异步电动机几种启动方式的介绍

异步电动机几种启动方式的介绍
异步电动机几种启动方式的介绍

异步电动机几种启动方式的介绍

电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。

1 软启动的现状与各种启动方式的比较

交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。

如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4倍~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的2倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。

对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器降压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、定子串电阻分级起动。这些传统的起动方法都存在一些问题。

(1)定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时,却付出了较大的代价,即起动转矩降低得更多,一般只能用于空载和轻载。

(2)Y—△起动:Y—△起动方法虽然简单,只需一个Y—△转换开关。但是Y—△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于380V电动机。

(3)自耦变压器降压起动:自耦变压器降压起动,与定子串接电抗器起动相比,当限定的起动电流相同时,起动转矩损失的较少;比起Y—△起动,有几种抽头供选用比较灵活,并可以拖动较大些的负载起动。但是自耦变压器体积大,价格高,也不能拖动重负载起动。

(4)延边三角形起动:采用延边三角形起动鼠笼式异步电动机,除了简单的绕组接线切换装置之外,不需要其他专用起动设备。但是,电动机的定子绕组不但为△接,有抽头,而且需要专门设计,制成后抽头又不能随意变动。

随着电力技术(尤其是集成电路、微处理器以及新一代电力电子器件)的不断发展,异步电动机起动过程中的起动电流过高,起动转矩过小等问题得到了很好的解决。

从20世纪70年代开始推广利用晶闸管交流调压技术制作的软起动器,以及采用微控制器代替模拟控制电路,发展成为现代的电子软起动器。

2 软启动的特点

电子软起动器相对于传统的起动方式,其突出的优点体现在:

(1)电力半导体开关是无电弧开关和电流连续的调节,所以电子软起动器是无级调节的,能够连续稳定调节电机的起动,而传统起动的调节是分档的,即属于有级调节范围。

(2)冲击转矩和冲击电流小。软起动器在起动电机时,是通过逐渐增大晶闸管

的导通角,使电机起动电流限制在设定值以内,因而冲击电流小,也可控制转矩平滑上升,保护传动机械、设备和人员。

(3)软起动器可以引入电流闭环控制,使电机在起动过程中保持恒流,确保电机平稳起动。

(4)根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流,节省电能。

(5)由于采用微机控制,可在起动前对主回路进行故障诊断,且数字化的控制具有较稳定的静态特性,不易受温度、电源电压及时间变化等因素的影响,因此提高了系统的可靠性,有助于系统维护。同时,软起动器还能实现直接计算机通讯控制,为自动化控制打下良好的基础。

3 结论

从短期来看,软起动将仍然以各种形式的降压(限流)软起动为它的主要形式。从理论上说,性能价格比高的产品将占有更大的市场份额。但是,在各种应用场合,人们对于各种性能的侧重面不同,使各类起动产品(包括传统的星三角起动)都可能会赢得自己的市场。但从长期来看,变频软起动将成为软起动的主流。各种形式的降压软起动将与星三角起动等技术一起归并为传统的起动技术。随着变频器价格的逐渐下降,可靠性的进一步提高,未来成为主流产品的软起动装置将是带有软切换功能的廉价的变频器。

高压电机几种起动方式

高压电机几种起动方式 高压电机几种起动方式 普通鼠笼式电动机在空载全压直接启动时,启动电流会达到额定电流的4—7倍。当电动机容量相对较大时,该启动电流将引起电网电压急剧下降,电压频率也会发生变化,这会破坏同电网其它设备的正常运行,甚至会引起电网失去稳定,造成更大的事故。 电动机全压启动时的大电流在定子线圈和转子鼠笼条上产生很大的冲击力,会破坏绕组绝缘和造成鼠笼条断裂,引起电机故障,大电流还会产生大量的焦耳热,损伤绕组绝缘,减少电机寿命。 mo8 串联电抗器启动为有级降压启动,在全压切换时转矩有跃变,会产生机械冲击。与直接全压启动相比,操作过电压的几率会小些。但由于高频振荡的随机性,大幅值的操作过电压还是有可能出现的。 ~ 自耦变压器减压启动与电抗器降压启动相比,在获得同样启动转矩的情况下,自耦变压器式降压启动的启动电流较小,适合于阻力矩比较大的情况。 用中压变频器做软启动装置来启动电机,其启动性能很好,但中压变频器价格昂贵,另外由于变频技术还处于发展时期,其可靠性还不是很高,用户的维修技术还跟不上,这便是这种方法尚不是应用很多的原因,一般都在进口设备上采用。用变频器来启动电机,可以做到无操作过电压,但变频器的输出电压中含有大量的高次谐波,也会对电机造成伤害。 采用可控硅串联技术的中压电机软启动装置对元器件特性参数的一致性要求很高,元器件的筛选率很低,而且筛选仪器的价格很高,这致使装置的价格较高。另外在使用一段时间后,元器件的参数还会发生变化,使元器件的均压性能降低,极易造成整串元器件的损坏,使这种装置的可靠性降低。 水电阻和液变电阻式软启动装置,水电阻式是靠极板的移动和大电流使水汽化(极板表面)形成高电阻改变液体的电阻来控制启动电流(电压),而液变电阻是靠掺入杂质的多少,极板的大小及大电流使极板附近的水汽化产生的高电阻来控制启动。 开关变压器式中压电机软启动装置是用开关变压器来隔离高压和低压,开关变压器的低压绕组与可控硅和控制系统相连,通过改变其低压绕组上电压来改变高压绕组上的电压,从而达到改变电机端电压的目的,以实现电机的软启动。在启动过程中,开关变压器始终处于开和关两种工作状态,开关变压器损耗很小。

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

电动机有哪些启动方式

电动机有哪些启动方式? 电动机是把电能转换成机械能的一种设备。它是利用通电线圈(也就是定子绕组)产生旋转磁场并作用于转子鼠笼式式闭合铝框形成磁电动力旋转扭矩。电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成,通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。 AST电动机是一种旋转式电动机器,它将电能转变为机械能,它主要包括一个用以产生磁场的电磁铁绕组或分布的定子绕组和一个旋转电枢或转子。在定子绕组旋转磁场的作用下,其在电枢鼠笼式铝框中有电流通过并受磁场的作用而使其转动。这些机器中有些类型可作电动机用,也可作发电机用。它是将电能转变为机械能的一种机器。通常电动机的作功部分作旋转运动,这种电动机称为转子电动机;也有作直线运动的,称为直线电动机。电动机能提供的功率范围很大,从毫瓦级到电动机万千瓦级。电动机的使用和控制非常方便,具有自起动、加速、制动、反转、掣住等能力,能满足各种运行要求;电动机的工作效率较高,又没有烟尘、气味,不污染环境,噪声也较小。由于它的一系列优点,所以在工农业生产、交通运输、国防、商业及家用电器、医疗电器设备等各方面广泛应用。 启动方式 电动机启动方式包括:全压直接启动、自耦减压起动、y-δ起动、软起动器、变频器。(1)全压直接起动 在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。优点是操纵控制方便,维护简单,而且比较经济。主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。 (2)自耦减压起动 利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。并且可以通过抽头调节起动转矩。至今仍被广泛应用。 (3)y-δ起动 对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。这样的起动方式称为星三角减压起动,或简称为星三角起动(y-δ起动)。采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。在星三角起动时,起动电流才2—2.3倍。这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。适用于无载或者轻载起动的场合。并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。 (4)软起动器 这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求

电机几种启动方式

4液体电阻软启动 工作原理:在电动机定子回路串入一特制的可控液态电阻器。利用伺服电机改变浸泡在导电液(一般由Na2CO3和水配制)中极板的距离,使电阻器阻值由大到小平滑无级较小,由此使电动机端电压逐渐升高至全压,从而实现电动机及拖动生产机械的柔性平滑软启动。 优点;成本低,在软启动过程中不产生高次谐波,启动过程中对电网无冲击干扰,无谐波污染,系统功率因数高。 缺点:1)高压电动反电势建立的速率与水阻变化的速率很难一致,从而造成了启动电流的斜率很大,严重时会迫使上一级开关跳闸。2)环境温度对启动性能的影响大。夏天(温度可高达40℃)启动电流大,有时高达5额定电流,接近直接启动。冬天(温度最低达-20℃)启动困难。液阻软启动装置不适舍置放在易结冰的场所。3)液体电阻装置体积大。增加基建投资。4)液体电阻装置通过调节极板距离改变电阻,精度和灵敏度低。移动极板需要有一套伺服机构,移动速度较慢,装置的响应速度较慢。5)必须经常维护。须定期加液体保持液位。 6)安全性一般。液体易“开锅”。连续启动会导致电解液温度升高而外溢,直接造成高压接地,酿成事故。 5热变电阻软启动 工作原理:将热变电阻器串入电动机的三相定子回路中,实现电动机降压起动。起动时,电机的定子电流流过热变电阻器从而使电阻体发热,温度逐步升高,电阻逐步降低,电机起动电流基本恒定的情况下,电动机端电压逐步升高,从而使电机起动转矩逐步增大,实现电动机的平滑起动。热变电阻软启动装置利用的是液体的负温度特性。负温度特性是指温度越高,电解度越高,释放出的自由离子越多,液体的导电能力越强,电阻率越低,相反亦然。 优点:与液体电阻软启动装置相比,热变电阻装置没有伺服系统结构更简单,成本更低。 缺点:热变电阻软启动装置除具有液体电阻软启动装置的缺点外还具有以下缺点:1)热变电阻为了保温必须把水箱封闭,且采用两层水箱,层与层之间注入变压器油隔离,液体在有限的空间内加热,极易发生爆炸。2)热变电阻软启动启动过程不可控制。热变电阻软启动不能实现软停止。3)相比液体电阻软启动装置,变电阻软启动装置环境温度对启动性能的影响更加严重。 6晶闸管软启动 工作原理。将反帽并联的晶闸管串联在感应电机定子回路,通过控制晶闸管的导通角来改变电动机端电压的大小,实现电动机降压软启动。 特点:中高压电机晶闸管软启动一般采用多组晶闸管串联,因此需要提高晶闸管器件的耐压等级和开关速度,改进触发与关断的同时性。晶闸管软启动本身更适合于低压领域。 缺点:1)谐波大,强迫抉相,产生大功率脉冲。2)均压均流技术复杂,成本高,风险大。 3)由于串并联大量的晶闸管,所以故障点多,维修复杂,检修频繁。4)过载需加大额定电流倍率。 7磁控软启动 工作原理:将饱和电抗器串联在电动机的定子回路,通过直流励磁平滑改变电抗器的电抗值,使电抗器两端电压由大到小平滑改变,从而完成电机平稳的启动过程。磁控软启动装

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点 1、三相异步电动机的优点 三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三 相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连 接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。 2、异步电动机存在的缺点 2.1笼型感应电动机存在下列三个主要缺点。 (1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。 (2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。 (3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。 2.2 绕线型感应电动机 绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改 变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可

异步电动机几种启动方式的介绍

异步电动机几种启动方式的介绍 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。 1 软启动的现状与各种启动方式的比较 交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。 如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4倍~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的2倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。 对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器降压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、定子串电阻分级起动。这些传统的起动方法都存在一些问题。 (1)定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时,却付出了较大的代价,即起动转矩降低得更多,一般只能用于空载和轻载。 (2)Y—△起动:Y—△起动方法虽然简单,只需一个Y—△转换开关。但是Y—△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于380V电动机。 (3)自耦变压器降压起动:自耦变压器降压起动,与定子串接电抗器起动相比,当限定的起动电流相同时,起动转矩损失的较少;比起Y—△起动,有几种抽头供选用比较灵活,并可以拖动较大些的负载起动。但是自耦变压器体积大,价格高,也不能拖动重负载起动。

三相异步电动机的机械特性分解

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5.1三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩 与转子转速之间的关系。由于转子转速与同步转速、转 差率存在下列关系,即 (5.1)

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速 和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5.2)式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩 与转差率之间的变化规 律。要从分析气隙每极磁通量,转子相电流,以及为转子功率

因数与转差率之间的关系,间接地找出其变化规律。现分析如表5.1所示。 根据表5.1中的分析,可作出曲线、和 分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲 线。曲线分为两段:当较小时(),变化不大,, 与转子相电流成正比关系,表现为AB段近似为直线, 电磁转矩 较大时 (),如,减少近一 称为直线部分;当 半,很小,尽管转子相电流增大,有功电 不大,使电磁转矩反而减小了,此时表现为段, 流 段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特下,产生最大转矩,即点称为最大转矩点,相应的 性在某转差率 转矩为 称为最大转矩,对应的转差率称为临界转差率。 5.1.2机械特性的参数表达式 1.参数表达式的推导:

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

三相异步电动机的部分习题及答案

5.1 有一台四极三相异步电动机,电源电压的频率为50H Z,满载时电动机的转差率为0.02求电动机的同步转速、转子转速和转子电流频率。 n0=60f/p S=(n0-n)/ n0 =60*50/2 0.02=(1500-n)/1500 =1500r/min n=1470r/min 电动机的同步转速1500r/min.转子转速1470 r/min, 转子电流频率.f2=Sf1=0.02*50=1 H Z 5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?为什么? 如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反. 5.3 有一台三相异步电动机,其n N=1470r/min,电源频率为50H Z。设在额定负载下运行,试求: ①定子旋转磁场对定子的转速; 1500 r/min ②定子旋转磁场对转子的转速; 30 r/min ③转子旋转磁场对转子的转速; 30 r/min ④转子旋转磁场对定子的转速; 1500 r/min ⑤转子旋转磁场对定子旋转磁场的转速。 0 r/min 5.4当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?

因为负载增加n减小,转子与旋转磁场间的相对转速( n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,.定子的感应电动使因为转子的电流增加而变大,所以定子的电流也随之提高. 5.5 三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的转矩、电流及转速有无变化?如何变化? 若电源电压降低, 电动机的转矩减小, 电流也减小. 转速不变. 5.6 有一台三相异步电动机,其技术数据如下表所示。 试求:①线电压为380V时,三相定子绕组应如何接法? ②求n0,p,S N,T N,T st,T max和I st; ③额定负载时电动机的输入功率是多少? ①线电压为380V时,三相定子绕组应为Y型接法. ②T N=9.55P N/n N=9.55*3000/960=29.8Nm Tst/ T N=2 Tst=2*29.8=59.6 Nm T max/ T N=2.0 T max=59.6 Nm I st/I N=6.5 I st=46.8A 一般n N=(0.94-0.98)n0n0=n N/0.96=1000 r/min SN= (n0-n N)/ n0=(1000-960)/1000=0.04 P=60f/ n0=60*50/1000=3 ③η=P N/P输入 P输入=3/0.83=3.61 5.7三相异步电动机正在运行时,转子突然被卡住,这时电动机的电流会如何变化?对电动机有何影响? 电动机的电流会迅速增加,如果时间稍长电机有可能会烧毁.

一般电动机启动的方式。

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。那么他们之间有什么不同呢? 一,一般电动机启动的方式。 1,全压直接起动。 在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。 优点是操纵控制方便,维护简单,而且比较经济。主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。 2,自耦减压起动。 利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。 它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。并且可以通过抽头调节起动转矩。至今仍被广泛应用。 3,Y-Δ 起动。 对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ 起动)。 采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。 适用于无载或者轻载起动的场合。并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。 4,软起动器。

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

三相异步电动机的机械特性

三相异步电动机的机械特 性 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。 固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 三相异步电动机的运行特性 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 ()

则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。 三相异步电动机的机械特性有三种表达式,现介绍如下: 机械特性的物理表达式 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 () 式中为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式()表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。 仅从式()不能明显地看出电磁转矩与转差率之间的变化规律。要从分析气隙每极磁通量,转子相电流,以及为转子功

率因数与转差率之间的关系,间接地找出其变化规律。现分析如表所示。 根据表中的分析,可作出曲线、和分别如图、、所示,据此可得出图所示的机械特性曲线。曲线分为两段:当较小时(),变化不大,,电磁转矩 与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一 半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。 机械特性的参数表达式 1.参数表达式的推导:

相异步电动机不同启动方式

情况下的波形图 1、直接启动 (1)转子电流、定子电流、转速、转矩波形(2)异步电机直接启动时转速—转矩特性曲线 2、降压启动 1)转子电流、定子电流、转速、转矩波形 (1)升压时间为1s时的波形: (2)升压时间为2s时的波形: (3)升压时间为3s时的波形: (4)升压时间为4s时的波形: (5)升压时间为5s时的波形: (6)升压时间为6s时的波形:

2)异步电机降压启动时转速—转矩特性曲线 (1)升压时间为1s时的转速—转矩特性: (2)升压时间为2s时的转速—转矩特性: (3)升压时间为3s时的转速—转矩特性: (4)升压时间为4s时的转速—转矩特性: (5)升压时间为5s时的转速—转矩特性: (6)升压时间为6s时的转速—转矩特性: 说明: 异步电动机通过自耦变压器降压起动,可以减小变压器二次侧加在定子两端的机端电压,从而达到减小起动电流的目的。从定子电流波形可知,当转速接近正常运行转速时,接入全电压,比直接起动的定子电流小。但是在起动的过程中,由于自耦变压器的退出,电流波形出现了高电流峰值,存在2次大的冲击电流。 3、V/f比控制

1)加速(减速)斜率设置为200(-200)时(1)转子电流、定子电流、转速、转矩波形 (2)异步电机V/f比控制起动时转速—转矩特性曲线 2)加速(减速)斜率设置为100(-100)时 (1)转子电流、定子电流、转速、转矩波形 (2)异步电机V/f比控制起动时转速—转矩特性曲线 3)加速(减速)斜率设置为2(-2)时 (1)转子电流、定子电流、转速、转矩波形 (2)异步电机V/f比控制起动时转速—转矩特性曲线

三相异步电动机的机械特性

三相异步电动机的机械特性 三相异步电动机的运行特性 摘要:本章介绍了三相异步电动机的机械特性的三个表达式。固有机械特性和人为机 械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用 5.1三相异步电动机的运行特性(返回顶部) 三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。和直流电 动机一样,三相异步电动机的机械特性也是指电磁转矩 与转子转速之间的关系。由于转子转速与同步转速 、转差率存在下列关系,即 (5.1) 则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩 。 三相异步电动机的机械特性有三种表达式,现介绍如下: 5.1.1机械特性的物理表达式(返回顶部) 由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为 (5.2) 式中 为三相异步电动机的转矩系数,是一常数; 为三相异步电动机的气隙每极磁通量; 为转子电流的折算值; 为转子电路的功率因数; 式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁 力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因 此这一表达式又称为三相异步电动机的物理表达式。 仅从式(5.2)不能明显地看出电磁转矩 与转差率之间的变化规律。要从分析气隙每极磁通量

因数 ,转子相电流 ,以及为转子功率 与转差率之间的关系,间接地找出其变化规律。现分析 如表5.1所示。 根据表5.1中的分析,可作出曲线 、和 分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲线。曲线分为两段:当较小时( 电磁转矩 与转子相电流 ), 变化不大, , 成正比关系,表现为AB 段近似为直线, ) ,如 , 减少近一 称为直线部分;当较大时 ( 半, 很小,尽管转子相电流 增大,有功电流 段, 段为曲线 不大,使电磁转矩

三相异步电动机的启动方式的设计(DOC)

包头钢铁职业技术学院毕业实践任务书 题目:三相异步电动机的启动方式的设计 班级: 06五年制机电D 姓名:刘伟 指导老师:徐桂岩 完成日期: 2011.3.20 包头钢铁职业技术学院制 2011年3月

包头钢铁职业技术学院毕业实践任务书成绩及评语表

摘要 三相异步电动机的起动电流高达额定电流的5~8倍,对电网造成较大干扰,尤其在工业领域中的重载起动,有时可能对设备安全构成严重威胁。传统的降压起动方式,如星三角起动、自耦变压器起动等,要么起动电流和机械冲击过大,要么体积庞大笨重、损耗大,要么起动力矩小、维修率高等等,都不尽人意。软启动技术不仅实现在整个起动过程中无冲击而平滑地起动电动机,而且可根据电动机负载的特性来调节起动过程中的参数如限流值、起停时间等,以达到最佳的起停状态。 关键词异步电动机;软启动;设计

目录 `1前言 (1) 1.1 软启动的定义 (1) 1.2 软启动器的简单介绍 (1) 1.2.1 软启动器的保护功能 (1) 1.2.2 它与变频器有的区别 (1) 1.2.3 软启动的作用 (2) 1.3 电动机起动方式的选择 (2) 1.4 与传统启动的比较 (2) 1.4.1 软启动器的应用范围 (2) 1.4.2 软启动与传统减压起动方式的不同之处 (2) 2 软启动的基本原理 (4) 2.1 软启动器的优点 (4) 2.2 软启动器的控制接线 (5) 3 软启动电路 (6) 3.1 软启动器的控制原理图 (6) 3.2 硬件设计 (6) 3.3 电压同步信号检测电路 (7) 3.4 触发脉冲形成电路 (8) 4 总结 (10) 致谢 (11) 参考文献 (12)

各种启动方式的特点

各种启动方式的特点 低压电工2016-07-10 06:08 原创作者:晓月池塘 基础知识/各种启动方式的特点 常见电动机启动方式有以下几种: 1.全压直接启动; 2.自耦减压起动; 3.Y-Δ起动; 4.软起动器; 5.变频器启动。 目前软启动器和变频器启动为市场发展的潮流。当然也不是必须要使用软启动器和变频器启动,以成本和适用性为主要参考,下面简要介绍各种启动方式的特点。 1全压直接起动: 图一

在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。 直接启动的优点是所需设备少,启动方式简单,成本低。电动机直接启动的电流是正常运行的5倍左右,经常启动的电动机,提供电源的线路或变压器容量应大于电动机容量的5倍以上 不经常启动的电动机,向电动机提供电源的线路或变压器容量应大于电动机容量的3倍以上。这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网稳定运行不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。 2自耦减压起动: 图二

图三

利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。 自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。 3Y-Δ起动: 图四

电动机型号参数表及各种电机的启动方式

产品详细说明: Y系列三相异步电动机是一般用途鼠笼型异步电动机基本系列,全国统一设计。它的中心高、功率等级、安装尺寸均符合IEC国际电工委员会标准。产品可以和国内外各类机械设备配套。 Y系列电机中心高80-355mm。绝缘等级为B级,外壳防护等级IP44,冷却方式IC411。基本安装方式有IMB3、IMB5、IMB35、V1、V3等。工作方式:S1连续工作制,环境温度-15— +40℃,海拔1000米以下。电压380V,频率50H Z。接法:3KW及以下为Y接,4KW及以上为△接。 Y系列电机具有效率高,能耗少、噪声低、振动小、重量轻、体积小、性能优良,运行可靠,维护方便等优点。广泛用于工业、农业、建筑、采矿行业的各种无特殊要求的机械设备。如风机、水泵、机床、起重及农副产品加工机械等。 启动方式见下页

B35尺寸数据 机座号凸缘 号 极数 机座轴伸凸圆端盖 AB AC AD HD L A A/2 B C H K D E F G M N P R S T 孔 数 Y80 FF16 5 2.4 12 5 62.5 10 50 80 1 1 9 40 6 15. 5 16 5 13 20 1 2 3. 5 4 16 5 17 5 15 175 290 Y90S 2.4.6 14 70 56 90 2 4 50 8 20 18 19 5 16 195 315 Y90L 12 5 340 Y100 L FF21 5 16 80 14 63 10 1 2 2 8 60 24 21 5 18 25 1 5 4 20 5 21 5 18 245 380 Y1121995 70 11242419265 400

软启动基本知识

软启动基本知识 1.软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不

具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。 该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。 (3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。 (4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。 该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。 3.软起动与传统减压起动方式的不同之处在哪里?

相关文档
最新文档