十字交叉梁基础计算书
塔吊十字梁地基稳定性验算计算书

十字交叉梁天然基础计算书计算依据:《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)《地基基础设计规范》(GB50007-2011)《建筑结构荷载规范》(GB50009-2012)《建筑安全检查标准》(JGJ59-2011)《混凝土结构设计规范》(GB50010-2010)一、参数信息1.塔吊参数2.梁参数3.地基参数4.土层参数二、塔吊抗倾覆稳定性验算1.自重荷载以及起重荷载1)塔机自重标准值:Fkl =G+G1+G2+G3+G4=251+37.4+3.8+19.8+89.4=401.40kN2)起重荷载标准值:F qk=60.00kN3)竖向荷载标准值:F k= F k1+ F qk=401.40+60.00=461.40kN4)基础及其上土自重标准值:G k=G11+G21=609.06+0.00=609.06kN 2.风荷载计算1)工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔基所受风均布线荷载标准值(ω=0.20 kN/m2)q sk =0.8×α×βz×μS×μZ×ω×α×B×H/H=0.8×1.2×1.59×1.95×1.32×0.20×0.35×1.6 =0.44kN/m②塔机所受风荷载水平合力标准值F vk = qsk·H=0.44×43=18.92kN③基础顶面风荷载产生的力矩标准值M sk =0.5 Fvk·H=0.5×18.92×43=406.82kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值①塔机所受风线荷载标准值(深圳市ω′=0.75kN/m2)q sk ′=0.8×α×βz×μs×μz×ω′×α×B×H/H=0.8×1.2×1.69×1.95×1.32×0.75×0.35×1.6 =1.75kN/m②塔机所受风荷载水平合力标准值F vk ′=qsk′·H=1.75×43=75.42kN③基础顶面风荷载产生的力矩标准值M sk ′=0.5 Fvk′·H=0.5×75.42×43=1621.52kN·m3.基础顶面倾覆力矩计算1)工作状态下塔机倾覆力矩标准值M k =M1+M2+M3+M4+0.9(M5+Msk)=(37.4×22)+(3.8×11.5)+(-19.8×6.3)+(-89.4×11.8)+0.9×(m ax(60×11.5,10×50)+406.82)=673.98kN·m2)非工作状态下塔机倾覆力矩标准值Mk ′=M1+M3+M4+Msk′=(37.4×22)+(-19.8×6.3)+(-89.4×11.8)+1621.52=1264.66kN·m比较上述两种工况的计算,可知塔机在非工作状态时对基础传递的倾覆力矩最大,故应按非工作状态的荷载组合进行地基基础设计。
浅基础(十字交叉梁)课程设计

《土力学及基础工程》课程设计任务书
浅基础(十字交梁)基础设计
一、工程概况
某工程为两跨钢筋混凝土框架结构,高度为5层,丙级建筑,设3排柱,其柱网平面布置如下图所示: 2134A
B
C
700070007000y
x
O 85006500
已知:1、柱截面尺寸为500×500; 2、基床系数k=5MN/m 3;
3、作用在基础顶面的荷载(弯矩作用于y 轴方向)为:
A 轴
B 轴
C 轴 F/kN
My/kNm F/kN My/kNm F/kN My/kNm 2050
305 2400 210 1800 250
二、工程地质条件
地表以下土层构成如下:
1、人工填土0.0~-1.2m ;粘性土-1.2~-7.2m ;细砂-7.2m 以下;地下水位在细砂层以下;标准冻深为0.60m 。
2、土的主要物理力学指标
土层
(%)ω 3(/)kN m γ e (%)L ω (%)P ω ()ak f kPa ()s E kPa 粘性土
22.8 18.5 0.771 33.8 18.6 110 5800 细砂
18.8 人工填土 17.8
三、设计内容
1、确定基础埋深;
2、确定持力层承载力特征值;
3、确定基础形式、尺寸;
4、验算地基强度、变形;
5、按winkler地基模型进行基础结构设计;
6、完成基础设计计算书一份;
7、绘制基础施工图。
四、设计时间为一周
五、计算书。
十字交叉条形基础的计算及调整

十字交叉条形基础的计算及调整十字交叉条形是一种常见的基础结构,通常用于建筑物的混凝土地基。
这种基础具有较好的承重能力和稳定性,但在建造时需要严格依照规定的要求进行计算和调整。
十字交叉条形基础的计算要素主要包括以下四个部分:1. 土壤的承载能力:土壤承载能力是指土壤能够承受的最大载荷。
计算十字交叉条形基础时,需要首先确定土壤的承载能力。
2. 建筑物的荷载:建筑物的荷载是指建筑物施加在地基上的荷载,包括自身重量、墙体、地板、屋顶等荷载。
3. 条形基础的尺寸:条形基础的尺寸包括长度、宽度和深度等方面。
不同的建筑物荷载需要不同尺寸的条形基础来支撑。
4. 混凝土强度:混凝土强度是指混凝土的承载能力。
在条形基础的设计中,混凝土的强度必须达到规定的标准。
在进行十字交叉条形基础的计算和调整时,需要采取以下步骤:1. 确定土壤的承载能力,这是计算条形基础的基础步骤。
通过进行现场勘测或者进行室内试验,可以得出土壤的承载能力。
2. 确定建筑物的荷载,在确定荷载大小的同时,还要考虑风荷载、地震荷载等因素的影响。
3. 根据计算结果确定条形基础的尺寸。
主要考虑的是条形基础的长度、宽度和深度等方面,以确保基础足够承载建筑物的荷载。
4. 确定混凝土的强度,以确保基础能够稳定承载建筑物的荷载。
5. 完成计算和调整后,还需要进行模型仿真或者现场试验,以验证计算结果的准确性和可靠性。
总之,在进行十字交叉条形基础的计算和调整时,需要充分考虑土壤的承载能力、建筑物的荷载、条形基础的尺寸和混凝土强度等因素,并且需要在模型仿真或者实际试验中进行验证,确保基础结构的质量和稳定性。
11-2 十字交叉条形基础计算

第六节十字交叉条形基础柱下十字交叉条形基础是由柱网下的纵横两组条形基础组成的空间结构,柱网传来的集中荷载、弯矩作用在两组条形基础的交叉点上。
目前在设计中一般采用简化方法:柱荷载按一定原则分配到纵横两个方向的条形基础上,然后分别按单向条形基础进行内力计算与配筋。
满足变形协调条件: 纵、横基础梁在交叉节点上的位移相等。
一、节点荷载的初步分配1. 节点荷载的分配原则满足静力平衡条件: 节点分配在纵、横基础梁上的荷载之和,应等于作用在该节点上的荷载;2. 节点荷载分配方法(1)边柱节点(图b)NS b S b S b N yy x x xx x +=44NS b S b S b N yy x x y y y +=4b x 、b y ──x 、y 方向的基础梁底面宽度,S x 、S y ──x 、y 方向的基础梁弹性特征长度;k s ──地基的基床系数;E ──基础材料的弹性模量;I x 、I y ── x 、y 方向的基础梁截面惯性矩。
44x s x x b k EI S =44 ys yy b k EI S =(2)内柱节点(图c)(3)角柱节点(图d)NS b S b S b N yy x x xx x +=NS b S b S b N yy x x y y y +=一般公式与内柱节点相同。
当角柱节点有一个方向伸出悬臂时(悬臂长度可取),则荷载分配为y y S l )75.0~6.0(=NS b S b S b N yy x x x x x +=ββNS b S b S b N yy x x yy y +=β式中值可查规范表β二、节点荷载的调整1.计算调整前的地基平均反力──梁基础上竖向荷载的总和;A ──梁基础支撑总面积;── 梁基础节点处重叠面积之和。
+N p A A∑=∆∑∑N∑∆A 2.节点处(单位面积)地基反力需增加量Ap p A∆∑∆=3.节点在x 、y 方向应分配荷载增量──节点处重叠面积。
Tc4208十字梁塔吊基础方案带计算公式

一、编制依据:十二、工程概况:1.建筑和结构概况2.自然概况本场地土质自上而下为:1)素填土、(2)粉质粘土、(3)中细砂、(4)粗砂、(5)强风化片麻岩。
工程室外设计地平为绝对标高57.4m,为避免塔吊基础与后期室外管线地面等冲突,以减少拆除费用,将塔吊基础上平标高定为绝对标高56.5m。
考虑现场地质条件,该处绝对标高52米以上均为素填土,且下层粉质粘土承载力(140 kPa)均不能满足塔吊要求的基础承载力200 kPa,因此经研究采用同主体基础一样的预应力高强混凝土管桩基础。
十三、塔吊布设及基础验算1.布设位置:根据工程实际需要及集团公司塔吊调用情况,现场在两栋楼间拟设TC4208塔吊1台,做为主体工程施工阶段主要垂直运输工具。
塔吊位置平面布置见后附图。
2、塔吊基础设计:1)考虑安全性、经济性要求,地基拟采用预应力高强混凝土管桩基础,共设5根。
塔吊基础地基施工方法如下:桩机作业范围内的场地挖土(同楼一起挖),挖至绝对标高55.30,放线打桩,截桩,人工清土至标高,浇筑垫层,垫层上平比桩顶(绝对标高为55.05米)低5㎝,绑扎钢筋,支设模板,预埋螺栓,浇筑C30混凝土,砼浇筑12h后浇水养护。
承台浇筑后实体强度达到设计强度100%时方可进行塔吊安装工作。
桩头与承台连接参见图集L10G40中规定执行操作,填芯砼强度C35,采用微膨胀砼浇筑。
3、承载力验算:1)、参数塔吊型号: TC4208;塔吊起升高度H: 30.000m;塔吊倾覆力矩M: 400kN.m;塔身宽度B: 2.500m;塔吊自重G: 260kN;最大起重荷载Q: 40.000kN;桩间距l: 4.3m;桩直径d: 0.400m;桩钢筋级别: III级钢;混凝土强度等级: C30;交叉梁截面宽度: 1.2m;交叉梁截面高度: 1.200m;交叉梁长度: 7.07m;桩入土深度: 12.500m;保护层厚度: 25.000mm。
2.TC4208塔吊基础验算:塔身重量:P=260KN基础承台自重:G=(16.2m2×1.2m)×25 KN/ m2 =486KN桩自身重量(按桩直径R=0.4m,长l=12.5米):G1=3.14×0.4×13×25×5=204.1KN桩竖向承载力验算: 1).单桩承载力验算:1、塔吊基础要求承载力为200 KN/ m 22、塔吊基础承台面积S=7.07×1.2+(7.07-1.2)×1.2+[(2.5/2-0.6×1.414)×1.414]2/2×4=16.2 m 2塔吊基础对单桩产生的竖向力为:200×16.2/5=648 KN 设计单桩承载力特征值为700 KN >648 KN ,符合设计要求 2).群桩承载力验算:按塔吊基础图要求,地基承载力不得小于200KN/m 2,按最大值考虑, 受力面积S=16.2m 2塔吊基础设5根桩,群桩效应系数K 取1,桩基础设计承载力为700×5=3500 KN >F=200×16.2=3240KN<700×5=3500KN,故满足要求。
十字梁式基础计算书(自定义计算)

十字梁式基础计算书一、塔机属性二、塔机荷载三、承台验算十字梁板式基础布置图承台底面积:A=2bl-l2+2a2=2×6.20×0.90-0.902+2×1.002=12.35m2承台中一条形基础底面积:A0=bl+2(a+l)a=6.20×0.90+2×(1.00+0.90)×1.00=9.38m2 承台及其上土的自重荷载标准值:G k=AhγC=12.35×1.00×25.00=308.75kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×308.75=416.81kN1、偏心距验算条形基础的竖向荷载标准值:F k''=(F k+G k)A0/A=(230.00+308.75)×9.38/12.35=409.19kNF''=(F+G)A0/A=(310.50+416.81)×9.38/12.35=552.40kNe=(M k+F Vk·h)/ F k''=(400.00+16.76×1.00)/409.19=1.02m≤b/4=6.20/4=1.55m满足要求!2、承台偏心荷载作用应力(1)、荷载效应标准组合时,承台底面边缘压力值e=1.02m≤b/6=6.20/6=1.03mI=lb3/12+2×al3/12+4×[a4/36+a2/2(a/3+l/2)2]=0.90×6.203/12+2×1.00×0.903/12+4×[1.004/36+1.002/2×(1.00/3+0.90/2)2]=19.33承台底面抵抗矩:W=I/(b/2)=19.33/(6.20/2)=6.24m3P kmin= F k''/A0-(M k+F Vk·h)/W=409.19/9.38-(400.00+16.76×1.00)/6.24=-23.20kPaP kmax= F k''/A0+(M k+F Vk·h)/W=409.19/9.38+(400.00+16.76×1.00)/6.24=110.44kPa(2)、荷载效应基本组合时,承台底面边缘压力值P min= F''/A0-(M+F V·h)/W=552.40/9.38-(540.00+9.64×1.00)/6.24=-29.24kPaP max= F''/A0+(M+F V·h)/W=552.40/9.38+(540.00+9.64×1.00)/6.24=147.02kPa3、承台轴心荷载作用应力P k=(F k+G k)/A=(230.00+308.75)/12.35=43.62kN/m24、承台底面压应力验算(1)、修正后地基承载力特征值f a=120.00kPa(2)、轴心作用时地基承载力验算P k=43.62kPa≤f a=120.00kPa满足要求!(3)、偏心作用时地基承载力验算P kmax=110.44kPa≤1.2f a=1.2×120.00=144.00kPa满足要求!5、承台抗剪验算承台有效高度:h0=H-δ=1000-70=930mm塔身边缘至承台底边缘最大反力处距离:a1=(b-20.5B)/2=(6.20-20.5×1.50)/2=2.04m 塔身边缘处承台底面地基反力设计值:P1=P max-a1(P max-P min)/b=147.02-2.04×(147.02-(-29.24))/6.20=89.04kPa承台底平均压力设计值:p=(P max+P1)/2=(147.02+89.04)/2=118.03kPa承台所受剪力:V=pa1l=118.03×2.04×0.90=216.64kNh0/l=930/900=1.03≤40.25βc f c lh0=0.25×1.00×16.70×900×930/1000=3494.48kN≥V=216.64kN满足要求!四、承台配筋验算承台自重在承台底面产生的压力设计值:P G=G/A=416.81/12.35=33.75kPa承台底均布荷载设计值:q1=(p-P G)l=(118.03-33.75)×0.90=75.85kN/m塔吊边缘弯矩:M=q1a12/2=75.85×2.042/2=157.73kN·m2、基础配筋计算(1)、承台梁底部配筋αS1= M/(α1f c lh02)=157.73×106/(1.00×16.70×900×9302)=0.012δ1=1-(1-2αS1)0.5=1-(1-2×0.012)0.5=0.012γS1=1-δ1/2=1-0.012/2=0.994A s1=M/(γS1h0f y1)=157.73×106/(0.994×930×300)=569mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.24)=0.24%承台底需要配筋:A1=max(569,ρlh)=max(569,0.002×900×1000)=2120mm2承台梁底实际配筋:A s1'=2211mm2≥A1=2120mm2满足要求!(2)、承台梁上部配筋承台梁上部实际配筋:A s2'=1206mm2≥0.5A1=1060mm2满足要求!(3)、承台梁腰筋配筋梁腰筋按照构造配筋HPB235 2Φ8(4)、承台梁箍筋配筋箍筋抗剪截面高度影响系数:βh=(800/h0)0.25=(800/930)0.25=0.960.7βh f t lh0=0.7×0.96×1.57×103×0.90×0.93=885.88kN≥V=216.64kN按构造规定选配钢筋!配箍率验算ρsv=nA sv1/(ls)=4×50.24/(900×120)=0.19%≥ρsv,min=0.24f t/f yv=0.24×1.57/210=0.18%满足要求!(5)、承台加腋处配筋承台加腋处,顶部与底部配置水平构造筋Φ12@200mm、竖向构造箍筋Φ8@200mm,外侧纵向筋Φ10@200mm。
63塔吊十字形基础的计算

十字形基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息本计算书依据塔吊规范JGJ187-2009进行验算。
二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=540kN2) 基础以及覆土自重标准值G k=(2×8×1.3-1.3×1.3-4×0.5×0×0)×0.9×25=429.98kN3) 起重荷载标准值F qk=60kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×1.59×1.95×1.245×0.2=0.62kN/m2q sk=1.2×0.62×0.35×2.5=0.65kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.65×35.00=22.70kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×22.70×35.00=397.21kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)W k=0.8×1.62×1.95×1.245×0.30=0.94kN/m2q sk=1.2×0.94×0.35×2.5=0.99kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.99×35.00=34.69kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×34.69×35.00=607.05kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-200+0.9×(890+397.21)=958.49kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-200+607.05=407.05kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算1. 荷载计算梁的计算简图如下:(图中 B=8000mm,L1=3540mm,L2=2233mm)交叉梁基础底面积: A=2×8×1.3-1.3×1.3-4×0.5×0×0=19.11m2条基加腋基础底面积:A0=8×1.3+(1.3+1.3+0×2)×0×2=10.4m2塔机工作状态下:当轴心荷载作用时:=(600+429.98)/19.11=53.90kN/m2当偏心荷载作用时:=(600+429.98)×10.4/19.11=560.53kN=(958.49+22.70×0.9)/560.53=1.75m≤b/4=2.00m满足要求! 由于偏心距e>b/6=1.33m,所以按大偏心计算:=2×560.53/[3×1.3×(4-1.75)]=127.55kN/m2由于梁底荷载为三角形荷载,所以按下式计算P1:=127.55×[3×(4-1.75)-2.2325]/[3×(4-1.75)]=85.43kN/m2塔机非工作状态下:当轴心荷载作用时:=(540+429.98)/19.11=50.76kN/m2当偏心荷载作用时:=(540.00+429.98)×10.4/19.11=527.88kN=(407.05+34.69×0.9)/527.88=0.83m≤b/4=2.00m满足要求! 由于偏心距e≤b/6=1.33m,所以按小偏心计算:=527.88/(8×1.3)+(407.05+34.69×0.9)/13.87=82.36kN/m2=527.88/(8×1.3)-(407.05+34.69×0.9)/13.87=19.15kN/m2由于梁底荷载为梯形荷载,所以按下式计算P1:=19.15+(8-2.2325)×(82.36-19.15)/8=64.72kN/m2四. 基础配筋计算比较上述两种工况的计算,可知本案塔机在工作状态时,基础截面弯矩最大,故应按工作状态的荷载组合进行基础设计1. 基础弯矩计算:基础自重在基础底面产生的压力标准值P kG=G k/A=429.98/19.11=22.5kN/m2基底均布荷载设计值=1.35×[(127.55+85.43)/2-22.50]×1.3=147.41 kN/m1-1截面弯矩设计值M1=q1×L22/2=147.41×2.232/2=367.34kN.m2. 纵向钢筋面积计算依据《混凝土结构设计规范》GB 50010-2010式中α1──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法确定f c──混凝土抗压强度设计值h0──承台的计算高度经过计算得αs=367.34×106/(1.00×16.70×1.30×103×8502)=0.023419 ξ=1-(1-2×0.023419)0.5=0.023700γs=1-0.023700/2=0.988150As=367.34×106/(0.988150×850×360.00)=1214.86mm2实际选用钢筋为:钢筋直径20mm,钢筋根数为4十字梁基础实际配筋面积为A s0 = 3.14×202/4 × 4=1257mm2实际配筋面积大于计算需要配筋面积,满足要求!3. 基础箍筋面积计算最大剪力设计值:V max=q1×L2=147.41×2.23=329.09kN依据《混凝土结构设计规范》(GB50010-2010)的第6.3.3条。
Tc4208十字梁塔吊基础方案带计算公式精品资料

一、编制依据:十二、工程概况:1.建筑和结构概况2.自然概况本场地土质自上而下为:1)素填土、(2)粉质粘土、(3)中细砂、(4)粗砂、(5)强风化片麻岩。
工程室外设计地平为绝对标高57.4m,为避免塔吊基础与后期室外管线地面等冲突,以减少拆除费用,将塔吊基础上平标高定为绝对标高56.5m。
考虑现场地质条件,该处绝对标高52米以上均为素填土,且下层粉质粘土承载力(140 kPa)均不能满足塔吊要求的基础承载力200 kPa,因此经研究采用同主体基础一样的预应力高强混凝土管桩基础。
十三、塔吊布设及基础验算1.布设位置:根据工程实际需要及集团公司塔吊调用情况,现场在两栋楼间拟设TC4208塔吊1台,做为主体工程施工阶段主要垂直运输工具。
塔吊位置平面布置见后附图。
2、塔吊基础设计:1)考虑安全性、经济性要求,地基拟采用预应力高强混凝土管桩基础,共设5根。
塔吊基础地基施工方法如下:桩机作业范围内的场地挖土(同楼一起挖),挖至绝对标高55.30,放线打桩,截桩,人工清土至标高,浇筑垫层,垫层上平比桩顶(绝对标高为55.05米)低5㎝,绑扎钢筋,支设模板,预埋螺栓,浇筑C30混凝土,砼浇筑12h后浇水养护。
承台浇筑后实体强度达到设计强度100%时方可进行塔吊安装工作。
桩头与承台连接参见图集L10G40中规定执行操作,填芯砼强度C35,采用微膨胀砼浇筑。
3、承载力验算:1)、参数塔吊型号: TC4208;塔吊起升高度H: 30.000m;塔吊倾覆力矩M: 400kN.m;塔身宽度B: 2.500m;塔吊自重G: 260kN;最大起重荷载Q: 40.000kN;桩间距l: 4.3m;桩直径d: 0.400m;桩钢筋级别: III级钢;混凝土强度等级: C30;交叉梁截面宽度: 1.2m;交叉梁截面高度: 1.200m;交叉梁长度: 7.07m;桩入土深度: 12.500m;保护层厚度: 25.000mm。
2.TC4208塔吊基础验算:塔身重量:P=260KN基础承台自重:G=(16.2m2×1.2m)×25 KN/ m2 =486KN桩自身重量(按桩直径R=0.4m,长l=12.5米):G1=3.14×0.4×13×25×5=204.1KN桩竖向承载力验算: 1).单桩承载力验算:1、塔吊基础要求承载力为200 KN/ m 22、塔吊基础承台面积S=7.07×1.2+(7.07-1.2)×1.2+[(2.5/2-0.6×1.414)×1.414]2/2×4=16.2 m 2塔吊基础对单桩产生的竖向力为:200×16.2/5=648 KN 设计单桩承载力特征值为700 KN >648 KN ,符合设计要求 2).群桩承载力验算:按塔吊基础图要求,地基承载力不得小于200KN/m 2,按最大值考虑, 受力面积S=16.2m 2塔吊基础设5根桩,群桩效应系数K 取1,桩基础设计承载力为700×5=3500 KN >F=200×16.2=3240KN<700×5=3500KN,故满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字交叉梁基础计算书
一、塔吊的基本参数信息
塔吊型号: QTZ40;塔吊起升高度H: 31.500m;塔吊倾覆力矩M: 400kN.m;塔身宽度B: 1.500m;
塔吊自重G: 245kN;最大起重荷载Q: 40.000kN;桩间距l: 2.828m;桩直径d: 0.300m;
桩钢筋级别: III级钢;混凝土强度等级: C35;
交叉梁截面宽度: 0.8m;交叉梁截面高度: 1.300m;交叉梁长度: 6m;桩入土深度: 25.000m;
保护层厚度: 50mm;空心桩的空心直径: 0.160m。
二、塔吊对交叉梁中心作用力的计算
1. 塔吊自重G=245kN
2. 塔吊最大起重荷载Q=40kN
作用于塔吊的竖向力 F=1.2×245+1.4×40=350kN
塔吊的倾覆力矩 M=1.4×400.000 = 560kN.m
三、交叉梁最大弯矩和桩顶竖向力的计算
计算简图:
十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。
两段梁四个支点力分别为:
R A =N/4+qL/2+3M/2L R
B
=N/4+qL/2-3M/2L
R C =N/4+qL/2 R
D
=N/4+qL/2
两段梁的最大弯矩分别为:
M1=N(L-b)2/16L+qL2/8+M/2 M2=N(L-b)2/16L+qL2/8
得到最大支座力为 Rmax=R
B , Rmin=R
A
,最大弯矩为 Mmax=M
1。
b =21/2B=21/2×1.500 =2.12 m,L = 21/2l=21/2×2.828 =3.999m
交叉梁自重:q=25×0.800×1.300=26.000 kN/m
桩顶竖向力 R
max
:
R
max
=N/4+q×L/2+3M/(2L)=350.000/4+26.000×3.999/2+3×560.000/(2×3.999) = 349.54kN
R
min
=N/4+q×L/2-3M/(2L)=350.000/4+26.000×3.999/2-3×560.000/(2×3.999) = -70.57kN
交叉梁得最大弯矩 M
max
:
Mmax=N(L-b)2/(16×L)+q×L2 /8+M/2=350.000×(3.999-2.120)2/(16×
3.999)+26.000×3.9992/8 + 560.000/2=351.29kN.m
四、交叉梁截面主筋的计算
依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。
式中,αl──系数,当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,α1取为0.94,期间按线性内插法,得α1=1.00
f
c ──混凝土抗压强度设计值,查表得f
c
=16.70N/mm2
h
o ──交叉梁的有效计算高度,h
o
=1300.00-50.00=1250.00mm:
f
y ──钢筋受拉强度设计值,f
y
=360.00N/mm2;
经过计算得:αs=351.29×106/(1.00×16.70×800.00×1250.002)=0.017;
ξ =1-(1-2×0.017)0.5=0.017;
γs =1-0.017/2=0.992;
A
s
=351.29×106/(0.992×1250.00×360.00)=787.33mm2。
五、桩承载力验算
桩承载力计算依据《建筑桩技术规范》(JGJ94-94)的第4.1.1条。
根据第三步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=349.540kN;
桩顶轴向压力设计值应满足下面的公式:
其中,γo──建筑桩基重要性系数,取1.1;
──混凝土轴心抗压强度设计值,fc=16.70N/mm2;
f
c
A──桩的截面面积,A=55292.03mm2。
则,1.10×3.50×105=3.84×105N<16.70×55292.03=9.23×105N
经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!
六、桩竖向极限承载力验算及桩长计算
桩承载力计算依据《建筑桩基技术规范》(JGJ94-94)的第5.2.2-3条;
根据第三步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=349.54kN;
单桩竖向承载力设计值按下面的公式计算:
其中 R──单桩的竖向承载力设计值;
──单桩总极限侧阻力标准值:
Q
sk
Q
──单桩总极限端阻力标准值:
pk
──相应于任一复合基桩的承台底地基土总极限阻力标准值: Q
ck
──承台底1/2承台宽度深度范围(≤5m)内地基土极限阻力标准值,取 q
ck
= 500.000 kPa;
q
ck
---承台底地基土净面积;考虑十字交叉梁有重叠部分地基土面积,需给
A
c
予折减,取Ac=6.000×0.800-2×0.055-0.800×0.800/2=4.369m2;
n ---桩数量;取n=2;
ηc──承台底土阻力群桩效应系数;按下式取值:
ηs, ηp, ηc──分别为桩侧阻群桩效应系数,桩端阻群桩效应系数,承台底土阻力群桩效应系数;
γs,γp, γc──分别为桩侧阻抗力分项系数,桩端阻抗力分项系数,承台底土阻抗力分项系数;
q
sik
──桩侧第i层土的极限侧阻力标准值;
q
pk
──极限端阻力标准值;
u──桩身的周长,u=0.942m;
A
p ──桩端面积,取A
p
=0.055m2;
l
i
──第i层土层的厚度;
各土层厚度及阻力标准值如下表:
序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称
1 10.00 58.00 1270.00 粘性土
由于桩的入土深度为25.00m,所以桩端是在第1层土层。
单桩竖向承载力验算:
R=0.94×(1.00×58.00×10.00)/1.65+1.06×1270.00×0.055/1.65+0.795×(500.000×4.369/2)/1.700=8.87×102kN>N=349.54kN;
上式计算的R的值大于最大压力349.54kN,所以满足要求!
七、桩抗拔承载力验算
Rmin=-70.570KN < 0,需进行桩抗拔承载力验算
桩抗拔承载力验算依据《建筑桩基础技术规范》(JGJ94-94)的第5.2.7条
桩抗拔承载力应满足下列要求:
其中;
式中 U
k
──基桩抗拔极限承载力标准值;
λi──抗拔系数;对于粘性土,粉土取值0.70-0.80,在这里取0.75;对于砂土,取值0.50-0.70,在这里取0.60;
u
1 ----桩群外围长度;取u
1
= 4×(2.828 + 0.300)=12.51
解得:
U
gk
= 12.512×(58.00×10.00×0.75)/4=1360.680
G
gp
=(2.828+0.300)2×25.000×20.000/4=1223.048
U
k
= 0.942×(58.00×10.00×0.75)=409.978
G
p
= 0.055×25.000×25=34.558
r
N=1.100×70.570=77.627
U
gk
/γs+G gp=1360.680/1.650+1223.048=2047.703
U
k
/γs+G p=409.978/1.650+34.558=283.029
r 0N<U
gk
/γs+G gp, r0N<U k/γs+G p
经过计算得桩抗拔承载力验算满足要求。