利用三角函数测高
利用三角函数解决实际问题的方法

利用三角函数解决实际问题的方法三角函数是数学中的重要概念,广泛应用于实际问题的解决中。
无论是在物理、工程还是日常生活中,三角函数都能提供有效的数学工具,帮助我们解决各种实际问题。
本文将介绍一些利用三角函数解决实际问题的方法,并举例说明其应用。
一、测量高度在实际生活中,我们经常需要测量物体的高度,如建筑物、树木等。
利用三角函数的正弦定理,我们可以通过测量物体的底边与其顶端的角度,以及观察者与物体的距离,计算出物体的高度。
假设观察者离物体的距离为d,底边与顶端的角度为θ,物体的高度为h,则有以下公式:h = d * sin(θ)通过测量角度和距离,我们就可以准确地计算出物体的高度。
二、解决航海导航问题在航海导航中,我们常常需要计算船只的位置和航向。
利用三角函数的正切定理,我们可以通过测量船只与目标点之间的角度和距离,计算出船只需要调整的航向角度。
假设船只与目标点之间的角度为α,距离为d,船只需要调整的航向角度为β,则有以下公式:β = α - tan⁻¹(d)通过测量角度和距离,我们可以确定船只需要调整的航向角度,从而准确导航。
三、计算力的合成在力学中,我们常常需要计算多个力的合成。
利用三角函数的正弦和余弦定理,我们可以将多个力的大小和方向进行合成。
假设有两个力F1和F2,夹角为θ,合成后的力为F,则有以下公式:F = √(F1² + F2² + 2F1F2cosθ)通过计算多个力的合成,我们可以得到最终的力大小和方向,为力学问题的解决提供便利。
四、计算角度和距离在工程测量中,我们经常需要计算两点之间的角度和距离。
利用三角函数的反正弦和反余弦定理,我们可以通过已知的两点坐标,计算出两点之间的角度和距离。
假设两点的坐标分别为(x1, y1)和(x2, y2),两点之间的角度为α,距离为d,则有以下公式:α = atan2(y2 - y1, x2 - x1)d = √((x2 - x1)² + (y2 - y1)²)通过计算角度和距离,我们可以准确测量两点之间的位置和距离。
北师大版九年级数学下册:1.6《利用三角函数测高》教学设计

北师大版九年级数学下册:1.6《利用三角函数测高》教学设计一. 教材分析《利用三角函数测高》是北师大版九年级数学下册第1.6节的内容,主要介绍了利用三角函数测量物体高度的方法。
这一节内容是学生在学习了三角函数基础知识后的进一步应用,对于培养学生的实际问题解决能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的三角函数基础知识,能够理解并运用三角函数解决一些实际问题。
但是,对于如何运用三角函数测量物体高度,可能还比较陌生,需要通过实例讲解和操作练习来进一步掌握。
三. 教学目标1.理解利用三角函数测量物体高度的原理和方法。
2.能够运用三角函数解决实际问题,提高学生的应用能力。
3.培养学生的合作意识和解决问题的能力。
四. 教学重难点1.利用三角函数测量物体高度的原理理解。
2.如何根据实际情况选择合适的测量方法和计算公式。
五. 教学方法1.实例讲解:通过具体案例,讲解利用三角函数测量物体高度的方法和步骤。
2.小组讨论:学生分组讨论,总结测量物体高度的原理和注意事项。
3.操作练习:学生分组进行实际操作,巩固所学知识。
4.问题解决:引导学生运用所学知识解决实际问题,提高学生的应用能力。
六. 教学准备1.教学PPT:制作详细的PPT,内容包括知识点、案例、练习题等。
2.测量工具:准备一些测量工具,如测高仪、绳子等,用于实际操作。
3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如测量旗杆高度、树木高度等,引导学生思考如何利用三角函数解决这些问题。
2.呈现(10分钟)通过PPT呈现三角函数测量物体高度的原理和方法,结合具体案例进行讲解,让学生理解并掌握相关知识。
3.操练(10分钟)学生分组进行实际操作,使用测量工具(如测高仪、绳子等)进行测量,巩固所学知识。
教师巡回指导,解答学生在操作过程中遇到的问题。
4.巩固(5分钟)学生分组讨论,总结测量物体高度的原理和注意事项。
北师大版九年级数学下册利用三角函数测高测试题

1.6 利用三角函数测高1.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC 的高度为A. 40 3mB. 803mC. 1203mD. 160 3m2.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m3.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).4.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 米.第4题图第5题图第6题图5.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为300,底部D 处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)6.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.7.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.8.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C 点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?M E N C A9.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;(2) 量出测点A 到旗杆底部N 的水平距离AN =m;(3) 量出测倾器的高度AC =h 。
利用三角函数测高

3. 如图所示,某数学活动小组要测量山坡上的电线杆PQ 的高度.他们采取的方法是:先在地面上的点A处测 得电线杆顶端点P的仰角是45°,再向前走到B点,测 得电线杆顶端点P和电线杆底端点Q的仰角分别是60° 和30°,这时只需要测出AB的长度就能通过计算求出 电线杆PQ的高度.若测出AB的长度为1 m, 3+ 3 则电线杆PQ的高度是___6____m_.
解:若选择条件①,由题意得CCDE=BACB,∴11..28=A9B, 解得 AB=13.5 m,∴旗杆 AB 的高度为 13.5 m. 若选择条件②,如图,过点 D 作 DF⊥AB,垂足为 F, 则易得四边形 BCDF 是矩形,∴BF=CD=1.8 m,DF=BC=9 m, 在 Rt△ADF 中,∠ADF=52.46°, ∴AF=DF·tan 52.46°≈9×1.30=11.7(m), ∴AB=AF+BF≈11.7+1.8=13.5(m), ∴旗杆 AB 的高度约为 13.5 m.
(参考数据:sin 67.38°≈1123,cos 67.38°≈153,tABC 中,
∵∠ABC=90°,∠ACB=67.38°,∴BC=tan∠ABACB≈1x2=152x(米), 5
∴BD=BC+CD≈152x+11米.由题意得 AD∥EF, 则∠FED=∠ADB,∴tan∠FED=tan∠ADB,即DDEF=BADB, ∴21..48≈152x+x 11,解得 x≈12,经检验,符合题意.
变式3 [2024西安高新一中模拟]如图,小明想测量 城墙AB的高度,他在围栏点C处测量城墙顶 点A的仰角为67.38°,在阳光的照射下,他 发现城墙上点A的影子落在了他身后11米的 点D处,于是他站在D点发现他的影子落在 地上的点E处,测量得ED长为2.4米,小明身 高为1.8米,E,D,C,B在一条直线上,且 FD⊥ED,AB⊥BE,请你根据以上数据帮助 小明算出城墙AB的高.
【北师大版】九年级数学下册优秀教案:1.6 利用三角函数测高1

1.6 利用三角函数测高1.经历运用仪器进行实地测量以及撰写活动报告的过程,能够对所得到的数据进行分析;(重点)2.能综合应用直角三角形的边角关系的知识解决实际问题.(难点)一、情境导入如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?实际上,我们利用图①中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本节要探究的内容.二、合作探究探究点:利用三角函数测高【类型一】测量底部可以到达的物体的高度如图,在一次测量活动中,小华站在离旗杆底部B处6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB 的高度(结果精确到0.1米,3≈1.732).解析:由题意可得四边形BCED是矩形,所以BC=DE,然后在Rt△ACE中,根据tan∠AEC=ACEC,即可求出AC的长.解:∵BD=CE=6m,∠AEC=60°,∴AC=CE·tan60°=6×3≈6×1.732≈10.4(米),∴AB=AC+DE=10.4+1.5=11.9(米).所以,旗杆AB的高度约为11.9米.方法总结:本题借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解题.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】测量底部不可到达的物体的高度如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少厘米(结果精确到0.1cm,参考数据:3≈1.732)?解析:首先过点B作BF⊥CD于点F,作BG⊥AD于点G,进而求出FC的长,再求出BG的长,即可得出答案.解:过点B作BF⊥CD于点F,作BG⊥AD于点G.∴四边形BFDG矩形,∴BG=FD.在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°=20×12=10(cm).在Rt△ABG 中,∠BAG=60°,∴BG =AB·sin60°=30×32=153(cm).∴CE=CF+FD+DE=10+153+2=12+153≈37.98≈38.0(cm).所以,此时灯罩顶端C到桌面的高度CE约是38.0cm.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形,转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】利用三角板测量物体的高度如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离AB是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离CD是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度(参考数据:3≈1.7,结果保留整数).解析:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,由△AEM是等腰直角三角形得出AE=ME,设AE=ME=x m,根据三角函数列方程求出x的值即可求解.解:过点A作AE⊥MN于点E,过点C 作CF⊥MN于点F,则EF=AB-CD=1.7-1.5=0.2(m),在Rt△AEM中,∵∠AEM =90°,∠MAE=45°,∴AE=ME.设AE =ME=x m,则MF=(x+0.2)m,FC=(28-x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF·tan∠MCF,∴x+0.2=33(28-x),解得x≈10.1,∴MN=ME+EN=10.1+1.7≈12(米).所以,旗杆MN的高度约为12米.方法总结:解决问题的关键是作出辅助线构造直角三角形,设出未知数列出方程.三、板书设计利用三角函数测高1.测量底部可以到达的物体的高度2.测量底部不可到达的物体的高度3.利用三角板测量物体的高度本节课为了充分发挥学生的主观能动性,学生通过小组讨论,大胆地发表意见,提高了学生学习数学的兴趣.能够使学生自己构造实际问题中的直角三角形,并通过解直角三角形解决实际问题,这本身是一个质的飞跃.在教学过程中,注重引导学生运用方程思想解决实际问题,数学思想方法的渗透使学生的能力发展先于知识能力,从而促进学生知识能力的提高.。
北师大版数学九年级下册1.6《利用三角函数测高》教案

北师大版数学九年级下册1.6《利用三角函数测高》教案一. 教材分析《利用三角函数测高》这一节主要让学生了解和掌握利用三角函数测量物体高度的方法。
通过前面的学习,学生已经掌握了锐角三角函数的概念和性质,本节内容是在此基础上进一步应用三角函数解决实际问题。
利用三角函数测高是初中数学中重要的应用题类型,也是中考的热点题型,对于培养学生的数学应用能力和解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经掌握了锐角三角函数的基本概念和性质,对于运用三角函数解决实际问题有一定的基础。
但学生在解决实际问题时,往往因为对实际情况理解不深,而导致解题思路不清晰。
因此,在教学本节内容时,要注重让学生理解实际问题的背景,引导学生运用三角函数解决实际问题。
三. 教学目标1.让学生了解和掌握利用三角函数测高的方法。
2.培养学生运用三角函数解决实际问题的能力。
3.培养学生的合作交流能力和创新思维能力。
四. 教学重难点1.重点:让学生掌握利用三角函数测高的方法。
2.难点:如何引导学生运用三角函数解决实际问题,特别是对于复杂问题的解决。
五. 教学方法采用问题驱动法,情境教学法,合作交流法,引导发现法等。
通过设置具体的问题情境,引导学生运用已学的三角函数知识解决实际问题,培养学生的应用能力和解决实际问题的能力。
六. 教学准备1.准备相关的问题情境和案例,用于引导学生进行实际问题的解决。
2.准备多媒体教学设备,用于展示问题和案例。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的三角函数知识,如:什么是锐角三角函数?它们之间有什么关系?然后提出本节课的主题:如何利用三角函数测高?2.呈现(15分钟)教师通过多媒体展示一些实际问题,如:如何测量电视塔的高度?如何测量树的高度?让学生思考如何利用三角函数解决这些问题。
3.操练(20分钟)教师学生进行小组合作,让学生通过实际操作,运用三角函数解决呈现的问题。
教师巡回指导,解答学生的疑问。
利用三角函数测高优秀教案

利用三角函数测高优秀教案课题名称:利用三角函数测高教学目标:1.理解正弦、余弦和正切的概念及其在三角函数测高中的应用;2.掌握使用正弦定理和余弦定理测量不可直接测量的高度;3.能够灵活运用三角函数测高的方法解决实际问题。
教学重点:1.正弦、余弦和正切的概念及其在三角函数测高中的应用;2.正弦定理和余弦定理的应用。
教学难点:教学准备:教具:直尺、测量工具、投影仪;课件:包含三角函数和其应用的相关知识点。
教学过程:一、导入(5分钟)1.引入三角函数的概念,复习正弦、余弦和正切的定义和计算方法。
2.提问学生:在实际生活中,我们如何使用三角函数来测量高度?二、讲解(15分钟)1.三角函数测高的原理:利用正弦、余弦和正切的性质通过测量已知边长和角度的方式求解未知高度。
2.正弦定理的应用:利用三角形中任意两边的长度和它们夹角的正弦比,求解不可直接测量的高度。
3.余弦定理的应用:利用三角形中三边的长度和它们之间的夹角余弦,求解不可直接测量的高度。
三、示范(15分钟)1.示范测量不可直接测量的高度的步骤,例如使用正弦定理:a.给出一个实际问题,如:如何测量一栋建筑物的高度?b.画出相应的示意图,标注已知边长和角度。
c.利用正弦定理的公式,求解未知的高度。
d.明确解题思路和计算步骤,进行计算。
2.呈现示范的解题过程,详细讲解每一步骤的计算方法和答案。
四、练习(20分钟)1.分发练习题,让学生独立完成。
2.讲解练习题答案,帮助学生纠正错误,巩固和理解三角函数测高的方法。
五、应用(15分钟)1.提供一些实际问题,要求学生运用三角函数测高的方法解决。
2.分组讨论并呈现解决方案,交流思路和讨论结果。
六、总结(10分钟)1.对本节课的要点进行总结,强调正弦、余弦和正切的应用。
2.核对课程目标,评估学生的学习情况。
七、作业(5分钟)布置作业:完成课后练习题,巩固三角函数测高的知识。
教学延伸:可以引导学生使用三角函数测高解决其他实际问题,并探究其他测高方法的应用。
九年级数学:利用三角函数测高

九年级数学:利用三角函数测高三角函数是函数学习的重点内容,下面是小编给大家带来的九年级数学:利用三角函数测高,希望能够帮助到大家!九年级数学:利用三角函数测高一、单选题1、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高( )米.A、B、3C、D、以上的答案都不对2、如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底总G为BC的中点,则矮建筑物的高CD为( )A、20米B、米C、米D、米3、如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的一端E到路灯A的仰角为45º,已知小颖的身高为1.5米,那么路灯A 的高度AB为( )A、3米B、4.5米C、6米D、8米4、如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长为10米,斜坡AB的坡度i=1:,则河堤高BE等于( )米A、B、C、4D、55、.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为( )A、7mB、9mC、12mD、15m6、某地区准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的余弦值为,则坡面AC的长度为( )A、8B、9C、10D、127、如图,修建抽水站时,沿着倾斜角为30度的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为( )A、米B、C、40米D、10米8、如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A、5cosaB、C、5sinaD、9、如图, 山坡AC与水平面AB成30°的角,沿山坡AC每往上爬100米,则竖直高度上升( )米A、50B、50C、50D、3010、如图所示,河堤横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),堤高BC=5m,则坡面AB的长度是( )A、10mB、10 mC、15mD、5 m11、在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,= ,则飞机距疑似目标B的水平距离BC 为( )A、2400 米B、2400 米C、2500 米D、2500 米12、如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为( )米.A、7tanαB、C、7sinαD、7cosα13、如图,C.D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为( )A、2 kmB、3 kmC、 kmD、3km14、如图,水库大坝截面的迎水坡AD的坡比为4:3,背水坡BC 的坡比为1:2,大坝高DE=20m,坝顶宽CD=10m,则下底AB的长为( )A、55mB、60mC、65mD、70m15、济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为( )A、47mB、51mC、53mD、54m二、填空题16、如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠ B的正切值为________.17、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为________ 海里.(结果保留根号)18、如图,机器人从A点出发,沿着西南方向行了4 m到达B点,在点B处观察到原点O在它的南偏东60°的方向上,则OA=________ m(结果保留根号).19、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD的高度为________ m .( ≈1.7)20、活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________三、解答题21、水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:(1)坝底AB的长;(2)迎水坡BC的坡比.22、小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E ,此时的仰角为60°,求旗杆的高度 .23、如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB ,坡面AC的倾斜角为45° . 为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3 . 若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)24、如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4 米,则河床面的宽减少了多少米.(即求AC的长)25、在升旗结束后,小铭想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好至C 处且与地面成60°角,小铭从绳子末端C处拿起绳子后退至E点,求旗杆AB的高度和小铭后退的距离.(单位:米,参考数据:≈1.41,≈1.73,结果保留一位小数)答案部分一、单选题1、【答案】B2、【答案】A 3、【答案】B 4、【答案】A 5、【答案】D 6、【答案】C 7、【答案】C 8、【答案】B 9、【答案】C 10、【答案】A 11、【答案】D 12、【答案】A 13、【答案】B 14、【答案】C 15、【答案】B二、填空题16、【答案】17、【答案】4018、【答案】(4+ )19、【答案】32.420、【答案】三、解答题21、【答案】解:(1)如图,作CF⊥AB,DE⊥AD,垂足分别为点F,E.∴四边形CDEF是矩形.∴CF=DE=4,EF=CD=2.∴BF=CFcot30°= ,AE=1.5DE=6.∴AB=BF+EF+AE= +2+6= +8(2)∵CF=4,BF= ,∴迎水坡BC的坡比为:CF/BF= .22、【答案】解:如图,∵∠ADG=30°,AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10× =5 ,∴AB=1.5+5 .答:旗杆AB的高度为(1.5+5 )米 .23、【答案】解:需要拆除,理由为:∵CB⊥AB ,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i= :3,即∠CDB=30°,∴DC=2BC=20米,BD= 米,∴AD=BD-AB=(10 -10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除 .24、【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2 ,x2+(2x)2=(4 )2 ,x=4.答:河床面的宽减少了4米.25、【答案】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图所示:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x×cos60°=10× ﹣10× ≈2.1(m);答:旗杆AB的高度为8.7m,小铭后退的距离为2.1m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、量出测点A到物体底
部N的水平距离AN=l;
Cα
3、量出测倾器的高度 E AC=a,可求出MN的高度。
A
N MN=ME+EN=l·tanα+a
三、测量底部不可以直接到达的物体的高度
• 所谓“底部不可以到达”---就是在地面上不 可以直接测得测点与被测物体之间的距离。
M
CαD β
E
AB
N
• 如图,要测量物体MN的高度,可按下列步骤进行:
利用三角函数测高
情景引入
请同学们欣赏下列图片,你们能测量出 它们的高度吗?
初。 ----简单的测倾器由度盘、铅锤和支杆组成
90
9 0
P
Q
度盘
0
铅锤
支杆
获取新知
M
使用测倾器测量倾斜角的步骤如下:
1、把支架竖直插入地面,使支 架的中心线、铅锤线和度盘的 0°刻度线重合,这时度盘的 顶线PQ在水平位置。
1、在测点A处安置测倾器, 测得此时M的仰角∠MCE=α;
2、在测点A与物体之间B处 安置测倾器,测得此时M的 M 仰角∠MDE=β;
CαD β
AB
3、量出测倾器的高度 AC=BD=a,以及测点A,B之 间的距离AB=b.根据测量数 据,可求出物体MN的高度。
E
N ME ME b, MN ME a
tan tan
当堂检测
1.如图,某中学在主楼的顶部和大门的上方之间挂 一些彩旗.经测量,得到大门的高度是5m,大门距 主楼的距离是30m,在大门处测得主楼顶部的仰角是 30°,而当时侧倾器离地面1.4m,求学校主楼的高度 (精确到0.01m)
M
M
解:如图,作EM垂直CD于M点,根据题意,可知 EB=1.4m,∠DEM=30°,BC=EM=30 m, CM=BE=1.4m 在Rt△DEM中,DM=EMtan30°≈30×0.577 =17.32(m) CD=DM+CM=17.32+1.4=18.72(m)
2.如图,小山岗的斜坡AC的坡度是tan= 3 ,在与山 脚C距离200米的D处,测得山顶A的仰角为426. 6°, 求小山岗的高AB(结果取整数,参考数据: sin26.6°=0.45,cos26.6°=0.89,tan 26.6°= =0.50)
学习的敌人是自己的满足,要认真学 习一点东西,必须从不自满开始。对自己, “学而不厌”,对人家,“诲人不倦”, 我们应取这种态度。 —— 毛泽东
3P0°
Q
90
90
0
2、转动度盘,使度盘的直径对准目标M,记下此时 铅垂线所指的读数。
M
P
30°
Q
二、测量底部可以直接到达的物体的高度
• 所谓“底部可以到达”---就是在地面上可以无障碍地 直接测得测点与被测物体的底部之间的距离.
M
Cα
E
A
N
• 如图,要测量物体MN的高度,可按下列步骤进行:
1、在测点A安置测倾器, M 测得M的仰角∠MCE=α;