高中数学全部解题公式汇总

合集下载

高中数学127个快速解题公式

高中数学127个快速解题公式

高中数学127个快速解题公式1、有限集合子集个数公式:子集个数为2的n次方,真子集个数为2的n次方减1.2、集合里的重要结论:①若A与B的交集等于A,则A是B的子集;②若A与B的并集等于A,则B是A的子集;③若A能推出B,且A是B的子集,则A与B相等;④若A与B相等,则A与B的子集个数相等。

3、同时求交集和并集的方法是分类讨论。

4、集合AB的元素个数公式为n(AB)=n(A)+n(B)-n(AB)。

5、近似值:2约等于1.414,3约等于1.732,5约等于2.236,π约等于3.142,e约等于2.718.6、分数指数幂公式:a的m/n次方等于m根号下a的n 次方。

7、对数换底公式:XXX a,loga b=logb a的倒数。

8、单调性的快速判断方法:①若f'(x)>0且f''(x)>0,则f(x)单调递增;②若f'(x)0,则f(x)单调递减;③若f'(x)>0且f''(x)=0,则f(x)在x处取得极小值;④若f'(x)<0且f''(x)=0,则f(x)在x处取得极大值。

9、奇偶性的快速判断方法:①奇数加减奇数等于奇数,偶数加减偶数等于偶数;②奇数乘除奇数等于偶数,偶数乘除偶数等于偶数,奇数乘除偶数等于奇数。

10、函数的切线方程:y-y0=f'(x0)(x-x0)。

11、函数有零点当且仅当f(x)在x处取得最小值。

12、函数无零点当且仅当f(x)在x处取得最大值或最小值。

13、函数周期性:若f(a+x)=f(b+x),则函数f(x)的周期为T=b-a。

14、函数对称性:若f(a+x)=f(b-x),则函数f(x)关于直线x=(a+b)/2对称。

15、抽象函数对数型:若f(xy)=f(x)+f(y),则f(x)=loga x。

16、抽象函数指数型:若f(x+y)=f(x)f(y),则f(x)=a的x次方。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。

6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。

7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。

8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。

下面将对高中数学中常用的各个章节的公式进行总结。

1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。

- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。

- 直线的斜率公式:对于直线y=kx+b,其斜率为k。

- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。

- 正方形面积公式:面积为边长的平方,即A=s^2。

- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。

- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。

- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。

3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。

- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。

- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。

4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。

高中数学127个快速解题公式

高中数学127个快速解题公式

高中数学127个快速解题公式第1章 集合1、有限集合子集个数:子集个数:2n 个,真子集个数:12n -个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔= 3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+-第2章 函数52.236,3.142, 2.718e π≈≈≈≈≈ 6、分数指数幂公式:nma =7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '-=-11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期T b a =-; 14、函数对称性:()()f a x f b x +=-的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =;16、抽象函数指数型:若()()()f x y f x f y +=,则()xf x a =;17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =;18、抽象函数一次型:若()f x c '=,则()f x cx b =+;19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤-==⎨≤-⎩当且仅当时“”成立 21、洛必达法则:()()()()lim lim x a x a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =-⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)第3章 数列24、等差数列通项公式:1(1)n a a n d =+- 25、等差数列通项公式:11()(1)22n n n a a n n S na d +-==+ 26、等比数列通项公式:11n n a a q -=27、等比数列通项公式:11(1)11n n n a a qa q S q q+-==--28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn -++=,则有1111n nT n n =-=++ 33、裂项相消法2:若1111(2)22n n n n -++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+--++ 34、裂项相消法3:若111111n nnn a a d a a ++=-⎛⎫⎪⎝⎭,则有11111()n n T d a a +=-35、裂项相消法4:若1111(21)(21)22121n n n n -+--+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =-+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b qa b T q q q -=+----第4章 三角函数37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:r =38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。

高中数学30条解题公式-2023届高三数学一轮复习

高中数学30条解题公式-2023届高三数学一轮复习

高中数学30条解题公式1.直线过焦点必有e cos A =x -1x +1,其中A 为直线与焦点所在轴夹角,A 是锐角. x 为分离比,必须大于1.注:上述公式适合一切圆锥曲线.如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),等式右边为x +1x -1其他不变. 2.函数的周期性问题(记忆三个)(1)若f (x )=-f (x +k ),则T =2k ;(2)若f (x )=m x +k(m 不为0),则T =2k ; (3)若f (x )=f (x +k )+f (x -k ),则T =6k .注意点:a.周期函数,周期必无限;b.周期函数未必存在最小周期,如:常数函数.c.周期函数加周期函数未必是周期函数,如:y =sin x ,y =sin πx 相加不是周期函数.3.关于对称问题总结如下(1)若在R 上(下同)满足:f (a +x )=f (b -x )恒成立,对称轴为x =a +b 2; (2)函数y =f (a +x )与y =f (b -x )的图像关于x =b -a 2对称; (3)若f (a +x )+f (a -x )=2b ,则f (x )图像关于(a ,b )中心对称4.函数奇偶性(1)对于属于R 上的奇函数有f (0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;(3)奇偶性作用不大,一般用于选择填空5.数列常用定律(1)等差数列中:S 2n -1=na n (n >0),例如S 13=13a 7(2)等差数列中:S (n )、S (2n )-S (n )、S (3n )-S (2n )成等差(3)等比数列中,上述2中各项在公比不为-1时成等比,在q =-1时,未必成立(4)等比数列中,S (n +m )=S (m )+q 2mS (n )可以迅速求q6.数列的特征根方程对于a n +1=pa n +q ,a 1已知,那么特征根x =q 1-p,则数列通项公式为a n =(a 1-x )p 2(n -1)+x .当然这种类型的数列可以构造(两边同时加数)7.复合函数奇偶性、单调性(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减8.适用于圆锥曲线标准方程(焦点在x 轴)的公式k 椭=-b 2x 0a 2y 0,k 双=b 2x 0a 2y 0,k 抛=p y 0注:(x 0,y 0)均为直线过圆锥曲线所截段的中点.9.两直线垂直或平行的条件已知直线L 1:a 1x +b 1y +c 1=0直线L 2:a 2x +b 2y +c 2=0若它们垂直:(充要条件)a 1a 2+b 1b 2=0;若它们平行:(充要条件)a 1b 2=a 2b 1且a 1c 2≠a 2c 1(这个条件为了防止两直线重合)10.隔项相消公式对于S n =11×3+12×4+13×5+…+1n (n +2)=12[1+12-1n +1-1n +2] 注:隔项相加保留四项,即首两项,尾两项.11.三角形面积公式S =12|mq -np |其中→AB =(m ,n ),向量→BC =(p ,q ) 这个公式可以解决已知三角形三点坐标求面积的问题12.空间立体几何中,以下命题均错(1)空间中不同三点确定一个平面(2)垂直同一直线的两直线平行(3)两组对边分别相等的四边形是平行四边形(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥13.f (x )=|x -1|+|x -2|+|x -3|+…+|x -n |(n 为正整数)的最小值当n 为奇数,最小值为n 2-14,在x =n +12时取到;当n 为偶数时,最小值为n 24,在x =n 2或n 2+1时取到.14.几个不等式 a 2+b 22≥a +b 2/2≥ab ≥2ab a +b(a 、b 为正数,当且仅当a =b 时,等号成立) 15.椭圆中焦点三角形面积公式在椭圆中:S =b ²tan A 2,在双曲线中:S =b 2tan A 2说明:适用于焦点在x 轴,且标准的圆锥曲线.A 为两焦半径夹角.16.空间向量余弦公式(1)A 为线线夹角cos A =a ·b |a ||b |(2)A 为线面夹角sin A =a ·b |a ||b |(3)A 为面面夹角cos A =a ·b |a ||b |注:以上角范围均为[0,π2] 17.平方求和、立方求和公式12+22+32+…+n ²=16n (n +1)(2n +1);13+23+33+…+n 3=14n ²(n +1)² 18.(a +b +c )n 的展开式合并之后的项数为:C 2n +219.对于y 2=2px ,过焦点的互相垂直的两弦AB 、CD ,它们的和最小为8p .证明:对于y 2=2px ,设过焦点的弦倾斜角为A .那么弦长可表示为2p sin 2 A,所以与之垂直的弦长为2p cos 2 A,所以求和再据三角知识可知. 20.一个重要绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |21.关于解决证明含ln 的不等式的一种思路例:证明1+12+13+ (1)>ln(n +1) 思路:把左边看成是1n 求和,右边看成是Sn . 解:令a n =1n,令S n =ln(n +1),则b n =ln(n +1)-ln n ,那么只需证a n >b n 即可,根据定积分知识画出y =1x 的图.a n =1n=矩形面积>曲线下面积=bn .当然前面要证明1>ln 2. 22.向量射影公式a 在b 上的射影为a ·b |b |23.易错点提示若f (x +a )为奇函数,那么得到的结论是f (x +a )=-f (-x +a ),同理如果f (x +a )为偶函数,可得f (x +a )=f (-x +a ).24.离心率速算公式e =sin A sin M +sin N注:P 为椭圆上一点,其中A 为角F 1PF 2, M ,N 为△F 1PF 2与x 轴所成的夹角.25.椭圆的参数方程解决一些最值问题例如x 24+y ²=1,求z =x +y 的最值. 解:令x =2cos α,y =sin α再利用三角有界即可.26.和差化积积化和差公式和差化积sin θ+sin φ=2sin θ+φ2cos θ-φ2sin θ-sin φ=2cos θ+φ2sin θ-φ2cos θ+cos φ=2cos θ+φ2cos θ-φ2cos θ-cos φ=-2sinθ+φ2sin θ-φ2积化和差sin αsin β=cos(α-β)-cos(α+β)2cos αcos β=cos(α+β)+cos(α-β)2sin αcos β=sin(α+β)+sin(α-β)2cos αsin β=sin(α+β)-sin (α-β)227.三角形垂心定理(1)→OH =→OA +→OB +→OC (O 为三角形外心,H 为垂心)(2)若三角形的三个顶点都在函数y =1x的图象上,则它的垂心也在这个函数图象上. 28.抛物线常用结论过(2p ,0)的直线交抛物线y 2=2px 于A 、B 两点.O 为原点,连接AO ,BO .必有∠AOB =90°29.放缩常用公式ln(x +1)≤x (x >-1)例:ln 122+1+ln 132+1+…+ln 1n 2+1<1(n ≥2) 证明如下:令x =1n 2,根据ln(x +1)≤x 有左右累和右边再放缩得:左和<1-1n<1. 30.椭圆等式A 、B 为椭圆x 2a 2+y 2b 2=1上任意两点,若OA ⊥OB ,则有1|OA |2+1|OB |2=1a 2+1b 2.。

高中数学所有公式大总结

高中数学所有公式大总结高中数学是一门重要的学科,其中涉及了许多公式和定理。

这些公式和定理帮助学生解决各种数学问题,以及在日常生活中应用数学知识的能力。

一、代数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为 x = (-b ±√(b^2 - 4ac)) / (2a)。

2. 因式分解公式:将一个多项式进行因式分解,以简化计算或解决方程的过程。

3. 比例与相似性公式:包括比例的定义、比例的性质以及相似三角形的性质和判定方法。

4. 二项式定理:展开一个二项式的幂,即(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n。

二、几何公式:1. 直角三角形的勾股定理:对于直角三角形,满足a^2 + b^2 = c^2,其中a和b是直角边,c是斜边。

2. 三角函数的基本关系:包括正弦定理、余弦定理和正切定理,用于解决三角形的边长和角度之间的关系。

3. 圆的面积和周长公式:圆的面积公式为A = πr^2,圆的周长公式为C = 2πr,其中r是圆的半径。

4. 三角形的面积公式:三角形的面积公式为A = 1/2 * b * h,其中b是底边长,h是对应的高。

三、微积分与导数:1. 导数的定义与性质:导数表示函数在某一点的变化率,可以用于求函数的极值、曲线的切线等问题。

2. 基本导数公式:例如常数函数的导数为0,幂函数的导数为n * x^(n-1),指数函数的导数为e^x。

3. 导数的四则运算法则:包括求和、差、乘积和商的导数法则,用于求复合函数的导数。

四、概率与统计公式:1. 排列组合公式:包括排列数公式P(n,r) = n! / (n-r)!和组合数公式C(n,r) = n! / (r! * (n-r)!),用于计算事件的可能性。

2. 期望与方差公式:期望表示随机变量的平均值,方差表示随机变量的离散程度,用于描述随机事件的分布情况。

高中必背的数学公式(完整归纳)

高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

高中数学公式及知识点总结大全

高中数学公式及知识点总结大全数学是一门基础学科,对于高中学生来说,掌握好数学公式和知识点至关重要。

以下是高中数学公式及知识点的全面总结,希望对学生们有所帮助。

一、代数1.1 一元一次方程(ax+b=0)- 方程求根公式:x=-b/a- 解方程步骤:去括号、合并同类项、移项、化简、求解1.2 二元一次方程组(ax+by=c,dx+ey=f)- 解方程步骤:消元法、代入法、等系数法、加减消法、图解法1.3 一元二次方程(ax^2+bx+c=0)- 二次根公式:x=(-b±√(b^2-4ac))/(2a)- 判别式:Δ=b^2-4ac,当Δ>0时有两个不相等实根,当Δ=0时有两个相等实根,当Δ<0时无实根1.4 二次函数- 标准式:y=ax^2+bx+c- 最值判定:当a>0时,函数的最小值为f(x)=-Δ/(4a),当a<0时,函数的最大值为f(x)=-Δ/(4a)1.5 不等式- 一元一次不等式:大于(<)、小于(>)、大于等于(≤)、小于等于(≥)- 一元二次不等式:大于、小于、大于等于、小于等于二、平面几何2.1 三角形- 三角形内角和定理:三角形内角和为180度- 三角形外角定理:三角形的外角等于相对内角的补角- 等边三角形:三条边相等,每个内角为60度2.2 圆- 弧度制:一周对应的弧度为2π- 弧长公式:L=θr- 扇形面积公式:S=θr^2/2- 圆的面积公式:S=πr^22.3 直线与坐标- 斜率公式:m=(y2-y1)/(x2-x1)- 点斜式:y-y1=m(x-x1)- 两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)三、立体几何3.1 体积与表面积- 立方体:体积V=a^3,表面积S=6a^2- 圆柱体:体积V=πr^2h,侧面积S=2πrh,表面积S=2πrh+2πr^2 - 球体:体积V=4/3πr^3,表面积S=4πr^2- 锥体:体积V=1/3πr^2h,侧面积S=πrl,底面积S=πr^2,表面积S=πr(r+l)3.2 三视图与投影- 正交投影:俯视图、正视图、左视图、右视图、前视图、后视图- 等轴投影:正等轴投影、侧等轴投影、俯等轴投影四、概率与统计4.1 概率- 事件概率:P(A)=n(A)/n(S)- 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)- 乘法公式:P(A∩B)=P(A)P(B|A)4.2 统计- 平均数:算术平均数、几何平均数、调和平均数- 中位数:数据中间的数值- 众数:出现频率最高的数值五、函数与导数5.1 常见函数- 幂函数:y=x^n- 指数函数:y=a^x,其中a>0且a≠1- 对数函数:y=loga(x),其中a>0且a≠1- 三角函数:正弦函数、余弦函数、正切函数5.2 导数- 导数定义:f'(x)=lim(h→0)(f(x+h)-f(x))/h- 导数的性质:和法则、差法则、积法则、商法则、链式法则以上是高中数学公式及知识点的全面总结,包括代数、平面几何、立体几何、概率与统计、函数与导数等内容。

高中数学所有公式大总结

高中数学所有公式大总结高中数学是数学学习的重要阶段,其中包含了大量的公式和定理。

以下是高中数学中常见的公式的大总结:1. 代数公式:- 二次方程的求根公式:对于二次方程ax+bx+c=0,根可以通过公式x = (-b±√(b-4ac))/(2a)求得。

- 二项式定理:(a+b) = C(n,0)a + C(n,1)ab + C(n,2)ab + ... + C(n,n)b,其中C(n,r)表示从n个元素中选择r个元素的组合数。

2. 几何公式:- 直角三角形的勾股定理:a + b = c,其中a、b为直角边,c为斜边。

- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。

- 余弦定理:c = a + b - 2abcosC,其中a、b、c为三角形的边长,C为对应的角度。

3. 微积分公式:- 导数的基本公式:(cf(x))' = cf'(x),(f(x) ± g(x))' = f'(x) ± g'(x),(f(x)g(x))' = f'(x)g(x) + f(x)g'(x),(f(g(x)))' = f'(g(x))g'(x)等。

- 积分的基本公式:∫(f(x) ± g(x)) dx = ∫f(x) dx ±∫g(x) dx,∫(af(x)) dx = a∫f(x) dx,∫(f(x)g'(x)) dx = f(x)g(x) - ∫(f'(x)g(x)) dx等。

4. 概率与统计公式:- 排列组合:排列数P(n,r) = n!/(n-r)!,组合数C(n,r) = n!/((n-r)!r!),其中n为总数,r为选取的数目。

- 期望值:对于离散型随机变量X,其期望值E(X) = ∑(xP(x)),其中x为X的取值,P(x)为X取值为x的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档