新人教版初中数学八年级上册《第十三章轴对称:13.1.1轴对称》赛课教案_1

合集下载

人教版数学八年级上册13.1.1轴对称教案

人教版数学八年级上册13.1.1轴对称教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调轴对称的定义和性质这两个重点。对于难点部分,如对称轴的确定和不规则图形的轴对称判定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与轴对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如剪纸或折叠纸片来观察轴对称图形。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《轴对称》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过对称的情况?”比如,我们常见的剪纸艺术,很多图案都是轴对称的。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索轴对称的奥秘。
实践活动环节,分组讨论和实验操作让学生们动手动脑,增强了他们对轴对称知识的理解。但在小组讨论中,我也注意到有些学生参与度不高,可能是因为主题过于开放或者他们对问题的理解不够深入。在今后的教学中,我需要更加注意引导学生的讨论,确保每个人都能积极参与进来。
学生小组讨论后,成果分享环节也让我看到了学生们的创造力和思考能力。他们能够将轴对称的概念与日常生活相结合,提出一些很有创意的想法。这让我感到很欣慰,也证明了我的教学方法在一定程度上是有效的。

人教版数学八年级上册《13.1.1 轴对称》教学设计

人教版数学八年级上册《13.1.1 轴对称》教学设计

13.1.1《轴对称》教学设计一、教学内容解析《轴对称》是人教版八年级数学上册第十三章中的第一节,在上一章《全等三角形》的学习中,学生已初步认识了图形的全等变换,《轴对称》其实就是全等的三大变换之———翻折。

因此,学习《轴对称》是为了进一步让学生体会图形变换的思想,运用图形变换的方法,解决图形变换的有关问题,逐步形成图形变换的基本能力。

同时,轴对称的学习也是后面学习等腰三角形、特殊四边形、圆的性质的基础,起着承上启下的作用。

此外,轴对称变换也是一种数学思想和方法,是探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一.因此本节课在初中几何中占有十分重要的地位。

我认为本节课的重点是:轴对称图形及两个图形关于某直线(成轴)对称的概念,轴对称的性质。

二、教学目标解析轴对称是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容,体现了一种简洁的数学美,我依据教材内容和学生情况,确定了本节课的学习目标为:知识与技能:1、通过对视频和图片中京剧脸谱、民间剪纸等中国元素的观察,找出轴对称图形(案)的共同特征,并能用自己的语言描述轴对称图形的概念.2、通过对活动图片的观察,能用自己的语言描述两个图形成轴对称的概念,并通过对比概念能够初步总结出两个概念之间的区别与联系.3、通过观察、探究、思考,了解轴对称图形的性质以及垂直平分线的概念.过程与方法:1、引导学生欣赏视频与图片,参与折叠剪纸、双人手语操表演、小组交流等活动,帮助理解概念,掌握性质,培养学生动手操作、抽象概括能力以及合作探究的学习品质。

2、通过本节课的各种活动,让学生体会由具体到抽象,由特殊到一般的数学思想,体会类比思想在解决数学问题中的作用,提高学生数学素养.情感态度与价值观:通过这一节课的学习活动,培养学生发现美、欣赏美的意识,增强学生热爱大自然,热爱生活的情感。

三、学生学情诊断学情分析从心理特征上看:八年级的学生活泼好动,对直观事物感知能力强,想象力丰富,正逐步从形象思维过渡到抽象思维.从知识储备上看:他们在小学时对轴对称图案有了初步的了解,又刚学习了平移变换和三角形全等,已具备了学习轴对称所的知识基础和活动经验.从方法能力上看:学生已经具备了一定的动手操作能力和识图、画图能力,也有了一定的推理能力。

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

新人教版初中数学八年级上册《第十三章轴对称:13.1轴对称》公开课教学设计_1

新人教版初中数学八年级上册《第十三章轴对称:13.1轴对称》公开课教学设计_1

13.1.1 轴对称(一)教学设计教学目标知识与技能:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形、轴对称及其对称轴,并能作出轴对称图形和成轴对称的图形的对称轴;结合图形说出轴对称图形与两个图形关于某条直线对称的的性质;过程与方法:在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。

情感态度价值观:欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。

教学重点轴对称图形及轴对称的概念.教学难点能够识别轴对称图形及轴对称并找出它的对称轴.以及性质的理解教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课出示投影视频和投影图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.指导学生预习课本58-59页完成表格内容。

接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

接下来完成下列各图,你能找出它们的对称轴吗?是A像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.Ⅲ.随堂练习(一)课本P60练习 1和练习2这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.(师)总结:轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.(师)出示问题三(学生探究,小组交流,汇报展示)(问题三) 如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、•B 、C 的对称点,线段AA ′、BB ′、CC ′与直线MN 有什么关系?图中A 、A ′是对称点,AA ′与MN 垂直,BB ′和CC ′也与MN 垂直. AA ′、BB ′和CC ′与MN 除了垂直以外还有什么关系吗?△ABC 与△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、B 、C 的对称点,设AA ′交对称轴MN 于点P ,将△ABC 和△A ′B ′C ′沿MN 对折后,点A 与A ′重合,于是有AP=A ′P ,∠MPA=∠MPA ′=90°.所以AA ′、BB ′和CC ′与MN 除了垂直以外,MN 还经过线段AA ′、BB ′和CC ′的中点.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.我们可以看出轴对称图形与两个图形关于直线对称一样,•对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.(师)对比给出问题四问题 问题(四) 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA ′,BB ′,直线l 平分线段AA ′,BB ′(或直 线l 是线段AA ′,BB ′的垂直平分线).Ⅴ.作业(一)课本习题61页. 1、2、3、4、5、6、题.AB lA B。

最新人教版八年级数学上册第13章教案之 13.1.1 轴对称

最新人教版八年级数学上册第13章教案之 13.1.1 轴对称

最新人教版八年级数学上册第13章教案13.1.1 轴对称一、教学目标1.在生活实例中认识轴对称图形。

2.分析轴对称图形,理解轴对称的概念。

3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴。

二、教学过程(一)情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?(二)合作探究探究点一:轴对称图形【类型一】轴对称图形的识别例1 下列体育运动标志中,从图案看不是轴对称图形的有()A.4个B.3个C.2个D.1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数例2 下列轴对称图形中,恰好有两条对称轴的是()A.正方形B.等腰三角形C.长方形D.圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质【类型一】应用轴对称的性质求角度例3 如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠BCD的度数是()A.130°B.150°C.40°D.65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B =40°,∴∠D=40°,∴∠BCD=360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】利用轴对称的性质求阴影部分的面积例4 如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A.4cm2B.8cm2C.12cm2D.16cm2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B.方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】 用轴对称的性质证明线段之间的关系例5 如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR=∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7;(2)PR 的长度小于7,理由如下:∠ABC≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】 轴对称在折叠问题中的应用例6 如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.(三)板书设计轴对称图形1.轴对称图形的定义;2.对称轴;3.轴对称图形的设计方法.。

人教版八年级上册第十三章轴对称12.1:轴对称教学设计

人教版八年级上册第十三章轴对称12.1:轴对称教学设计

人教版八年级上册第十三章轴对称12.1:轴对称教学设计一、教学目标1.了解轴对称、轴对称性质。

2.掌握轴对称运用于几何图形的具体方法。

3.能够运用轴对称的方法解决相关的问题。

4.培养学生运用轴对称的能力以及对几何图形的观察、思考能力。

二、教学重点1.轴对称的定义和性质。

2.轴对称的应用方法。

三、教学难点1.轴对称的具体运用方法。

2.解决相关问题的思路。

3.提高学生的几何观察与思考能力。

四、教学准备1.PPT课件。

2.讲解板书。

3.讲解用具(如折纸、标签纸、剪刀等)。

4.课堂练习题。

五、教学过程1. 引入向学生提问,“你们知道什么是轴对称吗?”引导学生回忆学过的知识,进行简单的回答,然后辅以PPT的图片进行解释,帮助学生树立起概念形象。

2. 讲解1.轴对称的定义和性质–轴对称:图形中有一条轴,将图形分成两部分,两部分完全重合,且对于这条轴上每一点,轴两侧的点到轴的距离相等。

–轴对称的性质:使一个图形绕其轴对称一次后不改变其形状和大小。

2.轴对称的应用方法–通过折纸法确定轴。

–在坐标系中确定轴。

–观察图形的特征,确定轴。

–运用轴对称性质,解决相关的问题。

3. 练习1.课堂讲解几个简单的轴对称图形。

老师先画出图形,然后让学生找出其对称轴,利用讲解板书,进行讲解。

2.利用标签纸、剪刀等辅助教具,在课堂中进行轴对称的实验操作,让学生直观感受轴对称的性质。

3.针对具体问题,让学生通过运用轴对称性质进行分析解决。

4. 总结通过课堂的讲解和实验操作,让学生掌握轴对称的定义与性质,以及它的应用方法,提高了学生的几何观察与思考能力。

六、教学反思在教学中,较难让学生理解的是轴对称的具体运用方法,需要老师根据实际的课程情况,采用多样的教学方式,如运用具体的实例,或者是通过实验操作加深学生的理解和记忆,同时在教学的过程中,需要老师扮演好引导者的角色,引导学生对轴对称相关知识进行深入学习。

八年级数学上册第13章轴对称13.1轴对称13.1.1轴对称教案新版新人教版

八年级数学上册第13章轴对称13.1轴对称13.1.1轴对称教案新版新人教版

轴对称课题: 13.1.1轴对称一教学设计课标要求了解轴对称图形的概念;认识并欣赏自然界和现实生活中的轴对称图形。

通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线段被对称轴垂直平分.教材及学情分析本节课是在学习了图形的平移基础上,继续学习轴对称图形、两个图形关于轴对称的概念及其性质;学习线段垂直平分线的概念。

把形象思维与抽象思维相结合,把静态、动态的观察、思维法相结合,不断提高平面逻辑思维、能力与想像、表达能力。

为后续学习研究多边形的几何性质、函数图像性质打下坚实的基础。

八年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。

学生已经有了一定的概括能力和推理能力,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知。

学生已经具备了一定的学习能力,所以本节课中,主要采用学生自主学习、合作学习的方式,让他们主动参与、勤于动手、从而乐于探究。

总之,本节课旨在让学生体会到数学与实际生活的密切联系,经历知识的形成过程,培养学生的应用意识。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到数、符号和图形是有效地描述现实世界的重要手段与解决实际问题的重要工具。

课时教学目标1、掌握轴对称图形,轴对称(成轴对称)的概念;理解轴对称图形与轴对称对称的区别和联系;会用轴对称及轴对称图形的知识解决相关问题。

2、通过实例让学生归纳轴对称的性质,掌握概念;加以适当的练习使学生有一种成就感,从而促使学生更好的关注生活,学会观察,善于发现。

3、通过轴对称图形和轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。

重点轴对称图形和两个图形关于某直线对称的概念及轴对称的性质难点轴对称图形与轴对称的区别与联系及轴对称的性质教法学法指导教具准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课观察欣赏生活中的轴对称图形欣赏图片:1、让学生观察图片(完整和破损谈谈自己的感受;破坏后的图片相比,完整的图片好在哪里?你认为前后两组图片最大的区别在哪里?学生仔细观察图片,交流讨论,各抒己见,基本达成共识(对称美)从观察欣赏轴对称、两个图形关于直线轴对称图片入手,引发学生思考问题的兴趣;激励自主学习解决问题.教学过程初步了解轴对称图形和轴对称相关概念巩固练习理解轴对称相关概念自学指导认真阅读课本58页60页练习前的内容,回答下列问题:1.什么叫做轴对称图形?什么叫对称轴?2.什么叫做两个图形关于直线(成轴)对称?什么叫对称点?3.什么叫线段的垂直平分线?4.图形轴对称的性质是什么?师生共同解决梳理轴对称相关知识1.下面四个中文艺术字中,不是轴对称图形的是()2、已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).观察每对图形有什么共同特点?1.把__________沿着某一条直线折叠,如果它能那么就说这两个图形____,图形______够与2.同样,我们把这条直线叫做________.3.折叠后重合的点是对应点,叫做________.发现轴对称图形和两个图形关于直线轴对称的两组念及其性质.比较两个概念的异同点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与另一个图形重合,那么就说这两个图形关于这条直线对称,
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
练习 1 找到成轴对称的两个五边形的对称点
B
A
C
F
J
I
通过练习 1 加深对 对称点概念的理解。
E D
G H
练习 2 如图所示的每幅图形中的两个图案是成轴对称的 吗?
通过练习 2 让学生 体会轴对称和全等之间 的关系,成轴对称的两个 图形一定全等,但全等的 两个图形不一定成轴对 称,加深学生对轴对称的 理解。
联系 2.都有对称轴(至少一条) 3.如果把一个轴对称图形沿对称轴分成两个图形,那么
这两个图形关于这条直线对称;如果把两个成轴对称的
图形看成一个图形,那么这个图形就是轴对称图形 五、归纳小结,布置作业 谈谈你有哪些收获和体会?师生共同交流、总结。 1、习题 13.1 第 1、2、3 题,2、剪五角星 六、欣赏对称,提升认识
观察这六幅图片,观察这组图片你有什么发现吗?为什么 呢?(师生共同交流)
设计意图: 创设情景将中国古
老的民间艺术窗花进行 展示,既可以让学生了解 中国的传统文化,又能引 导学生将对称的美牵引 到数学中来,激发学生学 习、探讨的兴趣。
教学过 程
通过类比,观察轴对 称图形与自行车图片之 间的区别,让学生主动思 考,让学生更直观的发现 轴对称图形的特征。
最后再让学生感受 生活中的对称美,增加学 生的审美意识,感知数学 与生活密切相关。
《生活中的轴对称》(投影演示,配音解说)。
13.1 轴对称
一分为二
轴对称图形
成轴对称
板 书
合二为一


区别: 一个图形
两个图形
联系:
折叠后完全重合 都有对称轴
活动 5 分组讨论:轴对称图形和两个图形成轴对称这两个概念之 间的联系和区别.(演示动画)
轴对称图形
一分为二 合二为一
成轴对称
通过动画演示让学 生更直观的理解两个概 念之间区别与联系的实 质。
结论:
轴对称图形
两个图形成轴对称
区别
一个图形
两个图形
1.沿着某条直线对折后,直线两旁的部分都能够互相重
合(即直线两旁的两部分全等)
形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条, 有的轴对称图形的对称轴甚至有无数条。
观察下列各图,你能找出它们的对称轴吗?
让学生会找对称轴,
认识轴对称图形的对称
轴不仅仅只一条,有可能
有多条甚至无数条,对称
轴的方向不仅仅是垂直
的或水平的有可能是倾
斜的。
结果:图 1 有四条对称轴;图 2 有两条对称轴;图 3 有五 条对称轴;图(4)有无数条对称轴
归纳概括轴对称图形的概念。
引导启发式
一、创设情景,引入新课
剪纸是最古老的汉族民间艺术之一,现在我们一起走进中 国剪纸艺术。(投影显示,配音讲解)
轴对称是对称中重要的一种,从这节课开始,我们来学习 第十三章:轴对称.今天我们来研究第一节,认识什么是轴对 称图形,什么是成轴对称。 二、类比图形,感悟特征
四、演示实验,迁移新知
教师演示:拿出准备好的白纸,在纸上滴一滴墨汁,白纸
折叠后,在墨汁位置按压,打开后让学生观察,折痕两边的图
案,
(1) 有几个图形?
操作演示,内化特
(2) 它们是全等的吗?
征,培养学生的观察、分
(3) 它们在位置上有什么特点呢?
析、总结归纳的能力。
得到概念:把一个图形沿着某一条直线折叠,如果它能够
能够完全重合,这个图形就叫做轴对称图形,这条直线就是它
的对称轴.
三、应用特征,内化知识 了解了轴对称图形及其对称轴的概念后,我们来做一下检 验. 练习 1 下面的图形是轴对称图形吗?如果是,你能找出对称 轴吗?
通过观察,让学生主 动思考,让学生互相交 流,表述其特征,鼓励学 生勇于发现,增强合作意 识。
《轴对称》教学设计
课题
13.1.1 轴对称
新 课型

目标
1、通过丰富的实例认识轴对称,体会轴对称在现实生活中的广泛应用和它的文化价 值。
2、通过观察、分析、思考、归纳等数学活动过程,理解轴对称图形和两个图形成轴 对称这两个概念及它们之间的区别与联系。
教学 重点 教学 难点 教学 方法
理解轴对称图形和关于直线成轴对称这两个概念的实质动眼、动脑,充分
调动了学生的各种感官
参与学习,既发挥了学生
学生展示作品,并与大家分享图形的形成过程。 学生讨论并操作,体会轴对称图形的形成过程,并指出对 称轴。 练习 4 接下来我们来探讨一个有关对称轴的问题.有些轴对称图
学习的主动性,又培养了 学生的发散性思维和空 间想象能力,通过动手操 作体会如何找轴对称图 形的对称轴。
这些图形都是对称的.这些图形从中间沿一条直线折叠后,
两部分能够完全重合.
小结:对称现象无处不在,从自然景观到知名建筑,从生 活用品到艺术作品,人们都可以找到对称的例子.现在同学们 就从我们生活周围的事物中来找一些具有对称特征的例子.
在得出共同特征之 后再引导学生例举生活 中的事例。以便加深对这
一特征的理解。 得出概念:如果一个图形沿一直线折叠,直线两旁的部分
练习 2 猜猜他们原来的模样。
练习 3 取出一张正方形纸,如何在纸上剪出如图所示的图 形,看看谁剪得最快,看看谁的方法最好。与同伴进行交流.
因为轴对称图形的 性质学生还没有学,所以 学生判断只能是根据概 念通过想象加以判断。通 过练习 1 不仅让学生巩 固了轴对称图形的概念, 而且让学生认识到我们 常见的图形,有些是轴对 称图形,有些不是轴对称 图形。练习 2 通过补全图 形培养学生的逆向思维 和空间想象能力。
相关文档
最新文档