y2B.y1<y2C.y1>y2D.不确定6.(3分)已知正比例函数y=kx(k≠0)的图象经过二、四象限,则一次函数y=kx﹣k的图象大致是()A.B.C.D.7. (3分)将函数y=2x-3的图象向上平移2个单位得到的函数解析式为。
知识点3 :一次函数图像与不等式,方程(组)的关系8.(3分)函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b<0的解集为()A.x>0 B.x<0 C.x<2 D.x>29.(3分)如图,一次函数y=x+1与y=2x﹣1图象的交点是(2,3),观察图像,直接写出方程组 y=x+1 的解为()y=2x﹣1A. B.C. D.知识点4 :观察图像,获取信息10.(3分)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.11.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度12. (3分)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A. B. C. D.知识点5: 分段函数的定义与图像13.(3分)如图是一个运算程序的示意图,若输出y的值为2,则输入的x值可能为()A.3 B.±1C.1或3 D.±1或314.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之间的关系的是()A. B.C. D.15.(9分)某城市出租车的收费标准为:3千米以内(含3千米)收费8元,超过3千米时,超过的部分每千米收费1.4元.(1)写出车费y(元)和行车里程x(千米)之间的关系式;(2)甲乘坐13千米需付多少元钱?若乙付的车费是36元,则他乘坐了多少里程?知识点6: 反比例函数的定义,图像与性质16. (3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=17.(3分)已知函数是反比例函数,且当x<0时,y随着x的增大而增大,则m的取值是.18.(3分)若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y219.(3分)对于反比例函数y=,下列说法不正确的是()A.图象分布在第一、三象限B.当x>0时,y随x的增大而减小C.图象经过点(2,3)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y220.(3分)已知函数y=图象如图,以下结论,其中正确的有()个:①k<0;②y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b(﹣x,﹣y)也在图象上.④若P(x,y)在图象上,则点P1A.4个 B.3个 C.2个 D.1个21.(3分)已知A(m+3,2),B(3,)是同一个反比例函数图象上的两个点,则m=知识点7: 反比例函数中K的几何意义22.(3分)反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是()A.y= B.y=C.y=﹣ D.y=﹣23.(3分)如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴作垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=()A.2 B.2.5C.3 D.无法确定知识点 8:反比例函数的应用24. (3分)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,当气球内的气压大于160kPa时,气球将爆炸,为了安全,气球的体积应该()A.不小于m3 B.小于m3C.不大于m3 D.小于m3知识点 9: 反比例函数与一次函数结合25.(3分)函数y=﹣2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.26.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >227.(12分)如图,直线y =kx +b 与反比例函数的图象分别交于点A (﹣1,2),点B (﹣4,n ),直线与x 轴,y 轴分别交于点C ,点D . (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.28.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=mx (m≠0)的图象在第一象限交于C 点, CD 垂直于x 轴,垂足为 D.若OA=OB=OD=1,(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.yOxDC B A29.(14分)为了预防传染病,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)分别求出药物燃烧时及药物燃烧后y 关于x 的函数关系式, 并写出自变量x 的取值范围,(2)研究表明,当空气中每立方米的含药量低于 1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室?(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?参考答案1.D2.B3.B4.B5.B6.C7.y=2x-1,8.D 9.B 10.D 11.C 12.C 13.C 14.C8 x≤315.(1)y = (2)甲需付22元,乙乘坐了23千米。
2020年深国交G1入学考试数学复习资料:二次函数综合练习(解析版)

基础冲刺训练:二次函数综合练习1.如图,函数y =﹣x 2+x +c (﹣2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y =﹣x 2+2cx +1(1≤x ≤2020)的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若M 1,M 2的差为,直接写出c 的值.解:(1)当c =1时,函数y =﹣x 2+x +c =﹣x 2+x +1=﹣(x ﹣)2+.又﹣2020≤x ≤1,∴M 1=, y =﹣x 2+2cx +1=﹣x 2+2x +1=﹣(x ﹣1)2+2.又1≤x ≤2020,∴M 2=2;(2)当x =1时,y =﹣x 2+x +c =c ﹣;y =﹣x 2+2cx +1=2c .若点A ,B 重合,则c ﹣=2c ,c =﹣,∴L 1:y =﹣x 2+x ﹣(﹣2020≤x ≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+x+c(﹣2020≤x≤1)上时,当x=时,M1=+c,y=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c,当c≥1时,M2=c2+1,∴|+c﹣c2﹣1|=,∴c=0(舍去)或c=2;当c<1时,M2=2c,∴|2c﹣﹣c|=,∴c=3(舍去)或c=﹣;∴c=﹣或2.2.若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?解:(1)k=4时,由交点式得y=a(x+1)(x﹣4),(0,4)代入得a=﹣1,∴y=﹣x2+3x+4,则B(4,0),连OP,设P(m,﹣m2+3m+4),S△BCP =S△OPB+S△OPB﹣S△OBC==﹣2(m﹣2)2+8m=2时,最大值为8,∴P的横坐标为2时有最大值.(2)a=1时,c=4,设y=x2+bx+4,A(﹣1,0)代入得b=5,∴y=x2+5x+4.令y=0求得B(﹣4,0),则直线BC方程为y=x+4,过P作PH平行于y轴交直线BC于H,设P(n,n2+5n+4)、H(n,n+4),==﹣2(n+2)2+8n=﹣2面积最大值为8,此时P的横坐标为﹣2.(3)由(1)知,当面积最大时,P的横坐标等于B的横坐标的一半,由(2)知,面积最大时,P的横坐标等于B的横坐标的一半,故:可以推断,当面积最大时,P的横坐标等于B的横坐标的一半.3.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,CA=4,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.(1)求过A,B,O三点的抛物线解析式;(2)若在线段AB上有一动点P,过点P作x轴的垂线,交抛物线于M,连接MB,MA,求△MAB的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O,A,E,F为顶点的四边形为平行四边形,求点E的坐标.解:(1)在Rt△ABC中,AB===5,由翻折知,△BCO≌△BHO,∴BH=BC=3,∴AH=AB﹣BH=2,∵∠HAO=∠CAB,∠OHA=∠BCA=90°,∴△AHO∽△ACB,∴=,即=,∴AO=,∴A(,0),B(﹣,3),∵抛物线经过原点O,∴可设抛物线的解析式为y=ax2+bx,将点A(,0),B(﹣,3)代入,得,解得,,∴过A,B,O三点的抛物线解析式为y=x2﹣x;(2)设直线AB的解析式为y=kx+b,将点A(,0),B(﹣,3)代入,得,解得∴直线AB的解析式为y=﹣x+,∴可设P(x,﹣x+),则M(x,x2﹣x),∴PM=﹣x+﹣(x2﹣x)=﹣x2+x+,=PM(x A﹣x B)∴S△MAB=(﹣x2+x+)×4=﹣x2+x+=﹣(x﹣)2+4,∴当x=时,△MAB的面积取最大值4;。
2020年深国交G1入学考试数学复习资料:真题训练3

⎩2020年深国交G1入学考试数学复习资料真题训练31、有理数a ,b ,c 在数轴上的位置如图所示,化简a -a +b -c -a =.2、如果x 2+x -3=0,那么x 4+7x 3+8x 2-13x -5= .⎧x +y +z =153、已知⎨-3x -y +z =-25,x 、y 、z 为非负数,且N =5x +4y +z ,则N 的取值范围是.4、若一组数据0,-2,8,1,x 的众数是-2,则这组数据的方差是.5、如图,在1×3的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APC =.6、已知A ,B ,C 是数轴上的三个点,点A ,B 表示的数分别是1,3,如图所示,若BC =2AB ,则点C 表示的数是。
11325377、按一定规律排成的一列数:,,,,,,3253749,…,则这列数中的第2020个数是。
8、a ,b ,c ,d 是互不相等的正整数,且abcd =441,那么a +b +c +d = 。
9、若x =0是方程(m -2)x 2+3x +m 2+2m -8=0的解,则m =。
11、等腰三角形一腰上的高与另一腰的夹角为36 ,则该等腰三角形的底角的度数为。
12、为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是m2.13、如图,矩形ABCD的边长AD=6,AB=4,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为.14、如图,在正方形OABC中,点A的坐标是(-3,1),点B的纵坐标是4,则B点的横坐标是.15、已知点A,B的坐标分别为(1,0),(2,0).若二次函数y=x2+(a-3)x+3的图象与线段AB只有一个交点,则a的取值范围是.16、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA⋅OB=-c.其中正确结论的序号是a.。
2020年深国交G1入学考试数学复习资料:新定义问题专题训练(有答案)

例如:因为 ,所以 , .
根据上述规定填空: , ____________, , _____________;
已知 , , , ,求 , 用含m、n的代数式表示 ;
若 , , , ,则a、b的大小关系是:a_______ 填“ ”、“ ”或“ ” .
【学习新知】定义:如果 且 ,即a的n次方等于 且 ,那么数n叫做以a为底M的对数 ,记作 其中a叫做对数的底数,M叫做真数,n叫做以a为底M的对数.例如:因为 ,所以 ;因为 ,所以 ;因为 ,所以 其中零没有对数;在有理数范围内,负数没有对数.
【应用新知】
根据定义计算: _______; _______; ______.
如果 ,那么 _________.
结合上面的知识计算: .
已知 , M、N均为正数 ,求 的值.
答案和解析
1.D
解:由题意可知,原式可化为方程
,
解得 .
2.C
解:由题意可得: ,
3.A
解:由题意得 ,
,
,
,
,
4.C
解:根据题中的新定义得: ,
5.D
解:由题意可得 只有D符合.
6.B
解:由函数 得 ,则 ,
材料二:劳格数有如下运算性质:若m、n为正数,则
根据劳格数的定义,填空: ____, ____;
若 ,求 的值;
已知 , , ,证明: .
24.【知识重现】在七上数学教材p58中,我们已经学习:求n个相同因数a的积的运算叫做乘方 ,乘方的结果叫做幂 ,a叫做底数 ,n叫做指数 , 读作“a的n次幂” 或“a的n次方” ;在 中,已知底数a,指数n,求幂M的运算叫做乘方运算.例如 , .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合专题精讲精练(含答案解析)
1. 在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B 、C. (1)当n =1时,如果a=-1,试求b 的值;
(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O ,
①试求出当n=3时a 的值; ②直接写出a 关于n 的关系式.
(2)设所求抛物线的解析式为y=ax2+bx+1, 由对称性可知抛物线经过点B(2,1)和点M(1
2
,2),
∴⎩⎪⎨⎪⎧1=4a+2b+1,
2=14a+12
b+1.解得⎩⎨⎧a=-4
3,b=83
.
∴所求抛物线解析式为y=-43x2+8
3
x+1;
(3)①当n=3时,OC=1,BC=3, 设所求抛物线的解析式为y=ax2+bx ,
过C 作CD⊥OB 于点D ,则Rt△OCD∽Rt△CBD, ∴OD CD =OC BC =13,
设OD=t ,则CD=3t , ∵OD 2+CD2=OC2, ∴(3t )2+ t 2=12,∴ t=110=1010
, ∴C(
1010,310
10),又B(10,0), ∴把B 、C 坐标代入抛物线解析式,得
⎩⎪⎨⎪⎧0=10a+10b ,310
10=110a+1010b.解得:a=-103;
②a=-
n2+1
n
.
2. 将抛物线c1:y=-3x2+3沿x 轴翻折,得抛物线c2,如图所示.
(1)请直接写出抛物线c2的表达式.
(2)现将抛物线c1向左平移m 个单位长度,平移后得的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E. ①当B ,D 是线段AE 的三等分点时,求m 的值;
②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.
【答案】
【答案】解:(1)y=3x2-3.
(2)①令-3x2+3=0,得x1=-1,x2=1,则抛物线c1与x 轴的两个交点坐标为(-1,0),(1,0).∴A(-1-m ,0),B (1+m,0).
当AD=31AE 时,如图①,(-1+m )-(-1-m )=31, ∴m=21 当AB=31AE 时,如图②,(1-m )-(-1-m )=31, ∴m=2.
∴当m=21
或2时,B ,D 是线段AE 的三等分点.
②存在.理由:连接AN、NE、EM、MA.依题意可得:M(-m,-3).即M,N关于原点O对称,∴OM=ON.∵A(-1-m,0),E(1+m,0),∴A,E关于原点O对称,∴OA=OE,∴四边形ANEM 为平行四边形.要使平行四边形ANEM为矩形,必需满足OM=OA,即m2+(3)2=2, ∴m=1.∴当m=1时,以点A,N,E,M为顶点的四边形是矩形.
3. (2011甘肃兰州,28,12分)如图所示,在平面直角坐标系xoy中,正方形OABC的边
长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线
2
y ax bx c
=++经过点
A、B和D(4,
2
3
-
)。
(1)求抛物线的表达式。
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s
的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动。
设S=PQ2(cm2)。
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取5
4时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四
边形?如果存在,求出R点的坐标;如果不存在,请说明理由。
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标。
【答案】(1)由题意得A(0,-2),B(2,-2),抛物线
2
y ax bx c
=++过A、B、D三点
得
422216432a b c a b c c ++=-⎧⎪⎪++=-⎨
⎪
=-⎪⎩解得16132a b c ⎧=⎪⎪⎪
=-⎨⎪=-⎪⎪⎩
抛物线的表达式为
211
263y x x =
--
(2)①S=PQ2=
22222
(22)584BP BQ t t t t +=-+=-+(0≤t≤1) ②由
255844t t -+=
解得t=12或t=11
10(不合题意,舍去)
此时,P (1,-2),B (2,-2),Q (2,3
2-
)
若以点P 、B 、Q 、R 为顶点的四边形是平行四边形,则R (3,32-
)或(1,-5
2)或(1,
32-)
经代入抛物线表达式检验,只有点R (3,3
2-
)在抛物线上
所以抛物线上存在点R (3,3
2-
)使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形。
(3)过B 、D 的直线交抛物线对称轴于点M ,则该点即为所求。
因为如在对称轴上另取一点N ,则
ND -NA=ND -NB<BD ,而MD -MA=MD -MB=BD , 故点M 到D 、A 的距离之差最大。
由B (2,-2)、D (4,23-
)求得直线BD 的解析式为
210
33y x =-
1x =时,
83y =-
,故点M 的坐标为(1,8
3-
)
4.如图9,已知抛物线经过定点A (1,0),它的顶点P 是y 轴正半轴上的一个动点,P 点关于x 轴的对称点为P′,过P′ 作x 轴的平行线交抛物线于B 、D 两点(B 点在y 轴右侧),直线BA 交y 轴于C 点.按从特殊到一般的规律探究线段CA 与CB 的比值: (1)当P 点坐标为(0,1)时,写出抛物线的解析式并求线段CA 与CB 的比值; (2)若P 点坐标为(0,m )时(m 为任意正实数),线段CA 与CB 的比值是否与⑴所求的比值相同?请说明理由.
【答案】解:⑴ 设抛物线的解析式为
2
1(0)y ax a =+≠ , Q 抛物线经过
()
1,0A ,01,1a a ∴=+=- ,
2
1y x ∴=-+. (),0,1P P x P 'Q 、关于轴对称且,()01P '∴点的坐标为,-
P B 'Q ∥x 轴,1B ∴-点的纵坐标为,
由2
1x x -=-=+1 解得
)
1B
∴-
,P B '∴OA P B '//Q ,CP B '∴∆∽COA ∆,。