(完整版)等比数列求和公式

合集下载

等比数列求和公式,

等比数列求和公式,

等比数列求和公式,等比数列求和公式______________________________等比数列(Geometric Series)是由一个有限项相加而构成的数列,其中每一项与前一项的比值相等。

在数学中,当求解等比数列的总和时,可以使用等比数列求和公式,它可以帮助我们得出有限或无限的等比数列的总和。

一、等比数列的定义等比数列是一种有序数列,其中所有项的比值都是相同的,即a1,a2,a3,…,an为等比数列的n项,其中a1为等比数列的第一项,an为等比数列的最后一项。

等比数列的公差d(即a2-a1=d)也是固定的,d必须是一个实数(即d>0或者d<0)。

二、等比数列求和公式等比数列求和公式是用来计算等比数列总和的公式。

对于有限的等比数列:Sn=a1+a2+a3+…+an=a1×(1-r^n)/(1-r);对于无限的等比数列:Sn=a1+a2+a3+…=a1/(1-r)。

三、等比数列求和公式的应用1、用等比数列求和公式可以计算有限等比数列的总和。

例如:已知有限等比数列{3,6,12,24,48},其中a1=3,d=3,n=5,则根据等比数列求和公式可得Sn=93。

2、用等比数列求和公式可以计算无限等比数列的总和。

例如:已知无限等比数列{2,4,8,16,32,…},其中a1=2,r=2,则根据等比数列求和公式可得Sn=2/(1-2)=-2。

四、等比数列求和公式的注意事项1、当r>1时,无限等比数列的总和是无穷大;当r<1时,无限等比数列的总和是有限的。

2、当r=1时,有限等比数列的总和是无限大;当r=1时,无限等比数列的总和也是无限大。

3、当r=-1时,有限等比数列的总和是有限的;当r=-1时,无限等比数列的总和也是有限的。

总之,要想正确使用等比数列求和公式来计算有限或无限的等比数列的总和,必须根据不同情况来选用相应的公式。

只有正确使用了这个公式,才能够得出正确的计算结果。

等比数列与等比数列的求和公式总结

等比数列与等比数列的求和公式总结

等比数列与等比数列的求和公式总结等比数列(Geometric Progression)是指从第二项开始,每一项与它前一项的比都相等的数列。

比如,1,2,4,8,16 就是一个等比数列,公比为 2,即任意一项与它前一项的比都是 2。

等比数列具有以下的特征:1. 每一项乘以公比得到下一项;2. 第一项可以为任意非零实数;3. 公比可以为任意非零实数;4. 等比数列中不能出现零。

等比数列的通项公式为:an = a1 * r^(n-1),其中 an 表示第 n 项,a1 表示第一项,r 表示公比。

等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中 Sn 表示前 n 项的和,a1 表示第一项,r 表示公比。

下面是一个例子,展示了如何应用等比数列的求和公式:例题:求等比数列 2,6,18,54 的和。

解析:首先确定该等比数列的首项 a1 和公比 r。

首项 a1 = 2,公比 r = 6 / 2 = 3。

接下来,我们需要求出该等比数列的项数 n。

根据通项公式 an = a1 * r^(n-1),最后一项 54 = 2 * 3^(n-1),再化简得 3^(n-1) = 27,两边取对数得 n-1 = 3,解得 n = 4。

然后,代入等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r),得 S4 = 2 * (1 - 3^4) / (1 - 3),即 S4 = -242。

所以,等比数列 2,6,18,54 的和为 -242。

总结:等比数列是一种重要的数列,应用广泛。

通过等比数列的通项公式和求和公式,我们可以准确地计算等比数列的任意一项和前n 项的和。

掌握了等比数列的求和公式,可以在数学问题中快速求解,提高计算效率。

等比数列所有公式

等比数列所有公式

等比数列所有公式
等比数列的所有公式如下:
1. 通项公式:an=a r^(n-1),其中an表示第n项,a表示首项,r表示公比。

这个公式可以用来求解等比数列中任意一项的值。

2. 前n项和公式:Sn = a (1 - r^n) / (1 - r),其中Sn表示前n项的和。

这个公式可以用来求解等比数列前n项的和。

3. 最后一项公式:an = a r^(n-1),其中an表示最后一项,a表示首项,r 表示公比。

这个公式可以用来求解等比数列的最后一项。

4. 前n项平均值公式:Avg = (a (1 - r^n)) / (1 - r) / n,其中Avg表示前n项的平均值。

这个公式可以用来求解等比数列前n项的平均值。

5. 前n项和与后n项和的关系公式:Sn = a (1 - r^n) / (1 - r),S2n = a (1 - r^(2n)) / (1 - r)。

以上是等比数列的所有公式,希望对解决您的问题有所帮助。

等差等比数列求和公式(2024高考必考)

等差等比数列求和公式(2024高考必考)

等差等比数列求和公式(2024高考必考)等比数列求和公式通项公式 an=a1×q^(n-1)求和公式 a1(1-q^n)/(1-q)Sn=a1(1-q^n)/(1-q)(q≠1)求和公式推导(1)Sn=a1+a2+a3+...+an(公比为q)(2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)(3)Sn-qSn=(1-q)Sn=a1-a(n+1)(4)a(n+1)=a1q^n(5)Sn=a1(1-qn)/(1-q)(q≠1)等差数列求和公式Sn=n(a1+an)/2Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和高中数学学习方法明晰概念高中数学中的概念是比较严谨的,各个定义间都有很强的逻辑联系,逐个理解后就应把概念记牢,高考的选择题会涉及这方面的内容,而某些解答题也会由于概念定义所限而由繁变简,掌握好概念之后,有利于基础打牢,要做到“明晰”,关键是要多查书,勤查书,不要一知半解。

刻苦练习熟能生巧,对数学而言,也是如此。

做题能提高对题型的熟识度,对技巧的熟识度,以及计算的准确度。

而以上这些,会大大提高解题速度和准确率。

而练习,也是要掌握方法的,习题太易,会使人生厌;习题太难,会让人胆怯。

调整状态状态对于考生来讲,非常重要,考试中状态的差异,会带来成绩上巨大的波动。

一般考前一段时间,老师会发很多练习以强化训练,而实际上,状态的调整因人而异。

有的人在训练之后对题目很厌烦,即使在考场上题目会做,往往草草收笔,过程简略,以致痛失步骤分;有的人训练得不够时,找不到做题的感觉,思维僵了,愣是解不出本在自己实力范围之内的题。

(完整版)等比数列的求和公式

(完整版)等比数列的求和公式

等比数列的求和公式一、 基本概念和公式等比数列的求和公式: q q a n --1)1(1 (1≠q ) qq a a n --11(1≠q ) n S = 或 n S =1na (q = 1)即如果q 是否等于1不确定则需要对q=1或1≠q推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇=d n 2。

二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。

例2:在等比数列{n a }中,36,463==S S ,则公比q = 。

-例3:(1)等比数列{n a }中,91,762==S S ,则4S = ;(2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。

例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是?例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。

例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。

例8:在n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。

例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等比数列的求和公式

等比数列的求和公式

等比数列的求和公式等比数列是指一个数列中的每一个项都等于前一项乘以相同的常数。

求和公式是指计算等比数列前n项和的表达式。

在等比数列中,每一项的公式可以表示为:$$a_n = a_1 \cdot r^{(n-1)}$$其中,$a_n$表示第n项,$a_1$表示第一项,r表示公比。

我们需要知道的是等比数列的前n项和。

假设等比数列的前n项和为S,我们可以通过一种简单的方法推导出等比数列的求和公式。

让我们从一开始推导以便更好地理解这个公式。

设等比数列的首项为$a_1$,公比为r。

那么前n项和可以表示为:$$S_n = a_1 + a_2 + \ldots + a_n$$将等比数列的通项公式代入上式,得到:$$S = a_1 + a_1 \cdot r + a_1 \cdot r^2 + \ldots + a_1 \cdot r^{(n-1)}$$将等比数列中的首项乘以公比的n-1次方,我们可以观察到以下现象:$$r \cdot S = a_1 \cdot r + a_1 \cdot r^2 + \ldots + a_1 \cdot r^{(n-1)} + a_1 \cdot r^n$$将等式两边相减:$$S - r \cdot S = a_1 - a_1 \cdot r^n$$整理后得到:$$S(1-r) = a_1(1-r^n)$$由此,我们可以解出前n项和的公式:$$S = \frac{{a_1(1-r^n)}}{{1-r}}$$这就是等比数列的求和公式。

通过这个公式,我们可以轻松地计算等比数列的前n项和,无论n 的大小如何。

需要注意的是,在使用等比数列的求和公式时,必须确保公比r不等于1。

当r等于1时,等比数列变为等差数列,此时前n项和的公式为$S_n = n \cdot a_1$。

因此,等差数列的求和公式和等比数列的求和公式是不同的。

总结:等比数列的求和公式为$S = \frac{{a_1(1-r^n)}}{{1-r}}$,其中$a_1$为首项,r为公比,n为项数。

等比数列求和公式及其概念是什么

等比数列求和公式及其概念是什么

等比数列求和公式及其概念是什么等比数列求和公式q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为等比)这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。

注:q=1时,{an}为常数列。

利用等比数列求和公式可以快速的计算出该数列的和。

等比数列的概念1、等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q来表示。

定义可以用公式表达为:a(n+1)/an=q(式中n为正整数,q为常数)。

特别注意的是,q是一个与项数n无关的常数2、等比中项:三个数 a、G、b依次组成等比数列,则G叫做的等比中项,且G2=a+b(等比中项的平方等于前项与后项之积)。

如何学好高中数学1.背诵数学公式数学的出题方式有很多种,但是解题方法却是相对固定的,需要熟练掌握数学公式。

在学习高中数学的时候,我们一定要先把数学公式背诵清楚,做到在考试的时候能够记得起计算公式,这是学好高中数学的关键步骤。

如果连数学公式都不记得,那做题和解题就无从谈起了。

2、高质量的题海战术与文科相比,数学这门学科更重视“刷题”。

一般来说,数学是“刷题”越多,成绩越好,但我们在采取题海战术的同时,一定注意效率。

首先,我们需要明白我们正在做的题属于什么类型;其次,要根据自己的考试情况灵活学习,基本的策略是:哪里薄弱,就重点学习哪里;实在搞不懂的部分,就暂时放弃。

有针对性的练习,才进步得快。

所以要想数学成绩进步快,专项训练绝对是必要的。

有些学生好高骛远,一开始就每天练一套高考试卷,以为这样考得越多越能吃透高考,殊不知,这种练习有很大的侥幸成分,倘能各个击破,全都扎实了,还怕高考不成?3.学会独立思考高中数学的学习需要具备一定的逻辑思维能力,通过独立思考可以提高学习效果。

等比数列的通项公式与求和公式

等比数列的通项公式与求和公式

等比数列的通项公式与求和公式等比数列是数学中常见且重要的数列之一,它的每一项与前一项的比值都相等。

在解决等比数列相关问题时,研究其通项公式和求和公式是非常关键的。

下面将对等比数列的通项公式和求和公式进行详细介绍。

一、等比数列的通项公式设等比数列的首项为a₁,公比为r,第n项为aₙ。

等比数列的通项公式可以用以下表达式表示:aₙ = a₁ * r^(n-1)其中,aₙ表示等比数列的第n项,a₁表示等比数列的首项,r表示等比数列的公比。

通过该通项公式,我们可以轻松地求得等比数列中任意一项的数值。

例如,若我们需要求解首项为3,公比为2的等比数列的第10项的数值,即可使用通项公式进行计算。

根据公式,将a₁=3,r=2,n=10代入得出:a₁₀ = 3 * 2^(10-1) = 3 * 2^9 = 3 * 512 = 1536因此,首项为3,公比为2的等比数列的第10项的数值为1536。

二、等比数列的求和公式对于等比数列的前n项求和,我们可以利用求和公式进行计算。

等比数列的求和公式可以用以下表达式表示:Sn = a₁ * (r^n - 1) / (r - 1)其中,Sn表示等比数列的前n项和,a₁表示等比数列的首项,r表示等比数列的公比。

通过该求和公式,我们可以快速求得等比数列的前n项和。

例如,若我们需要求解首项为2,公比为3的等比数列的前5项和,即可使用求和公式进行计算。

根据公式,将a₁=2,r=3,n=5代入得出:S₅ = 2 * (3^5 - 1) / (3 - 1) = 2 * (243 - 1) / 2 = 2 * 242 / 2 = 242因此,首项为2,公比为3的等比数列的前5项和为242。

通过等比数列的通项公式和求和公式,我们可以在解决问题时更加高效地计算等比数列的任意一项和前n项的和。

这些公式在数学、物理等领域有着广泛的应用,对我们的学习和研究具有重要意义。

总结起来,等比数列的通项公式可以用aₙ = a₁ * r^(n-1)表示,通过该公式可以求解等比数列的任意一项的数值;等比数列的求和公式可以用Sn = a₁ * (r^n - 1) / (r - 1)表示,通过该公式可以求解等比数列的前n项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:(1)C (2)见解析
2. 已知数列{an}等比 (1)若 S3+ S6= 2S9,求 q (2)若 a>0, 比较 S7 a8 与 S8 a7 的大小。
例题讲解
类型二 求和方法——错位相减法
[例 3]
设数列{an}等比,满足
a2=
1 4
,a5=2.
(1)求数列{a3n-1}的前 n 项和;
(q2-4)(q2-1)=0.
(q-2)(q+2)(q-1)(q+1)=0,
因为 q<1,解得 q=-1 或 q=-2.
当q=-1时,代入①得a1=2, 通项公式an=2×(-1)n-1; 当q=-2时,代入①得a1=12, 通项公式an=12×(-2)n-1. 综上,当q=-1时,an=2×(-1)n-1. 当q=-2时,an=12×(-2)n-1.
(2)求数列{an an+1 }的前 n 项和;
(3)求数列{(2n+1) an }的前 n 项和。
[例 4] 设数列{an}满足 a1=2,an+1-an=3·22n-1.
(1)求数列{an}的通项公式;
(2)令 bn=nan,求数列{bn}的前 n 项和 Sn.
解:(1)由已知得,当 n≥1 时, an+1=[(an+1-an)+(an-an-1)+…+(a2-a1)]+a1 =3(22n-1+22n-3+…+2)+2 =22(n+1)-1. 而 a1=2, 所以数列{an}的通项公式为 an=22n-1.
例题讲解
类型一 等比数列前 n 项和公式的基本运算 [例 1] 在等比数列{an}中, (1)S2=30,S3=155,求 Sn; (2)若 Sn=189,q=2,an=96,求 a1 和 n.
a11+q=30, 解:(1)由题意知
a11+q+q2=155,
解得a1=5, q=5,
a1=180, 或q=-56.
提示:已知 a1,q,n 且 q≠1 时用 Sn=a111--qqn, 已知 a1,q,an 且 q≠1 时,用公式 Sn=a11--aqnq.
3.等比数列前 n 项和的公式是如何推导的?
提示:设 Sn=a1+a2+a3+…+an① 则把①式两边同乘以 q 得: qSn=a1q+a2q+a3q+…+an-1q+anq qSn=a2+a3+a4+…+an+an+1② ①-②得(1-q)Sn=a1-an+1 ∴当 q≠1 时,Sn=a11--aqn+1=a1(11--qqn). 又当 q=1 时,∵a1=a2=…=an,∴Sn=na1.
方法
位相减
和的方法 列求和问题
公式理解
1.应用等比数列前 n 项和公式时应注意什么事项?
提示:在应用等比数列求和公式时,
应分 q=1 与 q≠1 两种情况分别求解; 若 q≠1,要说明为什么 q≠1.
2.当 q≠1 时,等比数列的前 n 项和公式有两种 形式 Sn=a111--qqn及 Sn=a11--aqnq,应用时应如何选择?
[例 2] 已知等比数列{an}中,an>0,Sn=80,S2n=6560,则 前 n 项中最大项为 54,求 n.
跟踪练习
1. (1)等比数列{an}中,q=-12,S5=11,则 a1,a5 分别为(
)
A.14,1
B.16,-1
C.16,1
D.14,-1
(2)设等比数列{an}的公比 q<1,前 n 项和为 Sn,已知 a3=2,
S4=5S2,求{an}的通项公式.
解析:(1)S5=a1[11----12125]=11⇒a1=16, a5=a1·q4=16×(-12)4=1.
(2)由题设知 a1≠0,Sn=a111--qqn(q<1),
a1q2=2 ①
则a11-q4=5×a11-q2 ②
1-q
1-q
由②得 1-q4=5(1-q2),
1.
设数列{an}的首项

a1=a≠
1 4
,且
an1 a12nan ,14n为, n为偶奇数数,
bn=a2n-1
1 4
(1)求 a2,a3
两式相减,得(1-1a)Sn=1a+a12+…+a1n-ann+1, 即Sn=aan-an1a--n1a2 -1. 综上所述,得 Sn=anan2n+-a1n1a,--an1=a21-,1,a≠1.
2. 已知数列{bn}前n项和为Sn,且bn=2-2sn,
数列{an}是等差数列,a5=
5 2
, a7 =
从而
Sn=14×5n+1-54或
1 Sn=
080×[1--56n]
11
.
(2)由 Sn=a111--qqn,an=a1·qn-1 以及已知条件得
189=a111--22n, 96=a1·2n-1,
∴a1·2n=192,即 2n=1a912,
∴189=a1(2n-1)=a1(1a912-1), ∴a1=3,2n-1=936=32,∴n=6.
7 2
.
(1)求{bn}的通向公式。
(2) 若cn=an.bn,n=1,2,3…..求;数列{cn}前n项和Tn
例题讲解
类型三 等比数列的综合应用
[例 5] 设数列{an}的相邻两项 an,an+1 是方程
x2
bn x
(1)n 2
0 的两根,又
a1=2
求数列{bn}的前 n 项和 Tn.
跟踪练习
(2)由bn=nan=n·22n-1知
Sn=1·2+2·23+3·25+…+n·22n-1.

从而22·Sn=1·23+2·25+3·27+…+n·22n+1.

①-②得
(1-22)Sn=2+23+25+…+22n-1-n·22n+1.
即Sn=19[(3n-1)22n+1+2].
跟踪练习
1. 求和 Sn=1a+a22+a33+…+ann. 解:分a=1和a≠1两种情况. 当a=1时,Sn=1+2+3+…+n=nn+ 2 1; 当a≠1时,Sn=1a+a22+a33+…+ann, 上式两边同乘以1a,得 1aSn=a12+a23+…+n-an 1+ann+1,
2.4.2
等比数列的求和公式 (第一课时)
新课讲解
等比数列前 n 项和公式 知识点
基本内容
基本 公式
等比数列 前 n 项和公 式
Sn=naqa1≠111-1-qq=qn1=
a1-anq 1-q
根据 q 是否为 1,有两种形式
推导等比 错位相减法:解决由等比数列与
基本
两边乘公比,错
数列前 n 项 等差数列对应项的积组成的数
相关文档
最新文档