ICP测试及样品前处理
土壤重金属测定ICPMS实验操作步骤

土壤重金属测定ICPMS实验操作步骤土壤重金属是指土壤中含有的对生态环境和人体健康有潜在危害的金属元素,如铅、镉、汞等。
ICPMS(Inductively Coupled Plasma Mass Spectrometry,电感耦合等离子体质谱法)是利用电感耦合等离子体对样品原子化,并通过质谱仪对原子化后的物质进行检测和分析的技术手段,其具有灵敏度高、准确性好等优点,因此被广泛应用于土壤中重金属的测定。
下面是ICPMS实验操作步骤的详细介绍:1.样品准备:- 将土壤样品通过经过筛网的1mm筛分,去除大颗粒杂质。
-取适量的土壤样品,经过粉碎和搅拌均匀。
-将样品称取到称量皿中,用电子天平称量精确的样品质量。
2.样品前处理:-对于含有有机质的土壤样品,可以采用溶解或提取的方式,将有机质溶解或提取出来,一般使用酸或溶剂进行处理。
-如果土壤样品中含有不溶于水的金属元素,可以采用酸溶解或者熔融法进行处理。
-如果需要对土壤样品中的表面附着金属进行分析,可以采用表面洗涤法进行处理。
3.样品稀释:-将前处理后的土壤样品溶液用去离子水进行稀释,将浓度调至合适的范围,以便仪器能够正确测定。
4.仪器准备:-打开ICPMS仪器,并进行预热和漂移校正。
-根据所测定的金属元素种类和浓度范围,选择合适的质谱仪检测模式,并设置参数。
5.样品测量:-采用称取或吸取样品量的方式将处理后的土壤样品溶液加入进样器中。
-调整进样速度和仪器参数,确保进样量和仪器测定范围相适应。
-重复测量多个样品,以确保结果的准确性和可靠性。
6.数据处理:-仪器测得的信号经过质谱仪进行信号转换,得到质谱图。
-根据样品预处理和仪器响应因子,将质谱图中峰面积或峰高与所测金属元素的浓度进行定量计算。
-对得到的数据进行校正和标准化,以得到准确的分析结果。
-分析所得数据可以使用专业的数据处理软件进行处理和统计分析,得到最终的结果。
ICP测试及样品前处理

原子发射光谱定量分析原理
• • • • 被激发的原子和离子发射出很强的原子谱线和离子谱线,各元素发射的 特征谱线及其强度经过分光、光电转换、检测和数据处理。 设激发光源中被测定的元素基态原子数和激发态原子数分别为N0和Ni, 应遵循玻尔兹曼分布定律。 Ni=K N0 e(-Ei/kT) 式中K为统计常数,k为玻尔兹曼常数,T是等离子体的温度。而在两能 级之间的跃迁所产生的谱线强度Iij与基态原子数目Ni成正比,基态原子数与试 样中该元素浓度成正比。因此,在一定的条件下谱线强度与被测元素浓度成 正比,可以得到谱线强度Iij与含量c的函数关系式: Iij=acb 这个关系式称为罗马金公式,是光谱定量分析依据的基本公式。式中a 、b在一定条件下为常数。a是与试样的蒸发、激发过程和试样组成有关的一 个参数。B称为自吸系数,它的数值与谱线自吸收有关。当谱线强度不大没有 自吸时,b=1;反之,有自吸时,b<1,且自吸越大,b值越小。
电感耦合等离子发射光谱仪Varian 715-ES
在ICP –AES定量分析 过程中,试样由载气带入 雾化系统进行雾化,以气 溶胶形式进入炬管轴内通 道,在焰炬的高温作用下 和惰性氩气气氛中,溶质 的气溶胶经历多种物理化 学过程而被迅速原子化、 激发和电离。被激发的原 子和离子发射出很强的原 子谱线和离子谱线。各元 素发射的特征谱线及其强 度经过分光、光电转化、 检测和数据处理,最后经 电脑计算出各元素的含量。
ICP测试及样品前处理
方修忠
PartⅠ The basic principles of ICP
什么是原子发射光谱法
• 原子发射光谱法(Atomic Emission Spectrometry, AES)是 根据原子的特征发射光谱来研究物质的结构和测定物质的 化学成分的一种重要的光学分析方法。分析测试时,利用 物质在热激发或电激发下,每种元素的原子或离子的外层 电子受激发而跃迁至更高能级的激发态,处于高能级的原 子或分子在向较低能级跃迁时产生辐射,将多余的能量发 射出去形成原子发射光谱。
ICP测试及样品前处理解析

电感耦合等离子发射光谱仪Varian 715-ES
在ICP –AES定量分析 过程中,试样由载气带入 雾化系统进行雾化,以气 溶胶形式进入炬管轴内通 道,在焰炬的高温作用下 和惰性氩气气氛中,溶质 的气溶胶经历多种物理化 学过程而被迅速原子化、 激发和电离。被激发的原 子和离子发射出很强的原 子谱线和离子谱线。各元 素发射的特征谱线及其强 度经过分光、光电转化、 检测和数据处理,最后经 电脑计算出各元素的含量。
ICP可测元素
原子发射光谱分析的基本原理
原子发射光谱分析过程主要分为三步:激发、分光和检测。 ①激发,利用激发光源使试样蒸发气化,离解或分解为原子状 态或离子状态,原子或离子状态,原子及离子在光源中激发发光。 ②分光,利用光谱仪器把光源发射的光分解为按波长排列的光 谱 ③检测,利用光电器件检测光谱,按所测得的光谱波长对试样 进行定性分析,或按发射光强度进行定量分析。
图2 Varian715-ES电感耦合等离子体发射光谱仪实物图
ICP等离子炬管
ICP等离子体发射系统由RF高频发生器、石英 炬管、气路系统共同构成。等离子炬管是ICP等离 子体发射系统的重要部件,其结构示意见图1-5。它 由三层同心石英管组成。三股氩气流分别进入各层 石英管,最外层管氩气流量为10~20L/min,作为 工作气体形成等离子体并且可以起到冷却保护炬管 的作用,称为等离子体气或冷却气。中间管通入 0~1.5L/min的氩气,用以辅助等离子的形成、抬高 炬焰和防止盐分或炭(有机样)在喷射管口沉积, 称为辅助气。内层石英管内径约为1~2mm, 气流量 约为1L/min,其作用是携带试样气溶胶进入等离子 体室,称为载气。RF高频发生器是ICP形成的另外 一个核心部件,它为等离子体提供能量,通过高频 磁感应线圈给等离子体输出能量,维持ICP光源持 续放电。
ICPMS的前处理7大法宝附应用案例)

ICP-MS的前处理7大法宝(附应用案例)具体到ICP-MS分析的时候,前处理显得就更为重要了,因为它对基体的耐受性要比原子吸收、原子荧光等要差些。
合适的前处理方法不但能保证你的测试结果的准确性,也能减小分析对仪器造成的伤害,同时小析姐也会分享一个我们常见的实验作为案例分享。
下面介绍下一些无机分析的前处理方法。
如下图,这个分类是简单的归纳,有些可能互相包含,但是为了叙述方便暂且如此吧,高手轻拍!一、稀释法很多人可能会说这也叫前处理吗?没错,这是比较省时的前处理,但是如果你说它容易的话说明你确实还处于无机分析的初级阶段。
有的样品可不经复杂的预处理过程,如血清、组织液等本身为液体的样品,在测定其中的金属元素含量时,可用水、稀酸溶液、含表面活性剂(如Triton X-100)或有机溶剂(如正丁醇、乙酸乙酯)的水溶液简单稀释后测定。
二、酸提取用酸溶液直接从样品中提取待测成分,不需完全分解破坏有机物,只需将待测成分定量转移到溶液中,故所用试剂量比较少,处理过程简单,处理条件温和,空白值低且造成待测成分损失或污染的可能性小。
但需注意基体干扰和提取效率是否能达到分析要求。
三、矿物化法无机分析中应用较为广泛的方法,一般习惯叫消化法。
可分为干法和湿法两种。
这种方法基本上消灭了样品中的有机物,故曰矿物化。
因为绝大多数样品都是以有机物的形式存在的,消化的目的是用以破坏和分解样品本身的有机成分,使被检的无机离子分离出来。
湿法消化指在加热条件下,用氧化性强酸、或混合酸,破坏和分解有机物,适用于大多数样品。
常用的酸有硝酸、盐酸、高氯酸以及它们的混合,常用的混酸比例为硝酸+高氯酸=4+1或5+1,特殊行业会用到硫酸和氢氟酸。
但是干法消化对于一些低温元素是不适用的,如铅、镉、汞等,它们在高温下很容易损失。
即便是高温元素,有些也是不适用于干法的,如测定铁元素的时候,样品在灰化过程中铁很有可能转化成四氧化三铁,稀酸打不开,结果往往容易偏低。
ICP样品前处理方法

1、测定铁矿石硅、磷、锰、砷、锌①称取0.1000g已干燥并磨细的试样于干净、已铺有0.8 g混合熔剂(按无水碳酸钠:硼酸=2:1的比例,分别粉碎后拌匀,存放于干燥器内)的铂金坩埚内,用玻璃棒拌匀,再加0.8g混合熔剂均匀地覆盖试样,盖上坩埚盖。
然后于900 -950℃的马弗炉内熔融12-15min,取出冷却后,放人250 ml高型烧杯(内装80 ml热水)内,边摇动边加人20 ml浓硝酸,置低温电炉上加热至熔块全部溶解后,取下冷却,用水洗出铂金坩埚,溶液移人200 ml容量瓶中,用水稀释至刻度,摇匀。
溶液引入ICP光谱仪分析,记录检测强度或百分含量。
注意事项:ICP - AES关键是制备试样溶液。
铁矿石的化学分析,原已具备较完善的溶样方法,用原化学溶样方法溶解后,直接将溶液(浓度为1 mg/ml)引入ICP光谱仪测定,结果是五个元素的工作曲线均呈良好的线性状态,但发现标样回收率较低,且炬管使用一周便受到严重的污染,雾化器也容易堵塞,分析的准确度无法保证。
溶液稀释5倍(即浓度为0.2 mg/ml )后再分析,发现硅、锰、锌这些离子浓度稍大的元素,其分析精确度有所提高,但离子浓度较低的元素,如磷和砷的分析精确度则较前差,标样回收率低及炬管、雾化器污染现象并无改观。
初步证明原化学溶样方法不能用于ICP光谱仪上。
炬管污染和雾化器容易堵塞及分析精确度低的问题得到了答案:是由于溶解样品加人的碱性熔剂量过大造成的。
碱熔法溶解样品,分解能力强,熔融物浸出比较方便,速度也较快,加大熔剂的用量可加速样品的溶解,对化学分析影响不大。
但导人ICP光谱仪内分析时,由于溶液需通过毛细管般的雾化器,碱熔后钠离子浓度较大时,钠盐容易析出而将雾化器堵塞。
经反复试验熔剂加入量对样品溶解状态的影响,发现熔剂量小于1g时,样品熔得不完全,且熔块溶解时间长,溶液静置后有少量黑色或灰色沉积物。
当熔剂量加至大于2. 5g时,样品虽能完全溶解,且熔块溶解时间短,但雾化器容易堵塞。
ICP-AES分析的样品预处理

分析样品预处理ICP-AES分析的样品预处理Ⅰ概述随着技术的发展ICP-AES分析仪器的普及,商品仪器引进了多种高新技术成果,使ICP仪器向功能更优化、更自动化以及结构紧凑型方向发展,特别是在仪器控制和数据处理上向数字化、网络化方面发展。
原子发射光谱仪器给人们的印象,已从上世纪中期的“庞然大物的大型仪器,发展成小型实用的常规仪器。
从而使ICP-AES分析技术作为理想的元素分析手段,其易用性和通用性表现得更为突出,已成为元素分析的常规手段,检测实验室的必备仪器。
1、ICP-AES分析性能特点等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。
电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。
而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。
这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。
一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。
ICP-AES分析方法便具有这些优异的分析特性:⑴ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。
icp 法 测硅 标准

ICP 法测硅标准一、样品制备1.样品采集:选择具有代表性的硅矿石、土壤等样品,用干净、干燥的容器采集,避免污染。
2.样品处理:将采集的样品进行破碎、研磨、筛分等处理,使其达到所需粒度。
3.样品称重:称取一定量的样品,精确至0.0001g,放入干燥的聚乙烯瓶中备用。
二、仪器校准1.ICP仪器校准:使用标准溶液对ICP仪器进行校准,包括波长、灵敏度、稳定性等参数。
2.仪器维护:定期对ICP仪器进行清洗、保养,确保仪器正常运行。
三、试剂选择与准备1.试剂选择:选择高纯度的试剂,如硝酸、氢氟酸等。
2.试剂准备:将所需试剂按照比例混合,配制成消化液和稀释液。
四、实验操作流程1.样品消化:将称好的样品放入聚乙烯瓶中,加入适量的消化液,盖上瓶盖,放入恒温烘箱中加热至样品消化完全。
2.样品稀释:取出聚乙烯瓶,冷却至室温,加入适量的稀释液,摇匀。
3.ICP测定:将稀释后的样品进行ICP测定,记录数据。
4.数据处理与分析:对测定数据进行处理和分析,计算硅的含量。
五、数据处理与结果分析1.数据处理:将测定数据进行整理、计算和分析,得到硅的含量。
2.结果分析:根据测定结果,对样品的硅含量进行评估,并分析误差来源。
六、实验质量控制1.重复性测试:对同一份样品进行重复测定,比较测定结果的一致性。
2.加标回收率测试:加入已知量的标准物质,比较实际测定值与理论值的符合程度。
3.室内质控:定期进行室内质控样品的测定,确保实验结果的准确性。
4.室间质评:参加实验室间的质量评价活动,提高实验结果的可靠性。
七、安全防护措施1.安全操作规程:进行实验操作前,必须了解试剂的化学性质及危险性,严格遵守安全操作规程。
2.个人防护措施:实验操作时必须佩戴实验服、防护眼镜、手套等个人防护用品。
3.废弃物处理:实验过程中产生的废液、废渣等废弃物应按照相关规定进行妥善处理,避免污染环境。
4.安全检查:定期对实验室进行安全检查,发现隐患及时处理。
5.消防设施:实验室应配备灭火器等消防设施,确保实验安全。
ICP样品前处理方法

ICP样品前处理⽅法1、测定铁矿⽯硅、磷、锰、砷、锌①称取0.1000g已⼲燥并磨细的试样于⼲净、已铺有0.8 g混合熔剂(按⽆⽔碳酸钠:硼酸=2:1的⽐例,分别粉碎后拌匀,存放于⼲燥器内)的铂⾦坩埚内,⽤玻璃棒拌匀,再加0.8g混合熔剂均匀地覆盖试样,盖上坩埚盖。
然后于900 -950℃的马弗炉内熔融12-15min,取出冷却后,放⼈250 ml⾼型烧杯(内装80 ml热⽔)内,边摇动边加⼈20 ml浓硝酸,置低温电炉上加热⾄熔块全部溶解后,取下冷却,⽤⽔洗出铂⾦坩埚,溶液移⼈200 ml容量瓶中,⽤⽔稀释⾄刻度,摇匀。
溶液引⼊ICP光谱仪分析,记录检测强度或百分含量。
注意事项:ICP - AES关键是制备试样溶液。
铁矿⽯的化学分析,原已具备较完善的溶样⽅法,⽤原化学溶样⽅法溶解后,直接将溶液(浓度为1 mg/ml)引⼊ICP光谱仪测定,结果是五个元素的⼯作曲线均呈良好的线性状态,但发现标样回收率较低,且炬管使⽤⼀周便受到严重的污染,雾化器也容易堵塞,分析的准确度⽆法保证。
溶液稀释5倍(即浓度为0.2 mg/ml )后再分析,发现硅、锰、锌这些离⼦浓度稍⼤的元素,其分析精确度有所提⾼,但离⼦浓度较低的元素,如磷和砷的分析精确度则较前差,标样回收率低及炬管、雾化器污染现象并⽆改观。
初步证明原化学溶样⽅法不能⽤于ICP光谱仪上。
炬管污染和雾化器容易堵塞及分析精确度低的问题得到了答案:是由于溶解样品加⼈的碱性熔剂量过⼤造成的。
碱熔法溶解样品,分解能⼒强,熔融物浸出⽐较⽅便,速度也较快,加⼤熔剂的⽤量可加速样品的溶解,对化学分析影响不⼤。
但导⼈ICP 光谱仪内分析时,由于溶液需通过⽑细管般的雾化器,碱熔后钠离⼦浓度较⼤时,钠盐容易析出⽽将雾化器堵塞。
经反复试验熔剂加⼊量对样品溶解状态的影响,发现熔剂量⼩于1g时,样品熔得不完全,且熔块溶解时间长,溶液静置后有少量⿊⾊或灰⾊沉积物。
当熔剂量加⾄⼤于2. 5g时,样品虽能完全溶解,且熔块溶解时间短,但雾化器容易堵塞。