新1第十一章曲线积分与曲面积分习题答案

合集下载

11曲线积分与曲面积分6答案

11曲线积分与曲面积分6答案

14
33
09
4、计算 xyz d s , 其中 r 是空间曲线 x=t, y 2t 2t , z 1 t 2 在点 t=0 和 t=1 间的一段。
3
2
答案: 解 :
xyzds 1(t 2t
2t 1 t 2) 1 ( 2t )2 t 2dt
2
1
t
9
2(1
t)dt
16
2
r
03
2
30
三、问答(2 小题)
1、已知 P(x,y)=x2+y2,问 Q(x,y)满足什么条件时,才能使 Pdx Qdy 与积分路径无关。 L
解:由 P y
Q x
,
知 Q x
2 y,Q(x,
y)
2xy
c( y), 式中C( y) 为任意连续函数.
2、设∑是八面体|x|+|y|+|z|≤a 的表面,a 为正数。若 (2x z)2 dS 3 a2 则 a 为何值。
11 曲线积分与曲面积分练习题 6 答案
一、选择(10 小题)
1-5、答案:BACCC 6-10、答案:BBA DA 二、填空(5 小题)
1、答案: x2 f (x)dx 2、答案:0 3、答案: A f (x, y)ds.
x1
L
4、答案:
yd x xd y L x 2 y 2
ò 5、答案: L 2p yds.
1 e x3y d s 1
5L
由驻点方程 fx fy 得 x y
3x 2y x3 , 又 34
x=0 y=3

x 3
y
3 4
f (x, y) x3y在条件3x 4 y 12 0下的
3x+4y-12=0

第11章 曲线积分与曲面积分习题解答(开放课程)

第11章 曲线积分与曲面积分习题解答(开放课程)

d
L
02
2
1 a2

cos
d

2
cos
d

2 0 2

2

1 2
a
2

2
sin
2
0
2sin 2
2


2a 2
3.计算 x2 y 2 ds ,其中 L 为曲线 x acos t t sin t ,y asin t t cos t, L
解:
xydx
1
y2 y
y2
dy

2
1 y 4dy 21 y 5 1
4.
L
1
1
5 1 5
8. 计算 x3dx 3zy 2dy x 2 ydz ,其中 L 是从点 A3,2,1 到点 B0,0,0的直线 L
段 AB 。
解:直线段 AB 的方程为 x y z ,化成参数方程为 x 3t , y 2t , z t , 321

1x 0

1

x
2dx
2。
2.计算 x 2 y 2 ds ,其中 L 为圆周 x 2 y 2 ax 。 L
解:
L
的参数方程为
x


y

1 2 1 2
a cos a sin

1 2
a
, 0


2

则 x 2 y 2 1 a cos 1 a2 1 a sin 1 | a | 21 cos
0
ex
|0a
e

曲线曲面积分练习答案

曲线曲面积分练习答案

第十一章 曲线曲面积分一、填空1、L 为下半圆21y x =--,则22()L x y ds +=⎰___π_______。

2、L 为222x y R +=,则3(2)L x y ds +=⎰____0____。

3、L 为圆22(2)(2)2x y -+-=的逆时针一周,则L ydx xdy +⎰=_0_。

4、设L 是xoy 平面上沿顺时针方向绕行的简单闭曲线,L 所围的平面闭区域D 的面积为A ,(2)(43)8L x dx x y dy -++=-⎰,则A=___2_______。

5、分片光滑闭曲面Σ所围成的空间区域Ω的体积为V ,则沿曲面Σ外侧的积分()()()z y dxdy y x dxdz x z dzdy ∑-+-+-⎰⎰= 3V 。

二、选择题1、设是一光滑曲线,为了使曲线积分(,)(,)L yF x y dx xF x y dy +⎰与积分路径无关,则可微函数 应满足条件( A )。

A 、B 、C 、D 、2、OM 是从(0,0)(1,1)O M 到的直线段,则22x y OM e ds +⎰不等于(D )。

A 、1202x e dx ⎰B 、1202y e dy ⎰C 、20r e dr ⎰D 、102r e dr ⎰ 3、∑:2221x y z ++=外侧,1∑:上半面上侧,则正确的是(B )。

A 、12zds zds ∑∑=⎰⎰⎰⎰ B 、12zdxdy zdxdy ∑∑=⎰⎰⎰⎰ C 、1222z dxdy z dxdy ∑∑=⎰⎰⎰⎰ D 、zdxdy ∑⎰⎰=0 4、∑:222(),0z x y z =-+≥,则ds ∑⎰⎰等于( C )。

A 、220014r d r rdr πθ+⋅⎰⎰ B 、2220014d r rdr πθ+⋅⎰⎰ C 、2220014d r rdr πθ+⋅⎰⎰ D 、2 5、∑:222,12x y R z +=≤≤外侧,则下列不正确的是等于(B )。

新1第十一章曲线积分与曲面积分习题答案

新1第十一章曲线积分与曲面积分习题答案

25第十一章 曲线积分与曲面积分第一节 对弧长的曲线积分1. 选择题:(1) 对弧长的曲线积分的计算公式⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求 (C ) .(A ) α>β (B ) α=β (C ) α<β(2) 设光滑曲线L 的弧长为π,则⎰Lds 6= (B ) . (A ) π ( B ) π6 (C ) π122.计算下列对弧长的曲线积分: (1)⎰+Lds y x )(,其中L 为I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周222R y x =+;解:I )111()()()()(1)13222LOAABBOx y ds x y ds x y ds x y dsxdx y dy +=+++++=+++=++=⎰⎰⎰⎰⎰⎰⎰II )22()(cos sin [sin cos ]2Lx y ds R t R t R t t R ππ+=+=-=⎰⎰(2)⎰Lyds ,其中L 为x y 22=上点)2,2(与点)2,1(-之间的一段弧;解:2223/211[(1)]33Lyds y ===+=⎰⎰⎰26*(3) ⎰Γ+ds y x )(22,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ;)20(π≤≤t解:1/222222222220()(sin cos )2x y ds a a t a t b dta a πππΓ+=++==⎰⎰⎰*(4)⎰+L ds y x 22,其中L 为y y x 222-=+;解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则ds θ=。

222224sin 8Lrd d ππππππππθθθθθ====-=⎰⎰⎰⎰第二节 对坐标的曲线积分1.填空题(1) 对坐标的曲线积分的计算公式⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分⎰+Ldy y x Q dx y x P ),(),(化为第一类曲线积分是[(,)cos (,)cos ]LP x y dx Q x y ds αβ+⎰ ,其中βα,为有向光滑曲线L 在点),(y x 处的 切向量 的方向角.2.选择题:(1) 对坐标的曲线积分与曲线的方向 (B )(A )无关, (B )有关;(2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ⎰-+L dy y x Q dx y x P ),(),(=⎰+-L dy y x Q dx y x P ),(),(,(B )⎰-+L dy y x Q dx y x P ),(),(=⎰+Ldy y x Q dx y x P ),(),(.273.计算下列对坐标的曲线积分:(1)⎰+Ldx y x )(22,其中L 为从点)0,0(A 经上半圆周1)1(22=+-y x(0)y ≥到点)1,1(B 的一段弧;解:L的方程为221(1)y x =--,:01x →,则112222()[1(1)]21Lx y dx x x xdx +=+--==⎰⎰⎰ (2) ⎰-Lydx xdy ,其中L 为2x y =上从点)1,1(B 到点)1,1(-A 的一段弧;解:112211223Lxdy ydx x xdx x dx x dx ---=-==-⎰⎰⎰。

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。

11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。

11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。

11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。

11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。

11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。

南华大学第十一章 曲线积分与曲面积答案

南华大学第十一章 曲线积分与曲面积答案
L
的方向角. 二.选择题:
1.对坐标的曲线积分与曲线的方向(2) (1)无关, (2)有关; 2.若 P ( x, y ) , Q( x, y ) 在有向光滑曲线 L 上连续,则(1) (1) (2)
∫ ∫
L−
P ( x, y )dx + Q( x, y )dy = − ∫ P( x, y )dx + Q( x, y )dy ,
2. 设光滑曲线 L 的弧长为 π ,则 6ds = (2)
L

(1) π , (2) 6π , (3) 12π . 二.计算下列对弧长的曲线积分: 1. ( x + y ) ds ,其中 L 为
L

(1) 以 O(0,0),A(1,0), B(1,1) 为顶点的三角形的边界; (2) 上半圆周 x + y = R ;
L
L−
P ( x, y )dx + Q( x, y )dy =
2
∫ P( x, y)dx + Q( x, y)dy .
L
2 2
三.计算下列对坐标的曲线积分: 1. ( x + y )dx , 其中 L 为从点 A(0,0) 经上半圆周 ( x − 1) + y = 1 ( y > 0) 到点 B(1,1) 的
8 2 (1 − cos t ) 2 + 8 2 sin 2 t = 16 sin
设质心坐标为 ( x, y ) ,则
x=
1 M

π
0
ρ ⋅ 8(t − sin t ) ⋅ 16 sin dt =
t 2
32 1 ,y= 3 M

π
0
ρ ⋅ 8(1 − cos t ) ⋅ 16 sin dt =

曲线积分与曲面积分习题答案.pdf

曲线积分与曲面积分习题答案.pdf
(1) (2x y 2z) dS,其中 为平面 x y z 1在第一卦限的部分;
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr

高数答案第11章

高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。

()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。

24 D 。

223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。

⎰++104221dt t t tC 。

⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 曲线积分与曲面积分第一节 对弧长的曲线积分1. 选择题:(1) 对弧长的曲线积分的计算公式⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求 (C ) .(A ) α>β (B ) α=β (C ) α<β(2) 设光滑曲线L 的弧长为π,则⎰Lds 6= (B ) . (A ) π ( B ) π6 (C ) π122.计算下列对弧长的曲线积分: (1)⎰+Lds y x )(,其中L 为I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周222R y x =+;解:I )111()()()()(1)13222LOAABBOx y ds x y ds x y ds x y dsxdx y dy +=+++++=+++=++=⎰⎰⎰⎰⎰⎰⎰II )22()(cos sin [sin cos ]2Lx y ds R t R t R t t R ππ+=+=-=⎰⎰(2)⎰Lyds ,其中L 为x y 22=上点)2,2(与点)2,1(-之间的一段弧;解:2223/211[(1)]33Lyds y ===+=⎰⎰⎰*(3) ⎰Γ+ds y x )(22,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ;)20(π≤≤t解:1/222222222220()(sin cos )2x y ds a a t a t b dta a πππΓ+=++==⎰⎰⎰*(4)⎰+L ds y x 22,其中L 为y y x 222-=+;解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则ds θ=。

222224sin 8Lrd d ππππππππθθθθθ====-=⎰⎰⎰⎰第二节 对坐标的曲线积分1.填空题(1) 对坐标的曲线积分的计算公式⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分⎰+Ldy y x Q dx y x P ),(),(化为第一类曲线积分是[(,)cos (,)cos ]LP x y dx Q x y ds αβ+⎰ ,其中βα,为有向光滑曲线L 在点),(y x 处的 切向量 的方向角.2.选择题:(1) 对坐标的曲线积分与曲线的方向 (B )(A )无关, (B )有关;(2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ⎰-+L dy y x Q dx y x P ),(),(=⎰+-L dy y x Q dx y x P ),(),(,(B )⎰-+L dy y x Q dx y x P ),(),(=⎰+Ldy y x Q dx y x P ),(),(.3.计算下列对坐标的曲线积分:(1)⎰+Ldx y x )(22,其中L 为从点)0,0(A 经上半圆周1)1(22=+-y x(0)y ≥到点)1,1(B 的一段弧;解:L的方程为221(1)y x =--,:01x →,则112222()[1(1)]21Lx y dx x x xdx +=+--==⎰⎰⎰ (2) ⎰-Lydx xdy ,其中L 为2x y =上从点)1,1(B 到点)1,1(-A 的一段弧;解:112211223Lxdy ydx x xdx x dx x dx ---=-==-⎰⎰⎰g 。

(3)⎰+Lxdy y ydx x32,其中L 为x y =2与1=x 所围成区域的整个边界(按逆时针方向绕行);解:21:,:11L x y y =→-, 2:1,:11L x y =-→, 则1223232311155361114(2)27LL L x ydx y xdy x ydx y xdy x ydx y xdy y y y dy y dy y dy ---+=+++=++==-⎰⎰⎰⎰⎰⎰g Ñ*(4)zxdz xydy dx y ++⎰Γ2,其中Γ为从点)0,0,0(O 到点)111(,,C ,沿着I )直线段; II )有向折线OABC ,这里的O 、A 、B 、C 依次为点)0,0,0(、)0,0,1(、)011(,,、)111(,,;解:I )Γ的参数方程为x ty t z t =⎧⎪=⎨⎪=⎩,01t ≤≤,则原式=12220()1t t t dt ++=⎰II )OA: 0x t y z =⎧⎨==⎩, 01t ≤≤; AB: 1x y t z =⎧⎪=⎨⎪=⎩,01t ≤≤;BC: 11x y z t =⎧⎪=⎨⎪=⎩.01t ≤≤.原式=112001OAABBCy dx xydy zxdz tdt tdt ++++=++=⎰⎰⎰⎰⎰第五节 对坐标的曲面积分1. 选择题(1) 对坐标的曲面积分与曲面的方向 (B )(A )无关 (B )有关 (2) 已知⎰⎰∑dxdy z y x R ),,(存在,则⎰⎰∑dxdy z y x R ),,(+⎰⎰-∑dxdy z y x R ),,(= (A )(A )0 (B )⎰⎰∑dxdy z y x R ),,(22. 计算下列对坐标的曲面积分: (1)⎰⎰∑+zdxdy y x)(22,其中∑为曲面221y x z --=在第一卦限部分的上侧.解:由2210z x y z ⎧=--⎨=⎩知,∑在xoy 面的投影区域为:{(,)|01}{(,)|01,0}2xy D x y y x r r πθθ=≤≤≤≤=≤≤≤≤,222212220()(1)11(1)()24624xyD x y x y dxdyd r r rdr πππθ+--=-=-=⎰⎰⎰⎰原式=(2)⎰⎰∑++dxdy ydzdx dydz x )1(+,其中∑为1=++z y x 在第一卦限的部分且取法线的方向与z 轴的夹角为锐角.解:由已知得,平面与x,y 轴的夹角也为锐角,∑在三坐标面上的投影为等腰直角三角形,故 原式=11111104(2)(1)3yxxdy y z dz dx x z dz dx dy -----+--+=⎰⎰⎰⎰⎰⎰。

*3.把dxdy z x ydzdx xdydz )(+++⎰⎰∑化为对面积的曲面积分,其中∑为平面222=++z y x 第一卦限部分的上侧.解:因∑取上侧,故法向量n r与z 轴正向夹角为锐角,方向余弦为221cos ,cos ,cos ,333αβγ=== 从而21111()(32)33333x y x z dS x y z dS +++=++∑∑⎰⎰⎰⎰原式=第六节 Gauss 公式 *通量与散度1. 利用高斯公式计算下列曲面积分: (1)zdxdy ydzdx x dydz yz x +--⎰⎰∑232)(,其中∑为平面 1,1,1,0,0,0======z y x z y x 围成的立方体Ω的表面外侧;解:由Gauss 公式,得原式=1112224(321)(1)3x x dxdydz dz dy x dx Ω-+=+=⎰⎰⎰⎰⎰⎰。

(2)dydz z y x dxdy y x )()(-+-⎰⎰∑,其中∑由1,0,922===+z z y x所围空间闭区域Ω的整个边界曲面的外侧; 解:由Gauss 公式,得231232000()(sin )119(sin )9(sin )242y z dxdydz d rdr r z dzd r r dr d πππθθθθθθπΩ-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰原式=*(3)zdxdy ydzdx xdydz ++⎰⎰∑,其中∑为上半球面222y x a z --=的上侧;解:设1∑为2220z =≤(x +y a )的下侧,∑与1∑围成的闭区域为Ω,由Gauss 公式,得1332xdydz ydzdx zdxdy dxdydz a πΩ+++==∑∑⎰⎰⎰⎰⎰Ò,而10xdydz ydzdx zdxdy ++=∑⎰⎰Ò,故原式=32a π。

相关文档
最新文档