中考数学专题复习 一元二次方程根与系数的关系

合集下载

中考数学复习《一元二次方程根的判别式、根与系数的关系》

中考数学复习《一元二次方程根的判别式、根与系数的关系》

专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。

一元二次方程根与系数之间的关系

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间的关系从暑假开始,我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中的第六章解直角三角形. 一、基本内容1.一元二次方程含义:含有一个未知数,且未知数的次数最高是2的整式方程叫一元二次方程.2.一般形式:ax 2+bx+c=0(a ≠0)3.解法:①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)的形式可直接开平方.如(3x-1)2=5两边开平方得:513±=-x 513±=x 351,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=-x x 913191322+=+-x x 94)31(2=-x 3231±=-x3231±=x 31,121-==∴x x此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式的推导用这种方法.③公式法:)0(2)0(02≥∆∆±-=≠=++ab x ac bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)的形式,将一元二次方程转化成ax+b=0,cx+d=0的形式,变成两个一元一次方程来解.4.根的判别式:△=b 2-4acb 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4ac ≥0 方程有实根. 有三种应用:①不解方程确定方程的根的情况.②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 的取值范围.③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.5.根与系数间的关系,某x 1,x 2是ax 2+bx+c=0(a ≠0)的根,则ac x x a b x x =⋅-=+2121,.应用:①不解方程,求方程中m 或k 的值或另一根. ②不解方程,求某些代数式的值.③利用两根的关系,求方程中m 或k 的取值范围. ④建立一个方程,使它与原方程有某些关系. ⑤一些杂题.二、本次练习: (一)填空题:1.关于x 的方程mx mx m x x -=-+2223是一元二次方程,则m=____.2.将方程4x 2-kx+k=2x-1化成一元二次方程的形式是____.其一次项系数是____,常数项是____.3.代数式(x+2)2+(x-2)2的值与8(x 2-2)的值相等,则x=____.4.x x 252-+( )=(x- )25.方程2x 2+(k-1)x-6=0的一个根是2,则k=____.6.已知方程3x 2-2x-1=0的两根是x 1,x 2,则2221x x +=____;2112x x x x +=____; 3231x x +=____;2111x x +=____;||21x x -=____. 7.已知2x 2-(2m+1)x+m+1=0的两根之比是2:3,则m=____.8.以3和32-为根的方程是____.9.以235,235-+为根的方程是____. 10.以2x 2-3x-1=0的两根平方和及倒数和为根的方程是____.11.以2x 2-5x+1=0的两根平方根的方程是____.12.以比3x 2-2x-4=0的两根大3的数为根的方程是____. 13.以2x 2-3x-1=0的两根的相反数为根的方程是____.14.已知8x 2-(m-1)x+m-7=0的两根异号,且正根的绝对值大,则m 的取值范围是____.若它的两根互为相反数,则m=____.若m 互为倒数,则m=____.15.关于x 的一元二次方程x 2+2x+m=0的两根差的平方是16,则m=____.16.已知关于x 的方程2x 2-(4k+1)x+2k 2=1有两个不相等实根,则k 的取值范围是____. 17.关于x 的方程(k-2)x 2-(2k-1)x+k=0有两个不相等实根,则k 的取值范围是____. 18.已知方程kx 2-2kx+k=x 2-x+3有两个不相等实根,则k 的取值范围是____. 19.关于x 的方程2x(kx-4)-x 2+6=0无实根,则k 的最小整数值是____.知2x 2+(2m+1)x-m=0的两根平方和是413,则m=____.21.设x 1,x 2是关于x 的方程x 2+4k+3=0的两实根.y 1,y 2是关于y 的方程y 2-k 2y+p=0的根.若x 1-y 1=2,x 2-y 2=2则k=____,p=____.22.已知关于x 的方程2x 2+2x+c=0的根是x 1,x 2,则3||21=-x x ,那么c 的值是____.(二)解下列方程 1.030222=-+x x 2.0532=--x x 3.)5(2)5(32x x -=-4.8)12(212=-x5.)(02722用配方法=+-x x6.0432=+-x x7.04)(22=--+ab x b a x8.013482=--x x9.)1(2322+=x x 10.0)(222=---ab x b a abx 11.0)23(22=-+--n n m x m x三、本期答案 (一)填空题1.3≠m2.-(k+2),k+13.2±=x4.45,1625 5.0 6.92,34,2,2726,310,910--- 7.12112-或 8.3x 2-7x-6=0 9.015222=+-x x 10.4x 2-x-39=0 11.4y 2-21y+1=0 12.3y 2-9=013.2x 2+3x-1=0 14.1<m<7 15.-3 16.89->k 17.241≠->k k 且18.11211≠>k k 且 19.2 3或1 21.k=-2,p=-9 22.-1(二)解答题 1.225,23- 2.2293±=x 3.513,521==x x 4.23,2521-==x x5.4337,433721-=+=x x 6.无解 7.x 1=-2a,x 2=2b 8.453±=x 9.226± 10.abb a -, 11.2m+n,m-n。

九年级数学一元二次方程的根与系数的关系

九年级数学一元二次方程的根与系数的关系

九年级数学一元二次方程的根与系数的关系一、一元二次方程的根与系数的关系在我们生活中,有很多问题都可以用一元二次方程来解决。

那么,什么是一元二次方程呢?简单来说,就是形如ax^2+bx+c=0的方程,其中a、b、c是已知的常数,x 是未知数。

而这个方程的解,就是我们要找的那个未知数x。

那么,如何求解这个方程呢?这就需要我们了解一元二次方程的根与系数的关系。

我们来看一下一元二次方程的一般形式:ax^2+bx+c=0。

在这个方程中,a、b、c 是已知的常数,而x是未知数。

我们的目标就是求出x的值。

为了实现这个目标,我们需要先了解一下一元二次方程的根与系数的关系。

二、一元二次方程的根与系数的关系1. 根的概念在一元二次方程中,x是未知数,而a、b、c是已知的常数。

我们的目标就是求出x的值。

为了实现这个目标,我们需要先了解一下根的概念。

根是指一个数与其对应的幂次相乘所得的结果等于原方程。

例如,对于方程ax^2+bx+c=0,它的两个根分别是:(1)当b^2-4ac≥0时,有两个实数根,分别为:x_1=(-b±√(b^2-4ac))/2ax_2=(-b±√(b^2-4ac))/2a(2)当b^2-4ac<0时,无实数根。

这里我们需要注意的是,当b^2-4ac<0时,方程没有实数根;而当b^2-4ac≥0时,方程有两个实数根。

这两个实数根分别称为一元二次方程的两个根。

2. 系数的概念在一元二次方程中,a、b、c是已知的常数。

它们分别表示了方程中各项的系数。

具体来说,a表示x^2项的系数,b表示x项的系数,c表示常数项的系数。

在求解一元二次方程时,我们需要关注这些系数之间的关系。

三、一元二次方程的解法及步骤在了解了一元二次方程的根与系数的关系之后,我们就可以运用这些知识来求解一元二次方程了。

下面我们来看一下求解一元二次方程的具体步骤:1. 我们需要判断方程是否有实数根。

根据前面我们学过的知识,当b^2-4ac≥0时,方程有实数根;而当b^2-4ac<0时,方程没有实数根。

中考专题一元二次方程根与系数关系解析

中考专题一元二次方程根与系数关系解析

中考专题一元二次方程根与系数关系解析1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。

2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。

3、以2和3为根的一元二次方程(二次项系数为1)是 。

4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。

5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。

6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。

7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。

8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。

9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。

10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。

11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。

12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。

13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。

(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。

若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。

15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。

16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k= 17、已知关于x 的方程x2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。

中考数学专项练习一元二次方程系数与根的关系(含解析)

中考数学专项练习一元二次方程系数与根的关系(含解析)

中考数学专项练习一元二次方程系数与根的关系(含解析)一、单选题1.若、是一元二次方程的两根,则的值是()A.-2B.2C.3D.12.一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣33.已知方程x2-5x+2=0的两个解分别为m,n,则m+n-mn的值是()A.-7B.-3C.7D.34.若关于x一元二次方程x2﹣x﹣m+2=0的两根x1 ,x2满足(x1﹣1)(x2﹣1)=﹣1,则m的值为()A.3B.-3C.2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0两根互为倒数有()A.0个B.1个C.2个D.3个6.设x1 ,x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.1D.127.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.28.方程x2+2x-4=0的两根为x1 ,x2 ,则x1+x2的值为()A.2B.-2C.D.-9.若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A.5B.7C.8D.1010.假如a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b 的值为()A.-8B.8C.-16D.1611.假如是一元二次方程的两个实数根,那么的值是()A.B.C.D.二、填空题12.设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________.13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1 ,x2 ,则x1*x2=________.14.若x1、x2是方程2x2﹣3x﹣4=0的两个根,则x1•x2+x1+x2的值为________.15.若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是_____ ___.16.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是________.17.若方程x2﹣3x+1=0的两根分别为x1和x2 ,则代数式x1+x2﹣x 1x2=________.18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.三、运算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.四、解答题21.已知关于x的方程x2+x+a﹣1=0有一个根是1,求a的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 ,x2 ,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.请依照该材料解题:已知x1 ,x2是方程x2+6x+3=0的两实数根,求+和x12x2+x1x22的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方程的两根分别是、,∴==3.故选C.2.【答案】A【考点】根与系数的关系【解析】【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】依照一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出m+n与mn的值,代入所求式子中运算即可求出值.【解答】∵x2-5x+2=0的两个解分别为m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选D【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:依照题意得x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选A.【分析】依照根与系数的关系得到x1+x2=1,x1x2=﹣m+2,再变形等式(x 1﹣1)(x2﹣1)=﹣1得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为1且△≥0,可得出答案。

中考专题:一元二次方程的根与系数的关系

中考专题:一元二次方程的根与系数的关系

( ) ② x12 + x22 = x12 + 2x1x2 + x22 - 2x1x2 = x1 + x2 2 - 2x1x2
③ 1 + 1 = x2 + x1 = x1 + x2 x1 x2 x1 • x2 x1 • x2 x1 • x2
( ) ④ x2 + x1 = x22 + x12 = x12 + x22 = x1 + x2 2 - 2x1x2

9.如果 x1、x2 是一元二次方程 x2﹣kx+k﹣1=0 的两个实数根,且 x1+x2=3,则 k=

10.已知 x1、x2 是一元二次方程 x2+x+m=0 的两个根,且 x1+x2=2+x1x2,则 m=

11.(易错题)关于 x 的一元二次方程 x2+(2k+1)x+k2=0 有两个不相等的实数根.设方程的两个实数根分别为 x1,
5.已知 x1,x2 是一元二次方程 2x2﹣3x﹣4=0 的两个实数根,则 x12 x2 + x1x22 的值是 .
6.一元二次方程
x2﹣2x﹣1=0
的两根分别为
x1,x2,则
1 x1
+
1 x2
的值为

7.若
x1,x2 是方程
x2﹣2x﹣1=0
的两个实数根,则
x2 x1
+
x2 x2
的值为

8.已知 m,n 是一元二次方程 x2﹣4x﹣3=0 的两个实数根,则代数式(m+1)(n+1)的值为
前提:①一般式:ax2 +bx+c = 0 (a≠0);②判别式:∆=b2 - 4ac ≥ 0

中学数学《一元二次方程根与系数的关系》知识点精讲

中学数学《一元二次方程根与系数的关系》知识点精讲

知识点总结一、一元二次方程根与系数的关系(1)若方程ax2 bx c 0 (a≠0)的两个实数根是x1,x2,则x1+x2= -bc,x1x2= aa(2)若一个方程的两个根为x1,,x2,那么这个一元二次方程为ax2 x1 x2 x x1x2 0 (a≠0)(3)根与系数的关系的应用:① 验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;② 求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.③ 求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于x1和x2的代数式的值,如;④ 求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式.二、解一元二次方程应用题:它是列一元一次方程解应用题的拓展,解题方法是相同的。

其一般步骤为:1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;3.解:解所列方程,求出解来;4.验:一是检验是否为方程的解,二是检验是否为应用题的解;5.答:怎么问就怎么答,注意不要漏写单位名称。

一元二次方程的练习题1、若关于x的二次方程(m+1)x-3x+2=0有两个相等的实数根,则m=__________22、设方程x 3x 4 0的两根分别为x1,x2,则x1+x2=________,x1·x2=__________ 2x1+x2=_________,(x1-x2)=__________,x1+x1x2+3x1=____________23、若方程x-5x+m=0的一个根是1,则m=____________24、两根之和等于-3,两根之积等于-7的最简系数的一元二次方程是_____________25、若关于x的一元二次方程mx+3x-4=0有实数根,则m的值为______________226、方程kx+1=x-x无实根,则k___________导学案【学习目标】1、学会用韦达定理求代数式的值。

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。

A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一元二次方程根与系数的关系
精选例题解析
知识考点:
掌握一元二次方程根与系数的关系,并会根据条件和根与系数的关系不解方程确定相关的方程和未知的系数值。

精典例题:
【例1】关于x 的方程10422=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。

分析:设另一根为1x ,由根与系数的关系可建立关于1x 和k 的方程组,解之即得。

答案:
2
5
,-1 【例2】1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值:
(1)2
22
1x x + (2)21x x - (3)22
22
133x x x -+
略解:(1)2
221x x +=212212)(x x x x -+=417
(2)21x x -=212214)(x x x x -+=2
1
3
(3)原式=)32()(22
22221x x x x -++=5417
+=4
112 【例3】已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。

分析:有实数根,则△≥0,且16212
22
1+=+x x x x ,联立解得m 的值。

略解:依题意有:
⎪⎪⎩
⎪⎪⎨⎧≥--+=∆+=+-=+-=+0)5(4)2(416
5)2(222212
22122
121m m x x x x m x x m x x 由①②③解得:1-=m 或15-=m ,又由④可知m ≥4
9
- ∴15-=m 舍去,故1-=m 探索与创新:
【问题一】已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。

略解:由1632+-=∆m ≥0得m ≤
2
1。

121+-=+m x x ,22141
m x x =≥0
∴1x 与2x 可能同号,分两种情况讨论:
(1)若1x >0,2x >0,则⎩⎨⎧>>+00
2
121x x x x ,解得m <1且m ≠0
∴m ≤
2
1
且m ≠0 (2)若1x <0,2x <0,则⎩⎨⎧><+0
02121x x x x ,解得m >1与m ≤21
相矛盾
综上所述:当m ≤
2
1
且m ≠0时,方程的两根同号。

【问题二】已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。

(1)是否存在实数k ,使2
3
)2)(2(2121-=--x x x x 成立?若存在,求出k 的
值;若不存在,请说明理由。

(2)求使
21
2
21-+x x x x 的值为整数的实数k 的整数值。

略解:(1)由k ≠0和△≥0⇒k <0 ∵121=+x x ,k
k x x 41
21+=
∴2122121219)(2)2)(2(x x x x x x x x -+=-- 2
3
49-=+-=k k ∴5
9
=
k ,而k <0 ∴不存在。

(2)21221-+x x x x =4)(2
1221-+x x x x =14+-
k ,要使14
+-k 的值为整数,而k 为整数,1+k 只能取±1、±2、±4,又k <0
∴存在整数k 的值为-2、-3、-5
跟踪训练: 一、填空题:
1、设1x 、2x 是方程0242=+-x x 的两根,则①
2
11
1x x +
= ;②21x x - = ;③)1)(1(21++x x = 。

2、以方程0422=--x x 的两根的倒数为根的一元二次方程
是 。

3、已知方程0452=+-mx x 的两实根差的平方为144,则m = 。

4、已知方程032=+-m x x 的一个根是1,则它的另一个根是 ,m 的值
是 。

5、反比例函数x
k
y =
的图象经过点P (a 、b ),其中a 、b 是一元二次方程042=++kx x 的两根,那么点P 的坐标是 。

6、已知1x 、2x 是方程0132=+-x x 的两根,则1112422
1++x x 的值为 。

二、选择题:
1、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为( ) A 、0 B 、-1 C 、1 D 、±1
2、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =⎪⎭⎫
⎝⎛2
2,则方程的两根之比
为( )
A 、0∶1
B 、1∶1
C 、1∶2
D 、2∶3 3、已知两圆的半径恰为方程02522=+-x x 的两根,圆心距为3,则这两个圆的外公切线有( )
A 、0条
B 、1条
C 、2条
D 、3条
4、已知,在△ABC 中,∠C =900,斜边长2
1
7,两直角边的长分别是关于x 的方
程:09)21
(32=++-m x m x 的两个根,则△ABC 的内切圆面积是( )
A 、π4
B 、π23
C 、π47
D 、π4
9
5、菱形ABCD 的边长是5,两条对角线交于O 点,且AO 、BO 的长分别是关于x 的方程:03)12(22=++-+m x m x 的根,则m 的值为( )
A 、-3
B 、5
C 、5或-3
D 、-5
或3 三、解答题:
1、证明:方程0199719972=+-x x 无整数根。

2、已知关于x 的方程032=++a x x 的两个实数根的倒数和等于3,关于x 的方程023)1(2=-+-a x x k 有实根,且k 为正整数,求代数式
2
1
--k k 的值。

3、已知关于x 的方程03)21(22=-+--a x a x ……①有两个不相等的实数根,且关于x 的方程01222=-+--a x x ……②没有实数根,问:a 取什么整数时,方程①有整数解?
4、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?
(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。

5、已知关于x 的方程01)12(2=-+-+k x k kx 只有整数根,且关于y 的一元二次方程03)1(2=+--m y y k 的两个实数根为1y 、2y 。

(1)当k 为整数时,确定k 的值。

(2)在(1)的条件下,若m =2,求2
22
1y y +的值。

6、已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实根,问:1x 、2x 能否同号?若能同号,请求出相应m 的取值范围;若不能同号,请说明理由。

参考答案
一、填空题:
1、①2;②22;③7;
2、0242=-+x x ;
3、±18;
4、2,2;
5、(-2,-2)
6、43; 二、选择题:ABCDA 三、解答题:
1、略证:假设原方程有整数根,由⎩⎨⎧==+19971997
2
121x x x x 可得1x 、2x 均为整数根,
∵199721=x x ∴1x 、2x 均为奇数
但21x x +应为偶数,这与199721=+x x 相矛盾。

2、1=k ,02
1
=--k k 3、3=a
4、(1)2->m ;(2)1=m
5、(1)k =0,-1;(2)当k =0时,132
221=+y y ;当1-=k 时,4
172
22
1=
+y y 6、能同号,m ≤2
1
且m ≠0。

相关文档
最新文档