ICP 样品全处理教学总结

合集下载

ICPMS电感耦合等离子体质谱基本原理总结

ICPMS电感耦合等离子体质谱基本原理总结

ICPMS电感耦合等离子体质谱基本原理总结ICP源(Inductively Coupled Plasma,电感耦合等离子体)是ICPMS中的关键部分,它通过电磁感应产生高温离子化等离子体。

其基本原理是,在高频电感耦合系统中,外部线圈通过高辐射频率的交变电磁场激发气体产生等离子体。

这种等离子体由阳离子、电子和中性粒子组成,具有高温、高电离度和极低的中性粒子浓度。

ICP源将样品溶解在溶剂中,然后通过喷雾器雾化成细小液滴,进入高温的ICP源中。

在高温下,溶剂被蒸发,留下固体样品颗粒进入等离子体。

进入等离子体的固体颗粒迅速被加热并切断成原子和离子。

这些离子和原子在高温等离子体中发生电离,形成正离子和电子。

这些离子通过群离子分析器,如四级杆质谱仪,进行分离和检测。

群离子分析器主要由四级杆构成。

这四个杆分别称为孤立杆、聚焦杆、偏角偏转杆和检测杆。

正离子进入群离子分析器后被加速并过滤,通过调节四级杆的直流电压,可以选择性地引导特定质荷比(m/z)的离子进入检测器。

这些离子打击在荧光屏上产生电流信号,信号强度与离子的相对丰度成正比。

通过测量不同m/z离子的信号强度,我们可以确定样品中各种元素的浓度。

ICPMS具有高灵敏度、高选择性、广泛元素分析范围和低检测限等优势。

其高灵敏度主要归功于高温等离子体中的高离子密度和低中性粒子浓度,以及质谱仪的高分辨能力。

高选择性得益于群离子分析器的能力分离不同的离子质荷比。

ICPMS可以分析从超痕量到大量的多种元素,并且可以同时测量多个元素。

此外,ICPMS具有较低的检测限,通常可以达到ppb到ppq的量级。

总结而言,ICPMS基于电感耦合等离子体和质谱技术,是一种高灵敏度、高选择性的元素分析方法。

它的基本原理是在高频交变电磁场的激励下产生高温的气体等离子体,然后利用群离子分析器分离和检测离子。

ICPMS广泛用于环境监测、食品质量控制、地质勘探、生物医学研究等领域。

ICP测试及样品前处理

ICP测试及样品前处理

原子发射光谱定量分析原理
• • • • 被激发的原子和离子发射出很强的原子谱线和离子谱线,各元素发射的 特征谱线及其强度经过分光、光电转换、检测和数据处理。 设激发光源中被测定的元素基态原子数和激发态原子数分别为N0和Ni, 应遵循玻尔兹曼分布定律。 Ni=K N0 e(-Ei/kT) 式中K为统计常数,k为玻尔兹曼常数,T是等离子体的温度。而在两能 级之间的跃迁所产生的谱线强度Iij与基态原子数目Ni成正比,基态原子数与试 样中该元素浓度成正比。因此,在一定的条件下谱线强度与被测元素浓度成 正比,可以得到谱线强度Iij与含量c的函数关系式: Iij=acb 这个关系式称为罗马金公式,是光谱定量分析依据的基本公式。式中a 、b在一定条件下为常数。a是与试样的蒸发、激发过程和试样组成有关的一 个参数。B称为自吸系数,它的数值与谱线自吸收有关。当谱线强度不大没有 自吸时,b=1;反之,有自吸时,b<1,且自吸越大,b值越小。
电感耦合等离子发射光谱仪Varian 715-ES
在ICP –AES定量分析 过程中,试样由载气带入 雾化系统进行雾化,以气 溶胶形式进入炬管轴内通 道,在焰炬的高温作用下 和惰性氩气气氛中,溶质 的气溶胶经历多种物理化 学过程而被迅速原子化、 激发和电离。被激发的原 子和离子发射出很强的原 子谱线和离子谱线。各元 素发射的特征谱线及其强 度经过分光、光电转化、 检测和数据处理,最后经 电脑计算出各元素的含量。
ICP测试及样品前处理
方修忠
PartⅠ The basic principles of ICP
什么是原子发射光谱法
• 原子发射光谱法(Atomic Emission Spectrometry, AES)是 根据原子的特征发射光谱来研究物质的结构和测定物质的 化学成分的一种重要的光学分析方法。分析测试时,利用 物质在热激发或电激发下,每种元素的原子或离子的外层 电子受激发而跃迁至更高能级的激发态,处于高能级的原 子或分子在向较低能级跃迁时产生辐射,将多余的能量发 射出去形成原子发射光谱。

ICP测试及样品前处理解析

ICP测试及样品前处理解析

电感耦合等离子发射光谱仪Varian 715-ES
在ICP –AES定量分析 过程中,试样由载气带入 雾化系统进行雾化,以气 溶胶形式进入炬管轴内通 道,在焰炬的高温作用下 和惰性氩气气氛中,溶质 的气溶胶经历多种物理化 学过程而被迅速原子化、 激发和电离。被激发的原 子和离子发射出很强的原 子谱线和离子谱线。各元 素发射的特征谱线及其强 度经过分光、光电转化、 检测和数据处理,最后经 电脑计算出各元素的含量。
ICP可测元素
原子发射光谱分析的基本原理
原子发射光谱分析过程主要分为三步:激发、分光和检测。 ①激发,利用激发光源使试样蒸发气化,离解或分解为原子状 态或离子状态,原子或离子状态,原子及离子在光源中激发发光。 ②分光,利用光谱仪器把光源发射的光分解为按波长排列的光 谱 ③检测,利用光电器件检测光谱,按所测得的光谱波长对试样 进行定性分析,或按发射光强度进行定量分析。
图2 Varian715-ES电感耦合等离子体发射光谱仪实物图
ICP等离子炬管
ICP等离子体发射系统由RF高频发生器、石英 炬管、气路系统共同构成。等离子炬管是ICP等离 子体发射系统的重要部件,其结构示意见图1-5。它 由三层同心石英管组成。三股氩气流分别进入各层 石英管,最外层管氩气流量为10~20L/min,作为 工作气体形成等离子体并且可以起到冷却保护炬管 的作用,称为等离子体气或冷却气。中间管通入 0~1.5L/min的氩气,用以辅助等离子的形成、抬高 炬焰和防止盐分或炭(有机样)在喷射管口沉积, 称为辅助气。内层石英管内径约为1~2mm, 气流量 约为1L/min,其作用是携带试样气溶胶进入等离子 体室,称为载气。RF高频发生器是ICP形成的另外 一个核心部件,它为等离子体提供能量,通过高频 磁感应线圈给等离子体输出能量,维持ICP光源持 续放电。

ICP原理和样品溶解、制备

ICP原理和样品溶解、制备

ICP原理和样品溶解、制备1. ICP-AES(IRIS Intrepid II)培训一、ICP-AES原理培训:ICP-AES是电感耦合等离子体原子发射光谱仪的英文简称,它是原子发射光谱分析的一种,主要根据试样物质中气态原子(或离子)被激发以后,其外层电子由激发态返回到基态时,辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。

等离子体包括ICP(inductively coupled plasma)电感耦合等离子体、DCP(direct-current plasma)直流等离子体、MWP (microwave plasma)微波等离子体。

原子发射光谱仪分析的波段范围与原子能级有关,一般位于紫外-可见光区,即200-850nm。

ICP的发展经历了单道、多道、单道扫描到现在广泛采用的全谱直读,其理论为:众所周知原子由居中心的原子核和外层电子组成,外层电子围绕原子核在不同能级运行,一般情况下外层电子处于能量最低的基态,当基态外层电子受到外界能量(如电弧、电火花、高频电能等)作用下吸收一定特征的能量跃迁到能量高的另一定态(激发态),处于激发态的电子并不稳定,大约10-8秒将返回基态或者其他较低的能级,并将电子跃迁时吸收的能量以光的形式释放出来。

这就是我们通常的原子发射的产生原理;原子发射光谱分析过程主要分三步,即激发、分光和检测。

第一步是利用激发光源将试样蒸发气化,离解或分解为原子状态,第二步原子也可能进一步电离成离子状态,原子及离子在光源中激发发光。

二、Thermo Elemental的ICP光谱仪器工作原理:产生等离子体必须具备下四个条件:高频、高压、氩气、离子源。

首先电源通过稳压器向ICP光谱提供220V、50Hz的电,电源通过仪器内部变压器和各种电源变为5V、12V、±15V、48V、110V、220V、3850V等不同电压分别控制不同的仪器元件。

如其中通过RF Source(高频源)产生27.14MHz、40MHz 的高频,向Driver(驱动放大器)输入0~3W功率,经Driver(驱动放大器)放大产生0~60W输入Power Amp(大功率管放大器)再次进行功率放大变为0~2000W提供给工作线圈;另外通过变压器和硅控滤波整流提供3800VDC左右的高压,同时加在大功率管上;高压、高频通过大功率管加在工作线圈上。

ICP对未知样品分析的四个过程

ICP对未知样品分析的四个过程

ICP对未知样品分析的四个过程1、思维分析(分析样品大概含有什么元素)2、样品处理(试用各种溶样方法,找到适合自己样品的分析方法)3、定性分析(通过来图谱判定)4、定量分析大家使用ICP或多或少可能都要接触一些从没有分析过的样品(不明样品),我把我分析过程记录下来与大家一起交流!从我们前几天接到的样品开始,首先接到样品要问清楚样品来源与出处,然后推断样品可能含有什么元素,这样就要用ICP做定性分析,我们是瓦里安的ICP有定性半定量分析方法(设备自带的),直接掉出来使用,然后根据数据来选择要测的元素和含量。

1、思维分析根据我们的样品来源,可以推断出样品含量Ca、Mg、Zn等元素。

2、样品处理样品见下图(一)首先想办法溶解样品,考虑样品性质,我决定用盐酸溶解。

称量0.1g样品通过定性半定量分析谱线,可以看出样品中含量Ca、Mg、P、Mn、Fe、Zn、K、Na、等一些元素,从峰高来看Ca、P、Zn、含量是最高的(根据平时峰高判断)定性分析完毕。

配制标准溶液配制混合标准溶液,要根本混标是否有干扰配制混合标准溶液,由于时间问题,只配制了一个比样品含量稍高的混标。

这是配制混标工具,有1ml、2ml、5ml、10ml大肚移液管4、定量分析建立分析方法做标准曲线,分析样品最后分析结束,这就是我的一次未知样的分析过程,希望大家多多指教!最后分析结果:Ca元素18%、P元素11.8%,Zn元素5.56%、Fe元素0.66%、Mg元素含量0.65%,K元素0.015%、Mn元素0.057%其余很小量的没做分析要求[2010-7-22 13:37:05 Last edit by lilongfei14]。

ICP实验报告

ICP实验报告

现代分析测试技术实验报告组别:第八组左瑾瑜2015000143等离子体发射光谱分析实验一、目的要求1.了解等离子体发射光谱仪的基本构造、原理与方法。

2.了解等离子体发射光谱分析过程的一般过程和主要操作步骤。

3.掌握等离子体发射光谱分析对样品的要求及制样方法。

4.掌握等离子体发射光谱仪定量分析与数据处理方法。

二、实验原理等离子体发射光谱分析是原子发射光谱分析的一种,主要根据试样物质中气态原子(或离子)被激发后,其外层电子由激发态返回到基态时,辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。

每一种元素被激发时,就产生自己特有的光谱,其中有一条或数条辐射的强度最强,最容易被检出,所以也常称作最灵敏线。

如果试样中有某种元素存在,那么只要在合适的激发条件下,样品就会辐射出这些元素的特征谱线。

一般根据元素灵敏线的出现与否就可以确定试样中是否有某种元素存在,这就是光谱定性分析的基本原理。

在一定的条件下,元素的特征谱线强度会随着元素在样品中含量或浓度的增大而增强。

利用这一性质来测定元素的含量便是光谱半定量分析及定量分析的依据。

三、实验内容与步骤1. 仪器与试剂Thermo fisher 科技公司iCAP6500型等离子体发射光谱仪。

iCAP6500型等离子体发射光谱仪主要参数:波长范围:166-847nm;光学分辨率:在200nm处光学分辨率<0.0007nm;CID检测器:制冷温度<-40℃;线性范围:105-106数量级,相关系数≥0.999;仪器稳定性:短期稳定性-用一标准溶液连续进行10次重复测试,RSD≤1%;长期稳定性-用一标准溶液每隔10分钟测量一次,共测试3-4小时,RSD≤2%。

2.实验步骤(1)标准溶液配制精确移取待测元素的标准溶液,配制0.0、0.1、1.0、μ的标准溶液。

10.0mlg/(2)建立分析方法,选择待测元素合适波长,在应用软件中输入相应标准溶液浓度。

ICP实验报告

ICP实验报告

现代分析测试技术实验报告组别:第八组左瑾瑜2015000143等离子体发射光谱分析实验一、目的要求1.了解等离子体发射光谱仪的基本构造、原理与方法。

2.了解等离子体发射光谱分析过程的一般过程和主要操作步骤。

3.掌握等离子体发射光谱分析对样品的要求及制样方法。

4.掌握等离子体发射光谱仪定量分析与数据处理方法。

二、实验原理等离子体发射光谱分析是原子发射光谱分析的一种,主要根据试样物质中气态原子(或离子)被激发后,其外层电子由激发态返回到基态时,辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。

每一种元素被激发时,就产生自己特有的光谱,其中有一条或数条辐射的强度最强,最容易被检出,所以也常称作最灵敏线。

如果试样中有某种元素存在,那么只要在合适的激发条件下,样品就会辐射出这些元素的特征谱线。

一般根据元素灵敏线的出现与否就可以确定试样中是否有某种元素存在,这就是光谱定性分析的基本原理。

在一定的条件下,元素的特征谱线强度会随着元素在样品中含量或浓度的增大而增强。

利用这一性质来测定元素的含量便是光谱半定量分析及定量分析的依据。

三、实验内容与步骤1. 仪器与试剂Thermo fisher 科技公司iCAP6500型等离子体发射光谱仪。

iCAP6500型等离子体发射光谱仪主要参数:波长范围:166-847nm;光学分辨率:在200nm处光学分辨率<0.0007nm;CID检测器:制冷温度<-40℃;线性范围:105-106数量级,相关系数≥0.999;仪器稳定性:短期稳定性-用一标准溶液连续进行10次重复测试,RSD≤1%;长期稳定性-用一标准溶液每隔10分钟测量一次,共测试3-4小时,RSD≤2%。

2.实验步骤(1)标准溶液配制精确移取待测元素的标准溶液,配制0.0、0.1、1.0、μ的标准溶液。

10.0mlg/(2)建立分析方法,选择待测元素合适波长,在应用软件中输入相应标准溶液浓度。

ICP-AES分析的样品预处理

ICP-AES分析的样品预处理

分析样品预处理ICP-AES分析的样品预处理Ⅰ概述随着技术的发展ICP-AES分析仪器的普及,商品仪器引进了多种高新技术成果,使ICP仪器向功能更优化、更自动化以及结构紧凑型方向发展,特别是在仪器控制和数据处理上向数字化、网络化方面发展。

原子发射光谱仪器给人们的印象,已从上世纪中期的“庞然大物的大型仪器,发展成小型实用的常规仪器。

从而使ICP-AES分析技术作为理想的元素分析手段,其易用性和通用性表现得更为突出,已成为元素分析的常规手段,检测实验室的必备仪器。

1、ICP-AES分析性能特点等离子体(Plasma)在近代物理学中是一个很普通的概念,是一种在一定程度上被电离(电离度大于0.1%)的气体,其中电子和阳离子的浓度处于平衡状态,宏观上呈电中性的物质。

电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。

而且由于这种等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;ICP环状结构的中心通道的高温,高于任何火焰或电弧火花的温度,是原子、离子的最佳激发温度,分析物在中心通道内被间接加热,对ICP放电性质影响小;ICP光源又是一种光薄的光源,自吸现象小,且系无电极放电,无电极沾污。

这些特点使ICP光源具有优异的分析性能,符合于一个理想分析方法的要求。

一个理想的分析方法,应该是:可以多组分同时测定;测定范要围宽(低含量与高含量成分能同测定);具有高的灵敏度和好的精确度;可以适用于不同状态的样品的分析;操作要简便与易于掌握。

ICP-AES分析方法便具有这些优异的分析特性:⑴ICP-AES法首先是一种发射光谱分析方法,可以多元素同时测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准溶液浓度一般在μg/mL级,通常用硝酸或盐酸介质,当溶液 的酸度在1%以上时,可持续使用较长时间。
标准溶液系列应有足够多的标准点,通常要有4个均匀分布的标 准点,加上空白点是5个点。至少要有4个点。
标准溶液配制
ICP光谱分析中,必须重视标准溶液的配制: 1. 不正确的配制方法,将导致系统偏差的产生;
B. 内标法(3)—内标示例

B. 内标法(3)—内标示例加入SC为内标

B. 内标法的优点
提高主元素的准确度 一个。或几个元素准确地加入给标样和样品 提高精密度与准确度RSD ~0.1 - 0.5 %
C. 标准加入法

C. 标准加入法
1、标准加入法在USEPA ILM040当中定义为在三个等量的 同一样品中,按照一定增量分别加入标准溶液; 2、然后分别对原样品和三个加标样品进行测量。
1) 在样品和标样中浓度一定 2) 加。入内标溶液的体积尽量小 3)加标方式:可手工加入,也可利用蠕动泵加入 4)内标元素的加入量必须使在选择的波长处能够达 到较好信噪比
B. 内标法(3)—选择内标元素准则
5) 内标元素和待测元素在等离子体中具有 相似的激发。能 6) Sc、Y、In常用作内标元素 7) 内标元素和待测元素的谱线互相不干扰 8) 为保证测定准确,可选定多个波长
Leeman Labs ICP-OES
ICP-OES样品前处理及应用
利曼中国 :赵质远
方法开发
1. 实验室环境、器皿及试剂和水的要求 2. 标准制备与匹配:
a. 外标法 b. 内标法 c. 标准加入法 3. 样品制备:溶(熔)解条件
1、实验室环境、器皿及试剂和水的要求
实验室规范
仪器ቤተ መጻሕፍቲ ባይዱ与外界最好有一个隔断,避免空气直接流通
3为、被然测后分按。析照物线的性含拟量合。得出X截距和Y截距,X截距的绝对值
理想地,所加入的标样的体积应大大低于样品体积(大 约10%样品量),标准加入法可克服基体效应,但不能克 服谱线干扰
C. 标准加入法—何时采用标准加入法
当不能抑制样品的基体的物理或化学干扰时; 当没有。空白而不能使样品的基体与标样相匹配时。
样品制备
针对不同实验室及样品情况制备 例如:水溶 酸/混合酸溶 微波消解 高温高压溶解 灰化 高温熔融 参考标准方法(AA,OES)
BEC值的测定过程
BEC值的测定过程
常用浓度单位
B. 内标法
样品与标准都加入相同的浓度 内标线与分析线有类似的... • ...化学与物理特性 • ...谱线的激发能 • ...电离能 • ...波长范围与强度
B. 内标法
内标法是消除物理干扰的最好方法。
测量分析线和内标元素谱线的强度比: 以内标元素的谱线来控制分析元素由于物理干
水与试剂的要求
水的要求:最好18MΩ 试剂的要求:保证试剂(GR)/优级纯 光谱纯标准物质 分析特殊的检测元素,如微量Na、Si、B、⋯等,对 水与试剂要特殊特别注意
2、标准样品的制备与匹配
标准溶液配制
用储备标准溶液配制标准溶液系列时,应补加酸,使溶液维持一 定的酸度,尽可能使其酸度与样品溶液一致。配置多元素混合标准 溶液时,应注意元素之间可能生的化学反应。
2. 介质和酸度不合适,会产生沉淀和浑浊,易堵 塞雾化器并引起进样量的波动;
3. 元素分组不当,会引起元素间谱线互相干扰;
4. 试剂和溶剂纯度不够,会引起空白值增加,检 测限变差和误差增大。
标液的配制
标准储备溶液一般用光谱纯试剂制备 购买标液-一般为1000PPM 多标储备液。一般为100PPM 标液的稳定性有限 使用酸性介质 低含量溶液(PPB) 要求新鲜制备 同时制备校正空白
标准的制备与匹配
分析方式的选择 a. 外标法 b. 内标法 c. 标准加入法
A.ICP-OES分析的一般方法(外标法)
1. 相对的(比较)方法, 需要标准
2. 标准与样品要 基体一致
BEC—背景当量浓度
BEC值的测定过程
吸喷2% HNO3 空白获得发射强度 吸喷1 ppm Mn标准溶液获得发射强度 以空白的发射强度除以标准溶液的发射强度减去空白的 发射强度后的净强度 通常垂直矩的BEC小于0.04 ppm 极为适合进行日常性能跟踪 应用: 微小的变化可以忽略 • 从0.025变成0.030 不必放在心上 • 从0.02 变到0.07就有问题了
实验室规范
样品准备室与仪器室分开
试样瓶的选用规则
酸性溶液或中性溶液保存在玻璃瓶中 Ag,Hg,Sn在玻璃瓶中更稳定 碱性溶液储存在聚乙烯或聚四氟乙烯的瓶子中 HF——聚四氟乙烯 Li,Al,Si在聚乙烯或聚四氟乙烯的瓶子中更加稳定
器皿的清洗步骤
5%的盐酸浸泡-过夜 去离子水冲洗 5%的硝酸浸泡-过夜 去离子水冲洗 风干
发射光谱溶样原则
对于发射。光谱分析,由于从样品的溶解到测定,中间无需进行分离、滴定或 显色等步骤,所以对溶解酸的使用限制较少。 原则上,只要试样能完全溶解,任何酸都可使用,但也要满足以下 条件:
a、测定元素与溶解酸不会生成不溶性或挥发性化合物,防止待测元素析 出及挥散;
b、测定时,溶液对雾化器及炬管的腐蚀要少; c、对待测元素干扰少。 虽然试样一般采用无机酸分解,但不同种类的酸会带来不同的影响。 样品溶液中酸的种类和浓度的不同会使溶液黏度、表面张力有所不同, 从而引起溶液进入等离子炬的速度和粒子分布的变化,导致谱线强度的 变化。
C. 标准加入法
运行标样(Std 0, 1, 2, ⋯)测试,将得到标准校正曲线

C. 标准加入法
3、样品制备
ICP光谱仪对试样分析溶液制备的要求
对于ICP、AAS等仪器分析来说,分析操作的第一步是将原材料 或成品的固体试样变成溶液。在这点上试样的分解与其它化学分析 方法并无根本差别。但ICP法与以往的化学分析法毕竟有所不同, 因此在试样前处理时,就有其必须加以特别考虑或简化之处。
扰而引起的强度变化。
B. 内标法(1)
内标法是消除物理干扰的最好方法。
测量分析线和内标元素谱线的强度比: 以内标元素的谱线来控制分析元素由于物理干
扰而引起的强度变化。
B. 内标法(2)
内标元素可以是: 1) 样品中某一含量固定的
基体元素; 2) 定量加入的其它元素
(通常采用该方法)。
B. 内标法(3)—选择内标元素准则
相关文档
最新文档