高三数学考前知识点赏析-直线与圆

合集下载

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版知识精讲

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版知识精讲

高三数学直线和圆的方程——直线与圆、圆与圆的位置关系苏教版【本讲教育信息】一. 教学内容:直线和圆的方程——直线与圆、圆与圆的位置关系二. 本周教学目标:1. 掌握直线和圆的位置关系、圆与圆的位置关系等知识,能够从代数特征(解或讨论方程组)或几何性质去考虑2. 会运用半径长、半径、弦心距构成的直角三角形减少运算量三. 本周知识要点:1. 研究圆与直线的位置关系最常用的方法:①判别式法;②考查圆心到直线的距离与半径的大小关系。

直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种,若22BA CBb Aa d +++=,则0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d2. 两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 ①条公切线外离421⇔⇔+>r r d ②条公切线外切321⇔⇔+=r r d③条公切线相交22121⇔⇔+<<-r r d r r ④条公切线内切121⇔⇔-=r r d ⑤无公切线内含⇔⇔-<<210r r d3. 直线和圆相切:这类问题主要是求圆的切线方程求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

①过圆上一点的切线方程:圆),(00222y x P r y x 的以=+为切点的切线方程是200r y y x x =+。

当点00(,)P x y 在圆外时,200r y y x x =+表示切点弦的方程。

一般地,曲线)(00022y x P F Ey Dx Cy Ax ,的以点=++-+为切点的切线方程是:0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 。

当点00(,)P x y 在圆外时,0220000=++⋅++⋅-+F y y E x x D y Cy x Ax 表示切点弦的方程。

高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

题型探究 题型一 直线和圆相交 例 1 已知圆 C:(x-1)2+(y-2)2=25,直线 l:(2m+1)x +(m+1)y-7m-4=0(m∈R). (1)证明:无论 m 取何实数,直线 l 与圆恒交于两点; (2)求直线 l 被圆 C 截得的线段的最短长度以及此时直线 l 的方程.
高中数学
8.4 直线与圆、圆与圆的位置关系
考纲点击 1.能根据给定直线、圆的方程判断直线与圆的位置关系; 能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想.
说基础
课前预习读教材
考点梳理 一、直线与圆的位置关系 1.直线与圆的位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:利用判别式 Δ>0⇔① 判别式 Δ=0⇔② ――→ 2 Δ=b -4ac Δ<0⇔③ (2)几何法: 利用圆心到直线的距离 d 和圆半径 r 的大小关 系 d<r⇔④______;d=r⇔⑤______;d>r⇔⑥______.
说考点
拓展延伸串知识
疑点清源 一、圆的切线方程的求法 1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线的斜率 k,由垂直关系知切线斜率为 1 - k ,由点斜式方程可求切线方程.若切线斜率不存在,则由 图形写出切线方程 x=x0.
2.求过圆外一点(x0,y0)的圆的切线方程 (1)几何方法 当斜率存在时,设为 k,切线方程为 y-y0=k(x-x0),即 kx-y+y0-kx0=0.由圆心到直线的距离等于半径, 即可得出切 线方程. (2)代数方法 设切线方程为 y-y0=k(x-x0),即 y=kx-kx0+y0,代入 圆方程,得一个关于 x 的一元二次方程,由 Δ=0,求得 k,切 线方程即可求出. 【说明】 过圆外一点作圆的切线有两条, 若在解题过程中, 只解出一个答案,说明另一条直线的斜率不存在.

高三数学中考必考知识点

高三数学中考必考知识点

高三数学中考必考知识点在高中数学中,高三学生面临着即将到来的中考,必须掌握一些必考的知识点。

这些知识点不仅是中考的重点,更是日后学习数学的基础。

下面将介绍一些高三数学中考必考的知识点。

1. 函数与方程函数与方程是高中数学的基础,也是中考必考的内容。

学生需要掌握函数的概念、性质,以及解一元一次方程、一元二次方程等基本的方程解法。

在解方程的过程中,需要运用代入法、消元法等解题方法。

2. 直线与圆直线与圆是几何中的重要概念,也是中考经常出现的题型。

学生需要了解直线与圆的性质,掌握直线与圆的相交关系,以及直线与圆的切线、法线等概念。

3. 三角函数三角函数是数学中的重要内容,也是中考必考的知识点。

学生需要掌握正弦、余弦、正切等三角函数的概念,了解三角函数的周期性和性质,并能运用三角函数解决实际问题。

4. 平面向量平面向量是中考中经常出现的题型,也是高中数学的重点内容之一。

学生需要掌握平面向量的定义、性质,了解平面向量的线性运算、数量积、向量的投影等概念,并能应用平面向量解决几何问题。

5. 概率与统计概率与统计是数学中的实际应用内容,也是中考必考的知识点。

学生需要了解概率的概念、计算方法,掌握统计数据的处理和分析能力,能够应用概率与统计解决生活中的实际问题。

6. 三角形与四边形在几何中,三角形与四边形是中考必考的内容。

学生需要了解三角形的性质、分类,熟练掌握三角形的面积计算公式,以及四边形的性质和面积计算方法。

7. 数列与数表数列与数表是数学中的基本概念,也是中考常考的内容之一。

学生需要了解数列与数表的概念、常见数列的求和公式,以及数表的规律性,并能运用数列与数表解答问题。

8. 平面几何平面几何是中考必考的内容,也是数学中的重点之一。

学生需要掌握平面几何的基本概念、定理,熟练运用平面几何的推理方法,解决与平面几何相关的问题。

以上是高三数学中考必考的知识点的简要介绍。

学生在备考中应该注重理解这些知识点的定义、性质和解题方法,并进行大量的练习,加强对这些知识点的掌握。

2019人教A版 高中数学知识点梳理 ---- 第八章 解析几何(直线、圆、圆锥曲线)

2019人教A版  高中数学知识点梳理 ---- 第八章  解析几何(直线、圆、圆锥曲线)

第八章 解析几何【知识网络】【知识点梳理】 一、直线和圆1.倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,我们规定它的倾斜角为_________. (3)范围:直线倾斜角的取值范围是 .斜率:(1)倾斜角α=90°时,斜率__________;α≠90°时,斜率k =tanα .(2)在右侧作出简图:正切函数k =tanα,α∈[0,π2)∪(π2,π) 此函数的增区间为___________________(3)直线的方向向量坐标:若P 1(x 1,y 1),P 2(x 2,y 2),则直线P 1P 2的方向向量P 1P 2→的坐标为________________. 若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则k = ,特别地,(1, )是l 的一个方向向量. 故斜率k =y 2−y 1x 2−x 1(x 1≠x 2).2. 斜率与倾斜角的对应关系图示倾斜角(范围) α=0°斜率(范围)k =0例1. 直线(a +1)x −y +1=0的倾斜角的范围为_______________ 3.直线五种方程:名称 方程的形式常数的几何意义适用范围点斜式 (x 0,y 0)是直线上一定点,k 为斜率斜截式k 为_____,b 是直线的_______“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.(2)求直线方程时要防止由于零截距和无斜率造成丢解;例2.过点()4,3−,且在两坐标轴上的截距相等的直线的方程_______________ 4.两直线平行和垂直①若斜率存在l 1:y=k 1x +b 1 ,l 2:y=k 2x +b 2,则l 1∥l 2⇔k 1=k 2,且b 1≠b 2; l 1⊥l 2⇔______________ ②若l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔_______________; 两直线平行,⇔____________________③与l :Ax +By +C=0平行的直线可设为________________,垂直的直线可设为___________________例3.已知两条直线(3)453,2(5)8m x y m x m y ++=−++=,当两条直线平行时______________________;当两条直线相交时______________________ 当两条直线垂直时______________________5.距离问题:已知1122(,),(,)A x y B x y ,AB =__________________,,A B 中点的坐标________ l:Ax +By +C =0,则A 到l 的距离为_________________ 两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =_______________. 6.对称性问题:点(a ,b )关于直线Ax +By +C =0对称点问题:如:点(1,2)关于直线x +3y +1=0对称点为_____________ 【对称常用结论】(1)点(x 0,y 0)关于直线y =x 的对称点为_____________,关于直线y =-x 的对称点为_____________. (2)点(x 0,y 0)关于直线x =a 的对称点为_____________,关于直线y =b 的对称点为_____________. (3)点(x 0,y 0)关于点(a ,b)的对称点为_____________. (4)点(x 0,y 0)关于直线y =x +m 的对称点是______________ (5)点(x 0,y 0)关于直线y =−x +m 的对称点是______________ 7.常见直线系方程:(1)过定点(x 1,y 1)的直线系方程:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系方程:_________________________. (3)垂直于直线Ax +By +C =0的直线系方程:_________________________.(4)过两条直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系方程:_________________________.8.圆的方程(1)圆的定义:平面上到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径. (2)圆的标准方程:我们把方程____________________称为圆心为(a ,b ),半径为r 的圆的标准方程.当a =b =0时,方程为___________________,表示以原点O 为圆心,r 为半径的圆.(3)圆的一般方程:对于方程x 2+y 2+Dx +Ey +F =0,配方得到:______________________________.①当____________________时,该方程表示以______________为圆心,_______________为半径的圆,该方程叫做圆的一般方程.②当________________ 时,该方程表示_______________________; ③当_________________时,该方程不表示任何图形.注:Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示圆⇔A=C ≠0且B=0且D 2+E 2-4AF>0;(4)已知A (11,y x )B (22,y x )以AB 为直径的圆的方程是_________________________________ (5)圆心为(a ,b ),半径为r 的圆的参数方程为(三角换元):{x =___________________y =___________________;例4.(1)052422=+−++m y mx y x 表示圆的充要条件是(2)对于任意实数k ,方程222(2)20x y kx k y k +++−−=所表示的曲线恒过两定点,则这两定点的坐标9. 点与圆的位置关系已知圆(x -a )2+(y -b )2=r 2(r >0),点P (x 0,y 0),设d =|PC |=(x 0-a )2+(y 0-b )2.位置关系 d 与r 的大小关系图示 点P 的坐标特点 点在圆外(x 0-a )2+(y 0-b )2>r 2点在圆上点在圆内10. 直线与圆的位置关系:设圆的半径为r (r >0),圆心到直线的距离为d ,则直线与圆的位置关系如下表所示. 位置 关系 图示 公共点 个数 几何 特征 直线、圆的方程组成的方程组的解 相离相切1 d =r两组相同 实数解相交例5.(1)若直线1ax by +=与圆221x y +=相交,则点(,)P a b 与圆的位置关系___________(2)求过原点且与圆22(1)(2)1x y −+−=相切的直线方程________________________ 例6.(1)已知圆)0()5(:222>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共点,则r的取值范围是______________________11. 圆与圆的位置关系位置 关系 图示(R >r )公共点 个数 几何特征(O 1O 2=d )两个圆的方程组成的方程组的解外离外切1 d =R +r两组相同 实数解 相交两组不同 实数解 内切两组相同 实数解 内含例7.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是___________ .12.相交弦直线方程:把两圆x 2+y 2+D 1x +E 1y +C 1=0与x 2+y 2+D 2x +E 2y +C 2=0方程相减即得相交弦所在直线方程_____________________________________;过两曲线交点的曲线系方程为f 1(x,y)+λf 2(x,y)=0例8.两圆2210x y +=和22(1)(3)20x y −+−=相交于,A B 两点,直线AB 方程__________________.13.圆上动点到某条直线(或某点)的距离的最大、最小值的求法(过圆心)例9.已知圆:,过圆外一点作圆的切线(为切点),当点在直线上运动时,则四边形P AOB 的面积的最小值为 .O 922=+y x P PB PA ,B A ,P 0102=+−y x14. 【常用结论】与切线、切点弦有关结论:二、圆锥曲线 (一)椭圆:1、椭圆的定义:平面内到定点21,F F 的_________________为定值(定值______||21F F )的点的轨迹。

高三直线和圆知识点

高三直线和圆知识点

高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。

本文将为大家详细介绍高三直线和圆的相关知识。

一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。

直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。

直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。

2. 直线上的任意一点,都在直线上。

二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。

这个距离称为圆的半径,通常用字母r表示。

圆心是与所有这些点距离相等的点。

直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。

圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。

2. 圆的直径是圆的最长直线段,且等于半径的两倍。

3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。

4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。

三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。

它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。

b) 直线与圆相离:直线与圆没有交点。

c) 直线与圆相交:直线与圆有两个交点。

2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。

b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。

3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。

b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

高三数学知识点总结圆

高三数学知识点总结圆

高三数学知识点总结圆高三数学知识点总结圆圆是高中数学中的基础知识之一,在几何学和代数学中都有广泛的应用。

本文将对高三数学中与圆相关的知识点进行总结,包括圆的定义、圆的性质、圆与直线的关系以及圆的应用。

一、圆的定义圆是平面上的一种特殊图形,由到定点距离相等的所有点组成。

其中,距离定点的距离称为半径,定点称为圆心。

圆心到圆上任意一点的距离都相等,这个距离称为半径。

二、圆的性质1. 圆周率:圆的周长与直径的比值称为圆周率,通常用希腊字母π表示,约等于3.14159。

2. 圆的直径和半径关系:直径是通过圆心的一条线段,它的长度等于半径的两倍。

3. 弧长和圆心角关系:弧长是圆周的一部分长度,它与圆心角的大小有关。

当圆心角的度数为360°时,对应的弧长等于圆的周长。

通过比例关系可以计算弧长。

4. 圆的面积:圆的面积是指圆内部的所有点所围成的区域的大小。

圆的面积计算公式为πr²,其中r代表半径。

三、圆与直线的关系1. 圆的切线:切线是与圆相切的直线,切线与半径垂直。

切线与半径的交点称为切点。

2. 弦:弦是圆上连接两个不同点的线段。

3. 弦的性质:圆内任一弦所对的两个圆周角相等,且割线所对外角等于其所对内角的补角。

4. 弦切线定理:当一条直线同时与圆相切和相交时,切点和相交点之间的线段与切点外的弦所对的圆周角相等。

四、圆的应用1. 圆的相关公式:通过圆的面积和周长的计算,可以应用于实际问题的求解,如计算圆形花坛的面积、园艺工的铺设花边的长度等。

2. 圆锥的体积和表面积:圆锥是一个三维图形,利用圆的相关知识可以计算圆锥的体积和表面积。

3. 圆的平移和旋转:圆形可以通过平移和旋转实现图形的变化,这在几何学和计算机图形学中都有重要的应用。

总结:本文对高三数学中与圆相关的知识进行了总结。

包括圆的定义、性质、圆与直线的关系以及圆的应用等。

掌握圆的相关概念和定理,对于解题和理解几何图形有着重要的意义。

在学习和应用中,要注重练习和理解,提高数学问题的解决能力。

高考数学复习考点知识讲解课件44 直线与圆 圆与圆的位置关系

高考数学复习考点知识讲解课件44 直线与圆 圆与圆的位置关系

— 12 —
(新教材) 高三总复习•数学
— 返回 —
5.(教材P98T3改编)已知直线l:y=k(x-2)被圆C:x2+y2-2x-4y=0截得的弦长的范 围是(0, 10),则k的取值范围是____-__13_,__12__∪__12_,__3______.
[解析] 圆C的标准方程为(x-1)2+(y-2)2=5,直线l过定点(2,0),且点(2,0)在圆C
— 6—
(新教材) 高三总复习•数学
— 返回 —
2.直线被圆截得的弦长的求法 (1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|= 2 r2-d2. (2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程 代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|= 1+k2· xM+xN2-4xM·xN. 3.两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(新教材) 高三总复习•数学
— 返回 —
(2)∵(3-1)2+(1-2)2=5>4,
∴点M在圆C外部.
当过点M的直线斜率不存在时,直线方程为x=3,即x-3=0.
又点C(1,2)到直线x-3=0的距离d=3-1=2=r,
即此时满足题意,所以直线x=3是圆的切线;
当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,
核心考点突破
02
(新教材) 高三总复习•数学
— 返回 —
考点一 直线与圆的位置关系的判断——自主练透
对点训练
1.(2022·广东茂名一模)过三点A(0,0),B(0,2),C(2,0)的圆M与直线l:kx-y+2-2k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学考前知识点赏析 直线和圆(续)
9、简单的线性规划:
(1)二元一次不等式表示的平面区域:
①已知点A (—2,4),B (4,2),且直线:2l y kx =-与线段AB 恒相交,则k 的取值范围是__________(答:(][)31∞∞-,-,+)
②已知对k R ∈,直线10y kx --=与椭圆2215x y m
+=恒有公共点,则实数m 的取值范围是 ( ) A (0,1) B (0,5) C [1,)+∞ D [1,5)
(2)线性规划问题中的有关概念:
(1)实数x 、y 满足不等式组250
350251x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩
,则22(1)(1)x y +++的最小值:13 要首先比较
||||PA PH 与大小或者评估垂足H 落在A 点的上方还是下方。

(2)点(-2,t )在直线2x -3y+6=0的上方,则t 的取值范围是_________(答:23t >
); (3)不等式2|1||1|≤-+-y x 表示的平面区域的面积是_________(答:8);
(4)已知抛物线22(0)x py p =->上一点p 到直线 3x+4y-12=0 最小距离是1, 求抛物线方程。

2112.9x y =- 本题处理2
123125t d t p
=--的绝对值符号时,利用了线性规划中区域概念,避开了分情
况说明的麻烦。

10、圆的方程:
(1)过(1,2)总能作出两条直线和已知圆2222150x y kx y k ++++-=相切,求k 的取值范围
(2)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =
(3)已知圆04422
2=+-++y x y x 关于直线y=2x+b 成轴对称,则b=
(4)设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为
_________ 83(3)(2,k
∈-); C;[0,2];4;22(1)2x y -+=);B; A;81125; 11、点与圆的位置关系: ①从圆22
2210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为 A .12
B .35
C .0
12、直线与圆的位置关系:
(1)直线0ax by b a ++-=与圆2230x y x +--=的位置关系是( )
A .相交
B 相离
C 相切
D 与a 、b 的取值有关
(2)若直线220(,0)ax by a b +-=>始终平分圆22
4280x y x y +---=的周长,则12a b +的最小值
10、圆的方程:
(1)过(1,2)总能作出两条直线和已知圆2222150x y kx y k ++++-=相切,求k 的取值范围
83
(3)(2,k ∈-) C;[0,2];4;22(1)2x y -+=);B; A;81125; (2)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =
(3)已知圆044222=+-++y x y x 关于直线y=2x+b 成轴对称,则b=
(4)设A 为圆1)1(2
2=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为_________
11、点与圆的位置关系:
①从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为
A .12
B .35
C .0
12、直线与圆的位置关系:
(1)直线0ax by b a ++-=与圆2230x y x +--=的位置关系是( )
A .相交
B 相离
C 相切
D 与a 、b 的取值有关
(2)若直线220(,0)ax by a b +-=>始终平分圆22
4280x y x y +---=的周长,则12a b +的最小值
(3)在平面直角坐标系中,点A 在圆22
(1)1x y -+=上,点B 在直线10x y -+=上,则线段AB 的最小值
(4)一束光线从点A(-1,1)出发经x 轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是
(5)已知直线ax+by+c=0与圆22:1O x y +=相交于A 、B 两点,且|AB OA OB 等于: (6)设0>m ,则直线01)(2=+++m y x 与圆m y x =+22的位置关系为( )
A.相切
B.相交C .相切或相离D.相交或相切
(7)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为则直线l 的倾斜角的取值范围是 ( ) A.[,124ππ
] B .[5,1212ππ
] C.[,]63ππ D.[0,]2π
1-;4;12
-;C; A; B; -18,8 13、圆与圆的位置关系
(1)已动圆1O 与圆2O 22
(1)1x y -+=外切,与y 轴相切,求动圆圆心的轨迹方程. 24y x =0(0)y x =<。

(2)双曲线22
221x y a b
-=的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段 PF 1、A 1A 2为直径的两圆位置关系为 内切
(3)一动圆与圆2x +2y x 2-=0外切,同时与y 轴相切,动圆圆心的轨迹为曲线C 。

⑴求曲线C 的方程;
⑵若过点A (4,0)的直线l 与曲线C 交于A ,B 两点,求证:以AB 为直径的圆经过坐标原点。

x y 42=)0(>x 和0=y )0(<x
14、圆的切线与弦长:
①已知圆22
10x y +=,动点M 在以P (1,3)为切点的切线上运动,则线段OM 中点的轨迹方程为 350x y +-=
②已知圆22:()(2)4(0)C x a x a -+-=>及直线:30l x y -+=。

当直线l 被C 截得的弦长为32时,
则a =12- ③已知椭圆19
162
2=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )
A .59
B .779或49
C .77
9
D .49。

相关文档
最新文档