生活中的传热学

合集下载

传热学精选全文

传热学精选全文
(2) 对流换热:当流体流过一个物体表面时的热量传递 过程,他与单纯的对流不同,具有如下特点:
a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也
必须有温差 c 壁面处会形成速度梯度很大的边界层 (3)对流换热的分类
无相变:强迫对流和自然对流 有相变:沸腾换热和凝结换热
热量;d 在引力场下单纯的导热只发生在密实固体
中。
(4)导热的基本定律:
1822年,法国数学家Fourier: t
dx
Φ A dt W
dx
q Φ dt
A
dx
W m 2
上式称为Fourier定律,号称导
dt
Q
热基本定律,是一个一维稳态
0
x
导热。其中:
一维稳态平板内导热
:热流量,单位时间传递的热量[W];q:热流密度,单
q dx tw2
0
tw1
dt
q tw1 tw2
q
tw1 tw2
t r
Φ
tw1 tw2
t R
A
R
A
r
导热热阻 单位导热热阻
t
dx
tw1
dt
Q
tw2
0
tw1
Q
A
x
tw2
导热热阻的图示
2 对流(热对流)(Convection)
(1)定义:流体中(气体或液体)温度不同的各部分之 间,由于发生相对的宏观运动而把热量由一处 传递到另一处的现象。
a 当你靠近火的时候,会感到面向火的一面比背面热; b 冬天的夜晚,呆在有窗帘的屋子内会感到比没有窗帘时
要舒服; c 太阳能传递到地面 d 冬天,蔬菜大棚内的空气温度在0℃以上,但地面却可能

传热学现象

传热学现象

问题1 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?回答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。

而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。

而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

问题2 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?回答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。

而空气的强制对流换热强度要比自然对流强烈。

因而在有风时从人体带走的热量更多,所以感到更冷一些。

讨论:读者应注意的是人对冷暖感觉的衡量指标是散热量的大小而不是温度的高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/㎡时感到热,为232W/㎡时感到舒服,为696W/㎡时感到凉快,而大于为928W/㎡时感到冷。

问题3 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?回答:首先,冬季和夏季的最大区别是室外温度不同。

夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。

而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。

因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。

因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。

根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

问题4 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?回答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。

热学在生活中的应用和原理

热学在生活中的应用和原理

热学在生活中的应用和原理1. 热传导的应用和原理•热传导的基本原理:热传导是指热量沿着物体内部或不同物体之间由高温区到低温区传播的过程,主要通过分子间的碰撞和传递能量。

•常见的热传导应用:–热传导在散热器中的应用:散热器通过辐射和热传导的方式将计算机等电子设备产生的热量散发出去,保持设备正常运行。

–热传导在隔热材料中的应用:隔热材料如保温杯、保温箱能够减少热传导,保持物体内部的热量不易流失。

–热传导在建筑材料中的应用:建筑保温材料能够降低外部热传导进入室内,提高建筑的能效。

2. 热辐射的应用和原理•热辐射的基本原理:热辐射是指物体由于温度差异而发出的电磁波,热辐射的能量传播不依赖于介质,可以在真空中传播。

•常见的热辐射应用:–太阳能的利用:太阳能通过捕捉太阳热辐射的能量来供电、供热或制冷,在无电力供应的地方具有广泛应用。

–红外线技术:红外线相机、热成像仪等利用物体发出的红外辐射来获取热图像,并在军事、医学等领域发挥重要作用。

–红外加热:红外加热器利用物体发出的红外辐射直接加热,具有响应快、能量利用高等优点,被广泛应用于厨房、工业等领域。

3. 热对流的应用和原理•热对流的基本原理:热对流是指热量通过流体的流动传播的过程,当流体不同温度的部分发生密度变化时,会出现对流现象。

•常见的热对流应用:–风扇的运行原理:风扇通过扇叶的运动引起空气流动,使热空气与冷空气发生对流,达到降温的效果。

–空调的工作原理:空调通过利用制冷剂吸热蒸发和释放热量的对流过程,调节室温。

–汽车散热系统:汽车的散热风扇通过对流传热,降低引擎温度,维持发动机正常运转。

4. 热扩散的应用和原理•热扩散的基本原理:热扩散是指热量由高温区向低温区的自发传播,主要通过分子的扩散运动。

•常见的热扩散应用:–煤气灶的使用:煤气灶通过燃烧产生高温,使锅底受热,进而使食物受热均匀熟化。

–食物的热均匀传导:在烹饪过程中,食物中的热量通过热扩散,使得食物受热均匀,达到理想的烹饪效果。

传热学基础知识

传热学基础知识

传热学基础知识
嘿,朋友们!今天咱来聊聊传热学基础知识。

传热学啊,就像是生活中的一场奇妙旅行。

你想想看,冬天的时候,为啥我们在屋里就感觉暖和,到了外面就冻得直哆嗦呢?这就是传热在起作用呀!热量从屋里的暖气啊、空调啊这些热源,传到我们身上,让我们暖洋洋的。

这就好比是一场温暖的传递,暖气是那个热情的传递者,把温暖送给我们。

再说说夏天,太阳晒得厉害,我们会觉得热得不行。

这太阳的热量可不就通过传热来到我们身边啦!就好像一个调皮的小精灵,不停地往我们身上扑。

传热的方式有好几种呢!有一种叫热传导,就像是接力赛跑一样,热量一个接一个地传递下去。

比如说,你拿着一根金属棒,一头放在火上烤,过一会儿另一头也会变热,这就是热传导在起作用呀!是不是很神奇?
还有热对流,这就像是一群小伙伴在跳舞,带着热量一起动起来。

比如烧开水的时候,水受热会翻滚,热量就跟着水一起流动啦。

再有就是热辐射啦,这可厉害咯!太阳的热量就是通过热辐射传到地球上的,不需要任何介质,直接就过来啦,就像远方的朋友给你送来温暖的问候。

咱生活中很多事情都和传热学有关系呢!比如做饭的时候,锅把热量传给食物,让食物变熟;冬天盖厚被子保暖,就是阻止热量往外跑。

传热学好比是生活的一个小秘密,了解了它,你就能更好地理解很多现象啦!你说,这传热学是不是很有趣?它无处不在,影响着我们的生活呢!所以啊,我们可得好好琢磨琢磨它,让它为我们的生活服务呀!这就是传热学,一个看似普通却又无比重要的学问!。

生活中辐射传热的例子

生活中辐射传热的例子

生活中辐射传热的例子引言辐射传热是一种非接触的热传递方式,在我们的日常生活中无处不在。

从阳光照射到地球上,到微波炉加热食物,辐射传热的例子随处可见。

本文将探讨几个生活中常见的辐射传热现象,并解释其原理和应用。

电热毯原理电热毯是一种利用辐射传热加热的家用电器。

它内部包含一些发热线圈,通过电流产生热量,然后以辐射的形式传递到周围的环境和人体上。

应用•在冬季寒冷的夜晚,人们可以使用电热毯来增加床上的温暖。

•电热毯还可以帮助缓解肌肉酸痛和关节疼痛,促进血液循环。

太阳能热水器原理太阳能热水器利用太阳能辐射传热的原理来加热水。

太阳能热水器通常由太阳能集热器、储热器和水箱组成。

太阳能集热器吸收太阳辐射的能量,将其转化为热量,然后通过传导和辐射的方式传递给水箱中的水。

应用•太阳能热水器是一种环保、节能的热水供应方式,可以减少对传统能源的依赖。

•在阳光充足的地区,太阳能热水器可以提供稳定和可持续的热水供应。

红外线热感应仪原理红外线热感应仪可以通过红外辐射传热的原理来检测物体的热能分布。

它通过感应红外线辐射的强弱来显示出不同物体的温度差异。

应用•红外线热感应仪常用在工业领域,可用于检测设备运行时的温度异常或故障。

•在建筑领域,红外线热感应仪可以检测建筑物的热漏点,帮助提高能源利用效率。

火炉原理火炉是一种利用辐射传热的加热设备。

火炉内部燃烧燃料,产生高温烟气,这些烟气通过辐射的方式将热量传递给周围的物体。

应用•火炉常用于供暖和烹饪,特别是在没有中央供暖系统的地区。

•在一些工业过程中,火炉还可以用于熔炼金属和烧结陶瓷等。

微波炉原理微波炉是一种利用微波辐射传热的设备。

微波炉产生的微波能量通过辐射传递到食物中,使其分子振动,从而产生热量。

应用•微波炉被广泛应用于食品加热和解冻。

与传统炉灶相比,微波炉能更快速地加热食物。

•微波炉还可以用于家庭实验和科学研究,如测量微波辐射的强度和频率。

总结辐射传热是我们日常生活中常见的热传递方式之一。

高中物理中的热学与日常生活

高中物理中的热学与日常生活

高中物理中的热学与日常生活热学是物理学的一个重要分支,研究物质的热力学性质以及能量转化与传递规律。

热学的研究对于我们的日常生活有着重要的指导作用。

本文将从热学的角度探讨一些与日常生活相关的现象和应用。

一、热传导热传导是指物质中热量由高温处传到低温处的过程,我们日常生活中常常会接触到热传导的现象。

比如,在烹饪过程中,当我们用火炉加热锅底时,热量通过金属锅底的热传导,使得锅内的食物受热。

这个过程符合热传导的基本规律:高温区域的分子具有更大的热运动能量,而低温区域的分子则相对较小,热量会从高温区域向低温区域传递,直到达到热平衡。

热传导是我们理解热学中的一个基本概念,而在日常生活中,通过合理利用热传导,可以实现一些实用的应用。

比如,保温杯就充分利用了热传导的原理。

保温杯内部的真空层减少了热传导的发生,避免了热量向外界环境传递,因此可以有效地保持液体的温度,让我们在户外依然能够享受到热饮。

二、热辐射除了热传导,热辐射是另一个重要的热学现象。

热辐射是指由物体表面发出的热能以电磁波的形式传播的过程,常见的例子如太阳辐射、电炉加热等。

一个有趣的实际应用是太阳能的利用。

太阳是一个巨大的热辐射源,地球上的太阳能利用了太阳辐射,将其转化为电能或热能供我们使用。

太阳能热水器就是一个常见的太阳能利用设备,通过集热器吸收太阳辐射,将其转化为热能,供我们家用热水。

三、热膨胀热膨胀是物质由于温度升高而产生体积膨胀的现象。

热膨胀是我们日常生活中经常会遇到的现象,比如夏天天热时铁轨变弯、室外水龙头温度升高时水流变大等。

这是因为物体受热后,内部分子热运动加剧,分子间的距离增大,整体体积也会相应增大。

利用热膨胀原理,我们可以设计出一些实用的机械设备。

比如,利用金属的热膨胀特性,可以制作出精密的温度计,如差压式温度计和毕氏管温度计等。

另外,桥梁等大型结构也要考虑到热膨胀对其造成的影响,采取合适的膨胀节控制结构的变形。

四、热量计算热学研究中,热量的计算是一个重要的内容。

生活中常见的热学现象分析

生活中常见的热学现象分析

生活中常见的热学现象分析物理和我们的实际生活有很大联系,在教材课本上能够学习到的知识,我们几乎都可以在日常生活中看见。

热学是物理知识中最关键的组成结构,在生活中我们经常可以看见热学现象,观察这些现象能够有助于我们更好地学习物理知识。

本文就以实际生活现象为例子,详细地阐述物理中的热学现象。

一、热传递与热膨胀相关的热学现象所谓热传递,其就是指因为温度差导致的热能传递现象。

在整个热传递中,用热量量度物体内能改变。

热传递主要存在热传导、热辐射和热对流三种模式。

例如在生活中我们经常可以看见热学现象:若是直接使用手去端盛菜的盘子就会感到烫手,以及我们在做饭时候使用的锅铲、汤勺等工具的手柄都是用木料做成的,这样做的原因是木料不会传热与导热,以此来防止在做菜时被热量烫到手。

所以热传递一般是根据物体是否是良导体来决定,这也是一种热传导的现象。

或者是我们冬天用烤火炉烤火取暖的时候,只要是在烤火炉旁边,就能够感受到一定的热度,这种现象主要是热传递中的热辐射现象,热辐射属于热传递的一种方式,不含化学物质,不会对人造成伤害。

而热对流也是我们生活中经常能够看见的一种,例如在使用电水壶烧开水的时候,我们主要将盖子打开,就能够看见热水与冷水之间的对流。

再比如打开刚用热水泡得茶,可以看到因为热对流而形成的空气对流。

经过对这些现象的分析,我们就能够知道在热学中的热传递只要在物体内部或物体间有温度差存在,热能就一定会以上述三种方式中的一种或者是多种方式,从高温到低温处传递。

二、物体状态变化的热学现象物体状态的变化也可以理解成为我们物理知识中的物态变化,具体是指将物质从一种状态转化成为另外一种状态的过程,其中的液化、气化以及凝固等相关的形式。

在发生物态变化之时,物体需要吸热或放热。

在物体从高密度向低密度转化时即为吸热从低密度向高密度转化时即为放热。

在我们生活中有很多和物态变化有关的热学现象。

比如在夏天的时候将冰块放在室外,很快就会融化成为水,这就是从固态转换成液态的现象,在这个过程中冰块吸热。

(完整版)生活中的传热学(问答题整理答案)

(完整版)生活中的传热学(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业查阅相关资料,回答以下问题:1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析?答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。

虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。

所以水滴滴在120℃的铁板上先被烧干。

2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么?答:是因为木料是热的不良导体,以便在烹任过程中不烫手。

3、滚烫的砂锅放在湿地上易破裂。

为什么?答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。

或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。

4、往保温瓶灌开水时,不灌满能更好地保温。

为什么?答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。

为什么?答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。

6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。

为什么?答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。

7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。

这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硕士研究生《高等工程热力学与传热学》作业查阅相关资料,回答以下问题:1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析?答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。

虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。

所以水滴滴在120℃的铁板上先被烧干。

2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么?答:是因为木料是热的不良导体,以便在烹任过程中不烫手。

3、滚烫的砂锅放在湿地上易破裂。

为什么?答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。

或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。

4、往保温瓶灌开水时,不灌满能更好地保温。

为什么?答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。

为什么?答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。

6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。

为什么?答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。

7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。

这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么?答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间内传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。

基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间内所传递的热量不至于达到灼伤人的温度9、我们许多人都喜欢在冬天有暖暖阳光时晒被子,我们都会深有体会,冬天经过在白天太阳底下晒过的棉被,晚上盖起来会觉得很暖和,并且经过拍打以后,效果更加明显。

为什么?答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。

而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。

而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

10、冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。

而空气的强制对流换热强度要比自然对流强烈。

因而在有风时从人体带走的热量更多,所以感到更冷一些。

11、在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。

为什么?答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。

但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。

因而晚上感觉会更冷一些。

12、夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?答:首先,冬季和夏季的最大区别是室外温度不同。

夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。

而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。

因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。

尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。

根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

13、我们国家北方深秋季节的清晨,树叶叶面上常常结霜,、为什么霜会结在树叶上表面?答:这是因为清晨,上表面朝向太空,下表面朝向地面。

而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。

由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。

14、窗玻璃对红外线几乎不透明,但是隔着玻璃依然会被太阳晒到的发热?为什么?答:虽说窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。

15、在寒冷的北方地区,现在建房越来越多的人开始采用多孔的空心砖。

为什么?答:在其他条件相同时,实心砖材料如红砖的导热系数约为(m〃K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。

16、冬天,在相同的室外温度条件下,为什么骑摩托车比步行感觉更冷?答:强制对流换热强度与流体壁面之间的相对速度有关,相对速度越大,对流换热越强。

与步行相比,骑摩托车时相对速度较大,对流换热强度大,因此人体会散失较多的热量从而感到更冷些。

皮手套和护膝,由于导热系数小且有一定厚度,增加了一层较大的导热热阻,使总传热热阻增大,从而可降低散热量,从而起到保护作用。

17、绿色住宅的一种节能方式(夏天少用空调冬天多用暖气)就是在其房屋前栽种几棵大型落叶乔木,尝试从传热学角度说明大树的作用。

答:夏天室内热负荷主要来自太阳辐射,如房屋前栽种几棵大树,枝叶繁茂会遮挡阳光,使房屋处于树荫下,可以凉快些,从而减少使用空调。

到了冬天,树叶落光,太阳光线可直射到房屋上,因而又可推迟使用暖气时间或少用暖气。

这样便可达到节能的目的。

18、滚热的食物盛在砂锅里比在铝锅里不容易冷,为什么?答:这是由于陶瓷的砂锅比金属的铝锅传热慢,锅壁又比较厚,热不容易传出来。

19、冬天时,用手摸72度的铁和600度的木材感觉一样吗,为什么?请用传热学的知识解释答:一样,因为人手感觉到的冷暖实质是热量传递的快慢,而铁的导温系数远远大于木头的导温系数。

不同的温差和不同的导热系数产生相同的热流密度,故导热效果相同。

20 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。

而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。

而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

21 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。

而空气的强制对流换热强度要比自然对流强烈。

因而在有风时从人体带走的热量更多,所以感到更冷一些。

22 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?答:首先,冬季和夏季的最大区别是室外温度不同。

夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。

而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。

因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。

因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。

根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

23 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。

所以,结霜的冰箱耗电量更大。

24 有人将一碗热稀饭置于一盆凉水中进行冷却。

为使稀饭凉得更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么?答:从稀饭到凉水是一个传热过程。

显然,稀饭和水的换热在不搅动时属自然对流。

而稀饭的换热比水要差。

因此要强化传热增加散热量,应该用搅拌的方式强化稀饭侧的传热。

25 在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?答:在其他条件相同时,实心砖材料如红砖的导热系数约为(m·K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。

因而用多孔空心砖好。

26 电影《泰坦尼克号》里,男主人公杰克在海水里被冻死而女主人公罗丝却因躺在筏上而幸存下来。

试从传热学的观点解释这一现象。

答:杰克在海水里其身体与海水间由于自然对流交换热量,而罗丝在筏上其身体与空气之间产生自然对流。

在其他条件相同时,水的自然对流强度要远大于空气,因此杰克身体由于自然对流散失能量的速度比罗丝快得多。

因此杰克被冻死而罗丝却幸免于难。

27 人造地球在卫星在返回地球表面时为何容易被烧毁?答:卫星在太空中正常运行时,其表面的热量传递方式主要依靠与太空及太阳等星体的辐射。

而在卫星返回地面的过程中,由于与大气层之间的摩擦,产生大量的热量,无法及时散失,因而易被烧毁。

28 北方深秋季节的清晨,树叶叶面上常常结霜,试问树叶上、下表面的哪一面结霜?为什么?答:霜会结在树叶上的表面。

因为清晨,上表面朝向太空,下表面朝向地面。

而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。

由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。

29 窗玻璃对红外线几乎不透明,但为什么隔着玻璃晒太阳却使人感到暖和?答:窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。

30 在太阳系中地球和火星距太阳的距离相差不大,但为什么火星表面温度昼夜变化却比地球要大得多?答:由于火星附近没有大气层,因而在白天,太阳辐射时火星表现温度很高,而在夜间,没有大气层的火星与温度接近于绝对零度的太空进行辐射换热,因而表面温度很低。

而地球附近由于大气层(主要成份是CO2和水蒸气)的辐射作用,夜间天空温度比太空高,白天大气层又会吸收一部分来自太阳的辐射能量,因而昼夜温差较小。

相关文档
最新文档