十字交叉梁基础合理基础底板宽度的计算方法

十字交叉梁基础合理基础底板宽度的计算方法
十字交叉梁基础合理基础底板宽度的计算方法

十字梁式基础计算书

十字梁式基础计算书计算依据: 1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 2、《混凝土结构设计规范》GB50010-2010 3、《建筑地基基础设计规范》GB 50007-2011 一、塔机属性 二、塔机荷载 1、塔机传递至基础荷载标准值 2、塔机传递至基础荷载设计值

三、基础验算

基础布置图 基础底面积:A=2bl-l2+2a2=2×6.2×1.4-1.42+2×0.942=17.167m2 基础中一条形基础底面积:A0=bl+2(a+l)a=6.2×1.4+2×(0.94+1.4)×0.94=13.079m2 基础及其上土的自重荷载标准值: G k=AhγC=17.167×1.4×25=600.852kN 基础及其上土的自重荷载设计值:G=1.35G k=1.35×600.852=811.15kN 1、偏心距验算 条形基础的竖向荷载标准值: F k''=(F k+ G k)A0/A=(425.4+600.852)×13.079/17.167=781.872kN F''=(F+G)A0/A=(574.29+811.15)×13.079/17.167=1055.527kN e=(M k+F Vk·h)/ F k''=(417.199+8.38×1.4)/781.872=0.549m≤b/4=6.2/4=1.55m 满足要求! 2、基础偏心荷载作用应力 (1)、荷载效应标准组合时,基础底面边缘压力值 e=0.549m≤b/6=6.2/6=1.033m

I=lb3/12+2×al3/12+4×[a4/36+ a2/2(a/3+l/2)2]=1.4×6.23/12+2×0.94×1.43/12+4×[0.944/36+0.942/2×(0.94/3+1.4/2)2]=30.136 基础底面抵抗矩:W=I/(b/2)=30.136/(6.2/2)=9.721m3 P kmin= F k''/A0-(M k+F Vk·h)/W=781.872/13.079-(417.199+8.38×1.4)/9.721=15.657kPa P kmax= F k''/A0+(M k+F Vk·h)/W=781.872/13.079+(417.199+8.38×1.4)/9.721=103.902kPa (2)、荷载效应基本组合时,基础底面边缘压力值 P min= F''/A0-(M+F V·h)/W=1055.527/13.079-(563.219+11.313×1.4)/9.721=21.137kPa P max= F''/A0+(M+F V·h)/W=1055.527/13.079+(563.219+11.313×1.4)/9.721=140.268kPa 3、基础轴心荷载作用应力 P k=(F k+G k)/A=(425.4+600.852)/17.167=59.78kN/m2 4、基础底面压应力验算 (1)、修正后地基承载力特征值 f a=f ak+ηdγm(d-0.5)=500+1.6×19.3×(1.6-0.5)=533.968kPa (2)、轴心作用时地基承载力验算 P k=59.78kPa≤f a=533.968kPa 满足要求! (3)、偏心作用时地基承载力验算 P kmax=103.902kPa≤1.2f a=1.2×533.968=640.762kPa 满足要求! 5、基础抗剪验算 基础有效高度:h0=H-δ-D/2=1400-70-16/2=1322mm

基础底板钢筋绑扎讲解

工程名称 新都丽苑A 区 施工单位 江苏南通三建集团 有限公司 交底部位 16#房基础筏板、车库顶板 工序名称 钢筋工程 交底提要: 地基与基础房间绑扎 技术负责人 交底人 接受交底人 (一)材料准备 支撑三角凳铁、火烧丝、垫块、粉笔、卷尺、装箍筋用的铁吊栏、钢筋钩、钢筋扳子、小撬棍、磨光机,E43型和E50型焊条、烘箱、电焊机具。 (二)施工准备 1、成型钢筋加工完毕,并且符合料单,有料牌便于使用且钢筋原材复试合格。 2、墙、柱轴线、边线及控制线已经放出,并通过验收。 (三)操作工艺 1、工艺流程 防水保护层上放线→绑扎集水坑、电梯井部位的底层钢筋→绑扎底板下层筋→安装底板马凳→绑扎底板及上层筋→绑扎柱、墙插筋→柱、墙插筋校正、固定→清理→验收 2、绑扎工艺 (1) 钢筋接头的选用 水平向 d ≥16采用滚轧直螺纹套筒, d <14采用绑扎搭接,搭接长度满足规范及设计要求 纵向 d ≥12采用电渣压力焊,d <10采用绑扎搭接,搭接长度满足规范及设计要求 (2)底板钢筋绑扎 1)清理基层,弹出底板钢筋间距分格线。 2)钢筋双向布置到头,在板端保证锚固长度的弯勾。 3)在钢筋下铁上,用粉笔画出底板钢筋的间距分格线。 4)钢筋接头d ≥16为直螺纹接头,d <14采用绑扎搭接、接头位置应符合设计与规范的要求。

工程名称 新都丽苑A 区 施工单位 江苏南通三建集团 有限公司 交底部位 16#房基础筏板、车库顶板 工序名称 钢筋工程 交底提要: 地基与基础房间绑扎 技术负责人 交底人 接受交底人 5)机电管线安装施工完后摆放垫块,底板下保护层厚度为50mm(桩头位置处钢筋保护层厚度为100mm),间距不大于1200mm 梅花型。垫块摆完后摆放马凳铁,马凳铁支腿要放在钢筋上。主楼及车库基础筏板内的钢筋绑扎,设马镫间距为1000,马镫上先铺设水平钢筋一根,品种、规格、型号同筏板短边方向面筋、再铺设长向钢筋,最后按照图纸铺设短边方向面筋,马镫位置正常铺设钢筋。 底板位置处的马蹬大样 ≥1500 与底板筋连接 与底板筋连接 底板垫块 钢筋支撑 集水坑位置处的马蹬大样 6)板钢筋绑扎采用八字扣,并且所有交叉点全部绑扎牢固。 7)按标高控制底板厚度,钢筋绑扎时要注意在绑扎下层钢筋时,扎头向上,在绑扎

配筋计算公式1

配筋(计算规则)率是钢筋混凝土构件中纵向受力(拉或压)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。柱子为轴心受压构件! 受拉钢筋配筋率、受压钢筋配筋率分别计算。 计算公式:ρ=A(s)/bh(0)。此处括号内实为角标,,下同。式中:A(s)为受拉或受压区纵向钢筋的截面面积;b为矩形截面的宽度;h(0)为截面的有效高度。配筋率是反映配筋数量的一个参数。 最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρ(min)。最小配筋率是根据构件截面的极限抗弯承载力M (u)与使混凝土构件受拉区正好开裂的弯矩M(cr)相等的原则确定。最小配筋率取0.2%和0.45f(t)/f(y)二者中的较大值! 最大配筋率ρ (max)=ξ(b)f(c)/f(y),结构设计的时候要满足最大配筋率的要求,当构件配筋超过最大配筋率时塑性变小,不利于抗震。 配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。 钢筋的截面积与所设计的砼结构面的有效面积的比值,称之为配筋率。 在钢筋砼结构中,钢筋的总截面积与所设计的砼结构面的有效高度与宽度的积的比值,称之为配筋率,根据配筋率的大小,其结构分为超筋、适筋、少筋截面。 钢筋面积/构件截面面积(全面积or全面积-受压翼缘面积)

梁的配筋率是梁的受压和受拉钢筋的总截面积除以梁的有效截面,有效截面是钢筋合力点到砼上面的距离。 合力点:是梁宽乘有效高度,有效高度指梁下部筋为一排筋时用高减35,下部筋为两排筋时减60 1、“柱外侧纵筋配筋率”为:柱外侧纵筋(包括两根角筋)的截面积,除以整个柱的截面积所得到的比率。 2、屋面框架梁(WKL)“上部纵筋配筋率”为:梁上部纵筋的总的截面积,除以梁的有效截面积所得到的比率。 梁的有效截面积为梁的截面宽度乘以梁的有效高度。而梁的有效高度为:梁的截面高度-35 (当梁上部纵筋为一排筋时)梁的截面高度-60 (当梁上部纵筋为两排筋时)一般设计上计算时as是纵向受拉钢筋合力点到截面受拉区边缘的距离,因此按受拉钢筋排数区域决定H-35或H-60(梁)而板H-20mm;受拉和受压要取决于梁或板的受力情况,同一条梁在梁中、梁端就不一样(连续多跨梁) 单筋截面: 忽略受压区钢筋的影响,只考虑受拉区钢筋。这样计算简单。 通常用于受弯不是很大的截面。 超筋构建或考虑延性才采用受压区钢筋的作用。

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

关于城市宽箱梁横向分布系数的取值分析

关于城市宽箱梁横向分布系数的取值分析 摘要:变截面连续箱梁桥、连续刚架桥的设计,一般均将桥跨结构视作弹性梁元,采用平面杆系程序计算。荷载偏心用增大系数法考虑,增大系数的取值对于宽跨比很大的城市桥梁具有很大的任意性。本文以某实桥为背景,采用ANSYS 结构分析通用程序计算了多个特征断面各腹板的横向分布系数。据此,对照了按荷载横向分布简化算法的计算结果,所得出的结论,可为同类工程设计提供参考。 关键词:宽箱梁;横向分布;空间分析;简化算法 Abstract: The variable cross section continuous box girder bridges, continuous rigid frame bridge design, generally will bridge structure as an elastic beam element, the plane pole-system program calculation. Eccentric load by increasing the coefficient method to consider, increase coefficient for width span ratio of big city bridges with large arbitrariness. Taking a bridge as the background, using the ANSYS general structural analysis program calculates the multiple features of the web section of transverse distribution coefficient. Accordingly, controlled by lateral load distribution algorithm of calculation results, the conclusion, for similar engineering design to provide a reference. Key words: wide box beam; transverse distribution; spatial analysis; simplified algorithm 1概述 实桥位于某高速公路交点,为三跨(42m+80m+42m)预应力混凝土上承式 拱梁组合体系桥。主梁两侧边墩处各有一片端横梁,宽1.3m,主墩中心及中跨跨中两侧各有两片横梁,宽0.4m,边跨及中跨在主拱与主梁的结合处均设置横梁,宽0.6m。主梁采用单箱三室断面,箱梁顶宽25.5m、底宽17.3m,腹板中距为5.75m 及5.8m,两边悬臂4.1m,跨中梁高2.0m。主拱腿采用钢筋混凝土单箱三室断面,宽17.3m,高1.4m,腹板中距与主梁相同。副拱采用实心矩形断面,宽17.3m,高0.6m。为保持沪杭高速公路车流畅通,主桥采用中心转体施工。主桥总体及主梁断面见图1。 图1主桥总体及主梁断面示意图单位:cm 2ANSYS板壳元空间分析 由于主桥为对称结构,计算模型取1/2模型,模型单元为SHELL63弹性壳单元,

基础底板钢筋绑扎

交底内容: (一)施工准备 1、成型钢筋加工完毕,并且符合料单,有料牌便于使用。钢筋原材复试合 技术负责人交底人接受交底人

技术负责人交底人接受交底人

技术负责人 交底人 接受交底人 技术交底记录 (表式 C2-2-1 ) 编号 TD-- 12 工程名称 凉山州委机关二期经济适用 房工程 分项工程名称 基础笩板钢筋绑扎 施工单位 攀钢集团工程技术有限公司 交底日期 2015.7.27 交底内容 : 8)板钢筋绑扎采用八字扣,并且所有交叉点全部绑扎牢固。 9)按标高控制底板厚度, 钢筋绑扎时要注意在绑扎下层钢筋时, 扎头 向上, 在绑扎上层时,扎头向下,并及时将扎头扳向钢筋网片内,以保证浇 筑混凝土后 钢丝不露出混凝土表面。 6)机电管线安装施工完后定摆位放焊垫缝块离,帮底条板下1保63 护层厚度为 35mm ,间距不 大于 1200mm 型梅焊花条型。垫块摆端完部后2摆0m 放m 以马上 凳铁 垫块在 筋上。且增加垫块在马凳铁上划 放好钢筋。 注:马凳铁的高度为横筋的外 筋边到上撑铁的层外边 网南北方向的钢筋 7)采用帮条焊连接时参见下图施工 弧坑拉出方位

技术负责人 交底人 接受交底人 交底内容 : 2)箍筋弯钩叠合处,在梁中间应交叉绑扎,箍筋弯钩平直长度需符合设计 规定。绑丝头要求在绑扎时丝头朝梁内。 3)梁端的第一个箍筋设置在距节点边缘 50mm 。 (3)墙体、暗柱钢筋绑扎 1)地下室外墙外侧钢筋为竖筋在外,水平筋在内,双排钢筋须甩出墙面高 度不小于 36d ,且相邻两接头间错开距离应不小于 36d 。 2)地下室外墙双排钢筋锚入底板长度应不小于 30d 并且要有弯头。 3)地下室内墙双排钢筋须甩出底板面高度不小于 300 mm ,且相邻两接头 间错开距离不小于 300 mm 。(依据设计要求取 300 mm ) 4)地下室内墙双排钢筋锚入底板长度应不小于 250mm ,并且要有弯头。 5)地下室墙体暗柱主筋应锚入底板并与上下铁绑扎牢固。为保证暗柱主筋 不偏位,还需在底板内绑扎两个箍筋,距底板面 50mm 处绑扎两个箍筋,在 500mm 处在绑扎两个箍筋。 10)底板、梁的钢筋绑扎完毕后,根据底板上弹好的内、外 线进行插筋,并与底板、梁钢筋绑扎牢固。 (2)梁钢筋: 1)绑扎梁上部纵 墙、暗柱位置 向钢筋 箍筋可用套扣方法绑扎,不得顺扣。

十字交叉梁基础计算书

十字交叉梁基础计算书 三河家园26楼工程;工程建设地点:盐都新区南纬路南侧;属于框架剪力结构;地上11层;地下0层;建筑高度:32.95m;标准层层高:2.85m ;总建筑面积:3849.00平方米;总工期:180天。 本工程由盐城职苑房地产开发有限公司开发,江苏铭城建筑设计院有限公司设计及勘察,江苏科苑建设项目管理有限公司监理,盐城市兴达建筑工程有限公司组织施工;由朱德庆担任项目经理。 本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。 一、塔吊的基本参数信息 塔吊型号: QTZ31.5;塔吊起升高度H: 40.000m; 塔吊自重G: 212.6kN;最大起重荷载Q: 40.000kN; 桩间距l: 2.6m;桩边长d: 0.350m; 桩钢筋级别: HRB335;混凝土强度等级: C35; 交叉梁截面宽度: 1.2m;交叉梁截面高度: 1.200m; 交叉梁长度: 6.5m;桩入土深度: 12.000m; 保护层厚度: 100.00mm;交叉梁钢筋级别:HRB335; 塔吊倾覆力矩M: 380.4kN·m;塔身宽度B: 1.500m; 二、塔吊对交叉梁中心作用力的计算 1. 塔吊自重: G=21 2.6kN; 2. 塔吊最大起重荷载: Q=40kN; 作用于塔吊的竖向力: F k=212.6+40=252.6kN; 3、塔吊弯矩计算 风荷载对塔吊基础产生的弯矩计算: M kmax=380.4kN·m;

独立基础底板配筋构造及计算方法

本文分为两个部分,一个是独立基础底板配筋构造,一个是独立基础底板配筋计算。让我们通过实际例子,明确图中的平法标注、钢筋和基本信息,学会钢筋长度和根数的计算。 ▍图1 独立基础底部配筋 首先看集中标注和原位标注。 集中标注的内容有什么呢? 包括:编号、截面竖向尺寸、高度、X和Y方向的底部钢筋等。 原位标注的内容有什么呢? 包括:底部的平面尺寸等。 通过原位标注和集中标注的信息,我们知道图1所示独立基础底部配筋的基本情况。 需要知道的是,钢筋的重量=长度*理论重量。 而理论重量可以通过钢筋的直径确定。我们要做的就是根据平法图集的构造规定,确定每根钢筋的直径、长度、根数,从而进行钢筋的计算。 通过原位标注和集中标注的信息,我们可以知道了钢筋的直径、每一个方向的间距,那么如何确定每根钢筋的长度,如何根据间距确定根数呢?

▍图2 某独立基础施工图 我们知道,16G图集分为两部分:第一部分是制图规则,第二部分是构造详图(包括一般构造和各个构件的标准构件详图)。 一般构造的内容是在使用构造详图时,为我们提供基础性的数据,这里暂且不谈。 那么,对于每一个构件的标准构件详图,就是用来确定不同的钢筋之间,它的长度、间距、如何排布等问题,通过查阅每一个构件的标准构造详图,结合它的制图规则来整个确定钢筋的布置和构成。 我们要做的就是通过制图规则和构造详图,将平面的标注的图纸,还原成立体的构件。也就是我们图集的使用方法。

▍图3 图集16G101-3第67页 图3所示是两种独立基础的底板配筋构造(一个是阶形,一个是坡形)。我们看这个图的时候,觉得钢筋一个疏一个密,有的人可能会问,那是不是阶形的钢筋布置就密一些,坡形的 就疏一些呢? 不是的。图3所示只是一个例子,具体的钢筋布置的疏密是由设计人员决定的,不是预算人 员决定的。我们学习这张图,就是为了学会钢筋的排布规则,用以确定钢筋计算的信息而已。如图3所示,独立基础底部的X和Y方向都是受力钢筋。那双向受力钢筋的长度如何确定?我们可以依据保护层的定义进行确定:用构件的外截面尺寸,减去两个保护层的厚度,就得 到了受力钢筋的长度。X方向和Y方向均是这样。

桥博和midas考虑有效分布宽度的快速输入方法

桥博和midas考虑有效分布宽度的快速输入方法 在桥博和midas中,考虑有效分布宽度的属输入都不是很轻松的事情,桥博要求输入上下翼缘的有效宽度,midas的非内嵌截面要求输入有效截面相对原截面的惯性矩折减系数;相对来说,桥博数据较直接、简单方便;midas数据较底层,麻烦、数据处理量较大;但即使是使用桥博,有效分布宽度的处理也是件工作量很大的工作;老任利用朋友们开发的cad 小工具软件,总结出一套有效宽度处理的方法,相对比较方便快捷;下面以一个例子的方式介绍一下这种方法的操作过程和工具软件;这个过程的总体思路是: 第一步、在cad中使用yxkd程序计算出翼缘的折减后宽度曲线,并使用程序将该曲线坐标输出到excel中,计算得到折减系数沿跨长的分布函数; 第二步、使用桥博通用截面拟合功能输入截面有效宽度; 第三步:对于使用midas程序,可先使用进行第一步、第二步得到桥博模型,然后按一次落架方式计算,再使用报表输出原截面和有效截面的截面特性,得到惯性矩折减系数; 1、例子资料 例子为计算跨径34.35+48+34.35m的变截面连续箱梁,翼缘悬臂2.5m内,标准断面上缘箱室净宽6.073m;下缘净宽5.763m;梁端至 边支座中心线距离为0.55m; 2、计算有效分布宽度系数 为简单起见,全桥的翼缘计算宽度统一取标准断面的翼缘实际宽度,不考虑由于腹板加宽造成的翼缘宽度差异;工程上,类似取舍造成的误差微乎其微; 计算有效分布宽度使用张文锋工程师开发的lisp程序--yxkd,该程序在程序编制的过程中,笔者对张树仁推荐的有效分布宽度折减系数回归方程进行了计算研究,发现ps表达式值相对规范表格值误差较大,最大达到20%左右;这个误差可能无法接受,因此未采用 该公式;经过检索文献,发现桂林工学院景天虎拟合公式较为合理,该公式为:

十字梁板式塔吊基础计算

十字梁板式塔吊基础计算

十字梁板式塔吊基础计算 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书主要计算依据:施工图纸、《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2011)、《建筑结构荷载规范》(GB50009-2012)、《建筑安全检查标准》(JGJ59-2011)、《混凝土结构设计规范》(GB50010-2010)、《建筑桩基技术规范》(JGJ94-2008)等编制。 本工程用《塔吊使用说明书》、地质勘探报告和施工现场总平面布置图等。 基本参数 1、塔吊基本参数 塔吊型号:QTZ63;塔吊自重Gt:450.8kN; 标准节长度b:2.5m;最大起重荷载Q:60kN; 塔身宽度B:2.5m;主弦

杆材料:角钢/方钢; 塔吊起升高度H:60m;主弦杆宽度c:180mm; 非工作状态时: 额定起重力矩Me:600kN·m;基础所受的水平力P:20kN; 工作状态时: 额定起重力矩Me:600kN·m;基础所受的水平力P:50kN; 2、风荷载基本参数 所处城市:风荷载高度变化系数μz:0.62; 地面粗糙度类别:D类密集建筑群,房屋较高;非工作状态时,基本风压ω0:0.55kN·m; 工作状态时,基本风压ω0:0.55kN·m; 3、基础基本参数 交叉梁截面高度h1:1m;交叉梁宽t:0.5m; 基础底面宽度Bc:6m;基础底板厚度h2:0.4m; 基础上部中心部分正方形边长a1:4m;混凝土强度等级:C35;

基础底板钢筋绑扎

、基础底板钢筋绑扎

————————————————————————————————作者:————————————————————————————————日期:

技术交底记录(表式C2-2-1)编 号 TD-- 12 工程名称 凉山州委机关二期经济适用 房项目 分项工程名称基础笩板钢筋绑扎 施工单位攀钢集团工程技术有限公司交底日期2015.7.27 交底内容: (一)施工准备 1、成型钢筋加工完毕,并且符合料单,有料牌便于使用。钢筋原材复试合格。防水层及防水卷材已通过监理检查验收。 2、核对钢筋型的号、直径、形状、尺寸和数量是否与材料单料牌相符。如有错漏,应纠正增补。 2、墙、柱轴线、边线及控制线已经放出,并通过预检。 (二)材料准备 1、支撑三角凳铁、火烧丝、垫块、粉笔、卷尺、塔吊,装箍筋用的铁吊栏,钢筋钩,钢筋扳子、小撬棍、磨光机,E43型和E50型焊条,烘箱,电焊机具。 2、准备绑扎的用的铁丝、等绑扎工具。 (三)操作工艺 1、工艺流程 清理弹线→摆放板底下铁→钢筋连接→摆放板底上铁→钢筋连接→放置砼垫块→进行机电管线安装施工→放置马凳铁→摆放板顶下铁→钢筋连接→摆放顶板上铁→钢筋连接→墙、墙柱插筋→并进行清理。 2、绑扎工艺 (1)底板钢筋 1)清理基层,弹出底板钢筋间距分格线。 2)分格线弹好后,需在已做好的地下室外墙防水处立好防护板,防止底板钢筋在绑扎时将已做好的防水层破坏。 3)钢筋双向布置到头,在板端保证锚固长度的弯勾。 4)在钢筋下铁上,用粉笔画出底板钢筋的间距分格线。 5)钢筋接头方式、位置应符合设计与规范的要求。 技术负责人交底人接受交底人 本表由施工单位填写,交底单位与接受交底单位各存一份。共8页第1页

几种配筋计算方法

第一章梁 第一节框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座 锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 注意:下部钢筋不论分排与否,计算的结果都是一样的,所以我们在标注梁的下部纵筋时可以不输入分排信息。 以上三类钢筋中均涉及到支座锚固问题,那么,在软件中是如何实现03G101-1中关于支座锚固的判断呢? 现在我们来总结一下以上三类钢筋的支座锚固判断问题:支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae, 0.5Hc+5d}.

钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为 弯锚,取Max{Lae,支座宽度-保护层+15d}. 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d} 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩 值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋 间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)+ 2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1

注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d.(如下图所示) 7、吊筋 吊筋长度=2*锚固+2*斜段长度+次梁宽度+2*50,其中框梁高度>800mm夹角=60° ≤800mm夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为Ln/3+中间支座值+Ln/3; 第二排为Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨 长时,其钢筋长度: 第一排为该跨净跨长+(Ln/3+前中间支座值)+(Ln/3 +后中间支座值); 第二排为该跨净跨长+(Ln/4+前中间支座值)+(Ln/4 +后中间支座值)。

50米箱梁横向计算说明书

50米预应力箱梁横向设计计算 一、箱梁横断面构造 引桥采用多跨预应力混凝土连续梁,其标准横断面布置如图1所示,全桥采用分离式双幅单箱单室截面,桥面板内设置横向预应力,斜腹板内不设竖向预应力钢筋。单幅箱梁跨中梁高2.8m,斜腹板宽度0.50m,底板厚度0.25m;桥面板悬臂端部厚度0.18m,悬臂根部厚度0.5m,箱室顶板跨中厚度0.25m。为了保证荷载传递顺畅,所有的顶板、 二、箱梁横向分析 1.结构离散 箱梁采用单箱单室截面形式,横向分析取纵桥向单位长度箱形框架考虑。箱梁横向分析计算采用桥梁结构计算软件《qjx》进行结构分析,取箱梁为受力分析对象,共划分为54个单元和54个节点,支承形式采用简支形式,结构按施工及使用受力顺序划分为3个阶段,其箱梁结构离散图详见图2所示。

根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》,汽车横桥向距路缘石的最小距离为0.5m ,挂车横桥向距路缘石的最小距离为1.0m ,桥面板采用双悬臂梁结构图式,计算车轮在桥面板上的分布宽度。 汽车—超20级和挂车—120的荷载主要技术指标详见表1。 桥梁设计技术规范规定,箱梁横断面位置上汽车荷载可以按1~4车道布置,其横向布置可以在悬臂板或中板上,而挂车全桥只能布置一辆,且位置一般情况下在专用车道上,因而挂车荷载仅按作用在中板上考虑。 以下仅介绍汽车荷载作用下板的有效分布宽度计算过程: (1)、悬臂板荷载有效分布宽度

悬臂板上的集中荷载在垂直于板跨方向的分布宽度,按下式计算: '21b a a += 式中:—1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —'b 集中荷载通过铺装层分布于板顶的宽度外缘至腹板边的距离。 (2)、跨中板荷载有效分布宽度 a) 车轮作用于板的跨中时: 对于一个车轮荷载,板的有效分布宽度为: 3/1L a a +=,但不小于L 3 2 。 对于两个或几个相同车轮荷载,当一个车轮荷载计算的分布宽度有重叠时,车重取其总和,而分布宽度则按边轮分布外缘计算: 3/1L d a a ++=,但不小于L d 3 2 + 。 式中:—1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —L 板的计算跨径; —d 多个车轮时,外轮的中距。 b) 车轮作用于板的支承处时: 对于一个车轮荷载,板的有效分布宽度为: t a a +=1 式中: —1a 垂直于板跨方向车轮通过铺装层后的分布于板顶的尺寸; —t 板的厚度; (3) 、车轮作用于板的支承附近处时: 在车轮荷载作用下,按支承处板的有效分布宽度45o 刚性扩散角与跨中板有效分布宽度接顺。

十字梁计算DOC

十字梁节点模板支架计算书 七师五五工业园区消防危化应急救援中心工程;工程建设地点:五五工业园区;属于框架结构;地上3层;地下0层;建筑高度:15.7m;标准层层高:3.9m ;总建筑面积:3884.84平方米;总工期:135天。 本工程由五五工业园管委会投资建设,农七师勘察设计研究院设计,农七师勘察设计研究院地质勘察,新疆银通建设监理有限公司监理,奎屯广厦建筑安装有限责任公司组织施工;由宋东平担任项目经理,胡文欣担任技术负责人。 主次梁模板支架的计算依据有: 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); 《混凝土结构设计规范》GB50010-2002; 《建筑结构荷载规范》(GB 50009-2001); 《钢结构设计规范》(GB 50017-2003)等规范编制。 一、参数信息 1、结构参数: 结构层高(m):7.3;板厚(mm):90; 节点处梁底增加承重立杆1排4根; 2、主梁支模架体构造参数: 梁截面高度(mm):600;梁截面宽度(mm):300; 承重架支撑形式:小楞垂直于梁截面;梁底增设承重杆数量:4; 立杆沿梁跨度方向间距(m):1.2;梁底纵向支撑数量:4; 梁两侧立杆间距(m):1.2;梁底增加支撑小横杆数量:1; 立杆步距(m):1.5;立杆上端伸出至模板支撑点长度(m):0.3; 立杆承重连接方式:单扣件连接; 3、次梁支模架体构造参数: 梁截面高度(mm):600;梁截面宽度(mm):300; 承重架支撑形式:小楞垂直于梁截面;梁底增设承重杆数量:0;

立杆沿梁跨度方向间距(m):1;梁底纵向支撑数量:3; 梁两侧立杆间距(m):1;梁底增加支撑小横杆数量:0; 立杆步距(m):1.5;立杆上端伸出至模板支撑点长度(m):0.3; 立杆承重连接方式:单扣件连接; 4、荷载参数: 模板和方木的自重荷载(kN/m2):0.15;砼倾倒振捣荷载(kN/m2):2;砼与钢筋自重荷载(kN/m2):25;施工均布荷载(kN/m2):1; 5、材料参数: 钢管直径(mm):Ф48×3.5; 面板类型:胶合面板;面板弹性模量值(N/mm2):6000; 面板厚度(mm):20;抗弯强度设计值(N/mm2):13; 方木截面宽度(mm):60;方木截面高度(mm):80; 抗压强度设计值(N/mm2):16;抗弯强度设计值(N/mm2):17; 方木弹性模量值(N/mm2):9000;抗剪强度设计值fv(N/mm2):1.7; 6、结构示意图: 主梁截面示意图

独立基础底板配筋构造及计算

独立基础底板配筋构造及计算 本文通过一个是独立基础底板配筋构造,一个是独立基础底板配筋计算的实际例子,明确图中的平法标注、钢筋和基本信息,学会钢筋长度和根数的计算。 图1 独立基础底部配筋 首先看集中标注和原位标注。 集中标注的内容有什么呢? 包括:编号、截面竖向尺寸、高度、X和Y方向的底部钢筋等。 原位标注的内容有什么呢? 包括:底部的平面尺寸等。 通过原位标注和集中标注的信息,我们知道图1所示独立基础底部配筋的基本情况。 需要知道的是,钢筋的重量=长度*理论重量。

而理论重量可以通过钢筋的直径确定。我们要做的就是根据平法图集的构造规定,确定每根钢筋的直径、长度、根数,从而进行钢筋的计算。 通过原位标注和集中标注的信息,我们可以知道了钢筋的直径、每一个方向的间距,那么如何确定每根钢筋的长度,如何根据间距确定根数呢? 图2 某独立基础施工图 我们知道,16G图集分为两部分:第一部分是制图规则,第二部分是构造详图(包括一般构造和各个构件的标准构件详图)。 一般构造的内容是在使用构造详图时,为我们提供基础性的数据,这里暂且不谈。 那么,对于每一个构件的标准构件详图,就是用来确定不同的钢筋之间,它的长度、间距、如何排布等问题,通过查阅每一个构件的标准构造详图,结合它的制图规则来整个确定钢筋的布置和构成。 我们要做的就是通过制图规则和构造详图,将平面的标注的图纸,还原成立体的构件。也就是我们图集的使用方法。

图3 图集16G101-3第67页 图3所示是两种独立基础的底板配筋构造(一个是阶形,一个是坡形)。我们看这个图的时候,觉得钢筋一个疏一个密,有的人可能会问,那是不是阶形的钢筋布置就密一些,坡形的就疏一些呢? 不是的。图3所示只是一个例子,具体的钢筋布置的疏密是由设计人员决定的,不是预算人员决定的。我们学习这张图,就是为了学会钢筋的排布规则,用以确定钢筋计算的信息而已。 如图3所示,独立基础底部的X和Y方向都是受力钢筋。那双向受力钢筋的长度如何确定? 我们可以依据保护层的定义进行确定:用构件的外截面尺寸,减去两个保护层的厚度,就得到了受力钢筋的长度。X方向和Y方向均是这样。

十字交叉梁基础计算书

十字交叉梁基础计算书 一、塔吊的基本参数信息 塔吊型号: QTZ40;塔吊起升高度H: 31.500m;塔吊倾覆力矩M: 400kN.m;塔身宽度B: 1.500m; 塔吊自重G: 245kN;最大起重荷载Q: 40.000kN;桩间距l: 2.828m;桩直径d: 0.300m; 桩钢筋级别: III级钢;混凝土强度等级: C35; 交叉梁截面宽度: 0.8m;交叉梁截面高度: 1.300m;交叉梁长度: 6m;桩入土深度: 25.000m; 保护层厚度: 50mm;空心桩的空心直径: 0.160m。 二、塔吊对交叉梁中心作用力的计算 1. 塔吊自重G=245kN 2. 塔吊最大起重荷载Q=40kN 作用于塔吊的竖向力 F=1.2×245+1.4×40=350kN 塔吊的倾覆力矩 M=1.4×400.000 = 560kN.m 三、交叉梁最大弯矩和桩顶竖向力的计算 计算简图:

十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。两段梁四个支点力分别为: R A =N/4+qL/2+3M/2L R B =N/4+qL/2-3M/2L R C =N/4+qL/2 R D =N/4+qL/2 两段梁的最大弯矩分别为: M1=N(L-b)2/16L+qL2/8+M/2 M2=N(L-b)2/16L+qL2/8 得到最大支座力为 Rmax=R B , Rmin=R A ,最大弯矩为 Mmax=M 1 。 b =21/2B=21/2×1.500 =2.12 m,L = 21/2l=21/2×2.828 =3.999m 交叉梁自重:q=25×0.800×1.300=26.000 kN/m 桩顶竖向力 R max : R max =N/4+q×L/2+3M/(2L)=350.000/4+26.000×3.999/2+3×560.000/(2×3.999) = 349.54kN R min =N/4+q×L/2-3M/(2L)=350.000/4+26.000×3.999/2-3×560.000/(2×3.999) = -70.57kN 交叉梁得最大弯矩 M max :

对截面有效宽度的理解

箱梁截面有效宽度的理解和应用 鲁金玉 摘要本文从分析截面产生的剪力滞效应开始,阐述了考虑截面有效宽度的原因、介绍了“新桥规”对有效宽度的计算的妥善方法,以及使用中的使用场合、计算过 程以及介绍了现行桥梁设计通用程序《桥梁博士》对截面有效宽度的考虑。 关键词剪力滞有效宽度桥规桥梁博士 1、剪力滞与箱梁有效宽度 T梁、箱梁、Π行等带肋梁结构在外力作用下产生弯曲内力和变形,通过梁肋的剪切变形传递给翼板。剪应变在向翼板内横向传递的过程中是不均匀的,在梁肋与翼缘板的交接处最大,随着与梁肋距离的增加而逐渐减小,使翼板远离肋板处的纵向位移滞后于肋板边缘处,使弯曲应力的横向分布呈曲线形状(如图1)。 图1 翼缘的剪力分布 这就与初等梁的弯曲理论所得到的均匀分布的弯曲应力的平截面假定不一致。由翼板的剪切变形而造成的弯曲正应力沿着梁宽度方向不均匀分布。这种现像称为“剪力滞(后)效应(shear-lag effect)”。而这个应力峰值通常大于我们按初等梁理论计算出来的值。早在二十

世纪初就有人进行这方面的研究,认为剪力滞后效应可能导致钢箱梁截面的严重破坏。因此工程设计人员提出了“有效宽度”的概念,即将翼缘实际宽度按某个系数或者某种规律折减为计算宽度,使折减后的宽度按初等梁理论算得的应力值和实际的峰值接近,以确保结构的安全。 2、有效宽度的几何计算方法 有效分布宽度问题, 实质上是以剪力滞理论为基础。用精确的理论来分析翼缘应力的不均匀分布规律是比较复杂的, 尤其不便于工程中的应用。为了既能利用简单的初等梁理论公式, 又能得到接近于翼缘实际应力的最大值, 便提出“翼缘有效宽度”的概念,并且由T.V.卡曼首先解决, 一直沿用至今。翼缘有效宽度的简单定义是按初等梁理论的公式也能算得与真实应力峰值接近相等的那个翼缘折算宽度。它的几何解释是:如图二中的真实应力峰值σmax为高度的阴影矩形面积等于真实的应力曲线所包围的面积,即阴影线矩形面积的边长,便是翼缘的有效宽度,数学表达式为: 式中:be为每侧翼缘的有效宽度,b为每侧翼缘的净宽度,t为翼缘的厚度,σmax为腹板与翼板连接处的应力峰值,x为沿跨长方向的坐标,y为沿横截面宽度方向的坐标。 图二截面有效宽度计算示意图 从式中可知, 翼缘有效宽度是根据翼缘内的应力体积与折算截面的翼缘内应力体积相等的原理换算得来的。有效宽度与实际宽度之比称为有效宽度比, 即φ=be/b, 它反映翼板

桥博箱梁设计技术标准

普通箱梁及预应力箱梁设计标准 本工程箱梁设计在满足桥梁相关规范的基础上,还应满足以下要求: 一、计算部分:(设计荷载标准为公路-I级,结构重要性系数1.1) 1.桥梁全宽8m的匝道在内力计算时,均按双车道进行计算。但 对于抗扭计算及抗倾覆计算需同时考虑单车道进行验算复核。 5.体系温差按升降温30 C°考虑。 6.活载横向分布系数在多车道折减的基础上乘1.2的偏载系数。 (例:3车道,则横分系数为3x0.78x1.2=2.808)

7.桥博中结构自重系数取1.05。 8.结构内力按照全截面计算,估算受拉钢筋面积时,有效宽度 按照新桥规第4.2.3条规定计算,受拉区悬臂考虑有效分布宽度,受拉区箱室顶、底板考虑有效分布宽度。 9.预应力箱梁张拉控制应力为0.73f pk=1357.8MPa。 10.注意应按新桥规第5.2.9条计算截面抗剪要求。 二、施工工艺要求: 1.对于预应力钢筋混凝土箱梁,要求强度及模量达100%时方可 张拉预应力,龄期不小于7天。 2.箱梁梁端顶板张拉工艺注意梁端应力及强度控制。 3.取消预应力钢筋超张拉。 三、箱梁外形: (1)、普通箱梁顶板厚为0.25米,底板厚为0.22米,底板不加厚。预应力箱梁底板、顶板厚为0.25米,底板厚为0.22米。 (跨径超过35米,在支点附近随腹板加厚段加厚底板:底板厚0.3~0.4米),边跨梁端底板不加厚。 (2)、桥宽8米时,横断面采用单箱单室,普通钢筋混凝土箱梁腹板厚度加厚段采用60cm,正常段取40cm,预应力混凝土箱梁腹板厚度加厚段采用70cm,正常段取50cm。连接墩位置边横梁因放置支座需要加宽。 桥宽8<B≤10米时,横断面采用单箱双室,普通钢筋混凝土箱梁腹板厚度加厚段采用50cm,正常段取30cm;预应力混凝

相关文档
最新文档