初三数学上学期期中考试试卷附答案

合集下载

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初三上数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题:5道(每题1分,共5分)1. 下列哪个选项不属于《论语》中的思想?()A. 孝道B. 忠诚C. 仁爱D. 勤奋2. 《诗经》是我国最早的诗歌总集,其内容分为三部分,下列哪一项不属于这三部分?()A. 风诗B. 雅诗C. 颂诗D. 赋诗3. 下列哪个选项是《离骚》的作者?()A. 屈原B. 宋玉C. 李白D. 杜甫4. 下列哪个选项是《史记》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎5. 下列哪个选项是《资治通鉴》的作者?()A. 司马迁B. 司马光C. 司马相如D. 司马炎二、判断题5道(每题1分,共5分)1. 《论语》是孔子及其弟子的言论汇编,由孔子弟子及再传弟子编写而成。

()2. 《诗经》是我国最早的诗歌总集,共有305篇,分为风、雅、颂三部分。

()3. 《离骚》是屈原的代表作,被誉为中国古代浪漫主义诗歌的代表作。

()4. 《史记》是西汉史学家司马迁所著,是我国第一部纪传体通史。

()5. 《资治通鉴》是北宋史学家司马光所著,是我国第一部编年体通史。

()三、填空题5道(每题1分,共5分)1. 《论语》中,孔子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”这句话表达了孔子的______思想。

2. 《诗经》中的“风”是指______地区的民歌,具有浓厚的地方特色。

3. 《离骚》是屈原创作的长篇政治抒情诗,表达了诗人对楚国命运的深切忧虑和对理想的执着追求,被誉为中国古代浪漫主义诗歌的______。

4. 《史记》全书共130篇,包括12本纪、30世家、70列传、10表、8书,其中本纪、世家、列传是按______体例编写的。

5. 《资治通鉴》是北宋史学家司马光主编的一部多卷本编年体史书,记载了从______到______共1362年间的历史。

四、简答题5道(每题2分,共10分)1. 简述《论语》的主要思想内容。

2. 简述《诗经》的艺术特色。

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

九年级(上)期中数学试卷附答案解析

九年级(上)期中数学试卷附答案解析

九年级(上)期中数学试卷一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=02.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):25.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=5127.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=cm.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误.C、方程二次项系数可能为0,故错误;D、方程含有两个未知数,故错误;故选A.2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用菱形的判定、矩形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故错误,是假命题;B、对角线相等的平行四边形是矩形,正确,是真命题;C、对角线互相平分且相等、垂直的四边形是正方形,故错误,是假命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选B.3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%【考点】频数与频率.【分析】根据频率=频数÷数据总数,分别求出出现正面,反面的频率.【解答】解:∵某人抛硬币抛10次,其中正面朝上4次,反面朝上6次,∴出现正面的频率为=40%;出现反面的频率为60%.故选:D.4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):2【考点】黄金分割.【分析】根据黄金比是进行解答即可.【解答】解:∵点C是线段AB的黄金分割点,(AC>BC),∴AC=AB,∴AC:AB=(﹣1):2.故选:C.5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】中点四边形.【分析】菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【解答】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=512【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为800﹣800x%=800(1﹣x%);当商品第二次降价x%后,其售价为800(1﹣x%)﹣800(1﹣x%)x%=800(1﹣x%)2.∴800(1﹣x%)2=512.故选C.7.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到∴=,则EC=2AE=8,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,∴EC=2AE=8,∴AC=AE+EC=4+8=12(cm).故选D.8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE ∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC ∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE ∽△ABC,故本选项不符合题意;故选:B.10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是16.【考点】相似多边形的性质.【分析】根据相似多边形的对应边的比相等可得.【解答】解:两个相似的六边形,一个最短边长是3,另一个最短边长为6,则相似比是3:6=1:2,根据相似六边形的对应边的比相等,设后一个六边形的最大边长为x,则8:x=1:2,解得:x=16.即后一个六边形的最大边长为16.故答案为16.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为4cm.【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【解答】解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3cm,b=2cm,c=6cm,解得:d=4,则d=4cm.故答案为:4cm.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=6cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.15.如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.(只要写出一种)【考点】相似三角形的判定.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即得出两个一元一次方程,求出方程的解即可;(4)移项后分解因式,即得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2;(2)2(x+1)2﹣8=0,2(x+1+2)(x+1﹣2)=0,x+1+2=0,x+1﹣2=0,x1=﹣3,x2=1;(3)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(4)(2x+1)2=3(2x+1),(2x+1)2﹣3(2x+1)=0,(2x+1)(2x+1﹣3)=0,2x+1=0,2x+1﹣3=0,x1=﹣,x2=1.18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.【解答】解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;故答案为:;(2)根据题意列表如下:2 5 52 (2,2)(4)(2,5)(7)(2,5)(7)5 (5,2)(7)(5,5)(10)(5,5)(10)5 (5,2)(7)(5,5)(10)(5,5)(10)∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,∴P(数字和为7)=,P(数字和为10)=,∴P(数字和为7)=P(数字和为10),∴游戏对双方公平.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)先判定四边形ABDE为平行四边形,再判定四边形ADCE为平行四边形,即可得出AD=EC;(2)根据四边形ADCE为平行四边形,且AD=CD,即可得出平行四边形ADCE为菱形;(3)先判定OD为△ABC的中位线,得出,再根据AB=AO,得出即可.【解答】解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,∴平行四边形ADCE为菱形;(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,∴点O为AC的中点,∵AD是边BC上的中线,∴点D为BC边中点,∴OD为△ABC的中位线,∴,∵AB=AO,∴,即的值为.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:设每件童装应降价x元,则(40﹣x)(20+2x)=1200,解得x1=10,x2=20,因为扩大销售量,增加盈利,减少库存,所以x只取20.答:每件童装应降价20元.22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【考点】正方形的性质;翻折变换(折叠问题).【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.【考点】四边形综合题.【分析】(1)由AD:AB=1:1可以得出四边形ABCD是正方形,由其性质就可以得出△ABF≌△ADE,从而得出AF=AE,得出△AEF的形状;(2)根据条件可以得出△ABF∽△ADE,由相似三角形的性质就可以得出结论;(3)如图3,当△AEG是等边三角形时,由勾股定理就可以表示出AG、AE、FG,BG的值建立方程求出k值,就可以求出DE的长度.【解答】解:(1)△AEF为等腰直角三角形理由:如图1,∵AD:AB=1:1,∴AD=AB.∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°.∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴∠FAE﹣∠BAE=∠BAD﹣∠BAE,即∠BAF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△ADE,∴AF=AE,∴△AEF为等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴△ABF∽△ADE,∴.∵,∴,即AF=2AE;(3)∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°.∵△AEG是等边三角形,∴AE=AG,∠GAE=∠AEG=60°.∴∠FAG=∠DAE=∠AFE=30°,∴AG=FG.∵AB=3,AD:AB=k,∴AD=3k.在Rt△ADE中由勾股定理,得DE=k,AE=2k,∴AG=FG=2k,∴BG=k.∵AB=3,∴GB=3﹣2k,∴k=3﹣2k,解得:k=,∴DE=1.答:k=,DE=1.。

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。

人教版初三上册《数学》期中考试卷及答案【可打印】

人教版初三上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。

A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。

A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。

A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。

A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。

()2. 在同一平面内,垂直于同一直线的两条直线互相平行。

()3. 一元二次方程的根一定是实数。

()4. 圆的周长与半径成正比。

()5. 一组数据的方差越大,说明这组数据的波动越小。

()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。

2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。

3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。

4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。

5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。

四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。

2. 请简述圆的性质。

3. 请简述等差数列的性质。

4. 请简述三角形的内角和定理。

5. 请简述平行线的性质。

五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析

九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。

2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。

3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。

4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。

5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。

6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。

7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。

九年级数学上册期中考试试卷及答案

九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。

人教版九年级上学期期中考试数学试卷及答案(共6套)

人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。

一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。

人教版九年级上册数学期中考试试卷及答案详解

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学上学期期中考试试卷(100分钟完成,满分150分)一、填空题(每小题3分,满分36分)1. 方程211=-x 的根是______________. 2. 方程1112+=+x x x 的根是________________. 3. 分解因式:=-+422x x _______________________. 4. 在公式21111R R R +=中,已知正数R 、R 1(1R R ≠),那么R 2= . 5. 用换元法解方程02711222=+---x x x x 时,可设y =12-x x,那么原方程可化为关于y 的整式方程是 .6. 某电子产品每件原价为800,首次降价的百分率为x ,第二次降价的百分率为2x ,那么经过两降价后每件的价格为_____________________元(用x 的代数式表示). 7. 如图1,已知舞台AB 长10米,如果报幕员从点A 出发站在舞台的黄金分割点P 处,且BP AP <,则报幕员应走 米 报幕(236.25≈,结果精确到0.1米).8. 如图2,在ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,5:2:=AC AE ,则=BC DE : .9. 已知ABC ∆与DEF ∆相似,且点A 与点E 是对应点,已知∠A =50º, ∠B =︒60,则∠F = .10. 在△ABC 中,点D 、E分别在边AB 、AC 上,要使△ADE 与△ABC 相似,只须添加一个条件,这个条件可以是___________(只要填写一种情况) . 11. 在△ABC 中,中线AD 和CE 相交于G ,则=AD AG :_________. 12. 如图3, 在△ABC 中, 点D 、E 分别在AB 、AC 上,DE//BC ,4,3==∆∆CDE ADE S S ,那么AD :DB =____________.图1图2图3二、选择题(每小题4分,满分16分)13. 下多项式中,在实数范围内能分解因式的是………………………………………( )(A )12+-x x ; (B )222+-x x ; (C )332+-x x ; (D )552+-x x .14. 下列方程中, 有实数根的是………………………………………………………( )(A )x x -=11; (B )11-=-x x ; (C )111112--=+-x x x ; (D )11111+-=+-x x x . 15. 如果点D 、E 分别在ΔABC 的两边AB 、AC 上,下列条件中可以推出DE ∥BC 的是( )(A ) AD BD = 23 ,CE AE = 23 ; (B) AD AB = 23 ,DE BC = 23; (C )AB AD = 32 ,EC AE = 12 ; (D) AB AD =34,AE EC = 34. 16. 如图4,小正方形的边长均为l ,△ABC 与△DEF 的顶点都在小正方形的顶点上,则△DEF 与△ABC 相似的是……………………………………………………………( )(A ) (B ) (C ) (D )三、(第17、18题每小题9分,第19、20、21题每小题10分,满分48分)17.解方程:1113112=----x x x .18.方程组: ⎪⎪⎩⎪⎪⎨⎧-=---=-+-.1223,4122y x x y x x图4 A B C E D D ED F F D E19. 函数542--=x x y 图象上一点P 的纵坐标比横坐标多1, 求这个点的坐标.20. 如图5,在△ABC 中,点D 、E 分别在边AB 、AC 上,C ADE ∠=∠,且3=AD 厘米,5=BD 厘米,6=AC 厘米,求线段EC 的长.21.已知:如图6,在四边形ABCD 中,AD //BC ,点E 在边CD 上,AE 的延长线与BC 的延长相交于点F ,FB CE CD FC ⋅=⋅. 求证:∠D =∠B .四、(第22、23、24题每小题12分,第25题14分,满分50分) 22.已知:如图7,△ABC 中,点E 在中线BD 上, ABD DAE ∠=∠.求证:(1)DB DE AD ⋅=2; (2)ACB DEC ∠=∠.23.现有甲、乙两辆货车将一批货物从A 地运往B 地,每车都装满,乙车比甲车每车多运2吨, 甲车运200吨比乙车运200吨要多运5次,求甲、乙两辆货车每次各运几吨.BC ADE 图5 A C E BF 图6图724.如图8,有一块长为40米,宽为30米的长方形绿地.其中有两条互相垂直的笔直的道路(图中的阴影部分),道路的一边GF 与长方形绿地一边的夹角为60º,且道路的出入口的边AB 、CD 、EF 、GH 的长度都相同,已知道路面积为137平方米,求道路出入口的边的长度.25. 在矩形ABCD 中,2=AB ,5=BC ,点P 在BC 上,且3:2:=PC BP ,动点E 在边AD 上,过点P 作PE PF ⊥分别交射线AD 、射线CD 于点F 、G .(1) 如图9,当点G 在线段CD 上时,设AE =x ,△EPF 与矩形ABCD 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2) 当点E 在移动过程中,△DGF 是否可能为等腰三角形?如可能,请求出AE 的长;如不可能,请说明理由.A B CD PFEGABCD(备用图)图9初三数学期中考试试卷参考与评分意见一、1.23=x ; 2. 1=x ; 3. );51)(51(-+++x x 4. RR RR -11; 5. ;02742=-+y y 6. )21)(1(800x x --; 7. 3.8 ; 8. 2:5 ; 9. 60º或70º; 10. 可填DE //BC 或∠AED =∠B 或ABAEAC AD =等; 11. 2:3; 12. 3:4. 二、13.D ; 14. B; 15. C; 16. B.三、17.解:11312-=+-+x x x ,(3分) ,0322=-+x x (2分)1,321=-=x x ,(2分) 经检验:3-=x 是原方程的根,1=x 是增根.(2分)所以原方程的根是3-=x .18. 解:设a x =-21,b y x =-1(1分) 则原方程组可化为⎩⎨⎧-=-=+.123,42b a b a (2分) 解此方程得⎩⎨⎧==.2,1b a (2分) ∴⎪⎪⎩⎪⎪⎨⎧=-=-.21,121yx x (1分) ∴⎪⎩⎪⎨⎧==.25,3y x (2分) 经检验:⎪⎩⎪⎨⎧==25,3y x 是原方程组的解,∴所以原方程组的解是⎪⎩⎪⎨⎧==.25,3y x (1分)19. 解:设点)1,(+x x P ,(2分) 5412--=+x x x ,(2分) 0652=--x x ,(2分)1,621-==x x ,(2分) ∴点P 的坐标为)7,6(或()0,1-.(2分) 20.解:∵C ADE ∠=∠,A A ∠=∠,(1分) ∴ADE ∆∽ACB ∆.(2分)∴AB AE AC AD =.(2分) ∵3=AD 厘米,5=BD 厘米,6=AC 厘米, ∴5363+=AE,(2分) 解得4=AE .(2分) ∴2=-=AE AC EC 厘米.(1分)21. 证明:∵FB CE CD FC ⋅=⋅,∴CD CE FB FC =.(2分)∵AD //BC ,∴.FAFECD CE =(2分) ∴FAFEFB FC =.(2分) ∴DE //BC . (2分) ∴四边形ABCD 是平行四边形.(1分) ∴∠B =∠D .(1分)四、22.证明:(1)∵ABD DAE ∠=∠,BDA ADE ∠=∠,∴ADE ∆∽BDA ∆.(2分)∴ADDEBD AD =,(2分) 即DB DE AD ⋅=2.(1分) (2)∵D 是AC 边上的中点,∴DC AD =.∵AD DEBD AD =,∴DCDE BD DC =,(2分) 又∵BDC CDE ∠=∠.(1分)∴CDE ∆∽BDC ∆.(2分)∴ACB DEC ∠=∠.(2分) 23. 解:甲货车每次各运x 吨,(1分) 则乙货车每次各运(2+x )吨.(1分)由题意得52200200=+-x x .(3分) 化简整理得 08022=-+x x .(2分) 解得10,821-==x x . (2分) 经检验10,821-==x x 都是原方程的根,但10-=x 不合题意舍去,(1分) ∴8=x ,.102=+x (1分)答:甲、乙两辆货车每次各运8吨、10吨.(1分)24.解:道路出入口的边的长度为x 米.(1分)过点F 作FM ⊥EH ,可求得EH =x 23,可得小正方形的边长为x 23米.(2分) 1374340302=-+x x x ,(3分) 054828032=+-x x ,(1分) 0)2)(2743(=--x x , (1分) 2,327421==x x .(2分) 3274=x 不符合题意,舍去.(1分)答:道路出入口的边的长度为2米.(1分) 25. 解:(1)过点E 作BC EH ⊥,垂足为H .(1分)∵3:2:=PC BP ,5=BC ,∴2=BP ,3=PC ;∵x AE =,∴x HP -=2;∵EH =AB =2, ∴x S EHP -=∆2 ,(2分)∵︒=∠=∠=∠90GCP EPF EHP ,∴∠EPH =90º–∠GPC =∠PGC ,(1分) ∴EHP ∆∽PCG ∆.(1分)∴.236,232,xCG x CG EH CP PH CG -=∴=-∴=(1分) ∴9924∆=-PCG S x .(1分) ∵PCG EPH EH CD S S S y ∆∆--=矩形,∴2745+=x y ,(2分) (232<≤x ).(1分) (2)当点G 在线段CD 上,DG DF =,DF -=23,1-=DF 不可能.(2分) 当点G 在线段CD 的延长线上时,DG DF =,DF +=23,1=DF . 此时可解得0=AE ,即当点E 与点A 重合时,DGF ∆是等腰三角形.(2分)。

相关文档
最新文档