人教版 初中数学 七年级上册科学计数法_知识点讲解_PPT
合集下载
七年级数学《科学计数法》

数学方法
科学记数法: 一个大于10的数可以表示成 a × 10n 的形式,其中 1 ≤ a < 10,n 是正整数,
这种记数方法叫做 科学记数法
(scientific notation).
例 用科学记数法表示下列数据: 赤道长约为:40 000 000 m; 地球表面积约为:510 000 000 km2.
六、小结回顾
进一步体会和感受大数;
掌握大数的表示方法: 科学记数法 并能比较科学记数法表示的大数的大小.
6、下列各数:9.99×109 ,1.01× 1010,
9.9×109 , 1.1 × 1010 . 从小到大排列,用“ < ” 连接起来.
合作交流
用科学计数法表示:
中国国家图书馆约有2700万册图书, 若这些图书每册有500页,则该图书 馆的图书的总页数共有多少页?
若每个书架可存放图书200册,按一本 8开纸的小说每页的数字为 1670 字计 算,则每个书架藏书的总字数将达到 多少字?
解: 40 000 000 m = 4×107m 510 000 000 km2 = 5.1×108
用科学记数法表示一个n位整 数,其中10的指数是_n_-_1__.
解问题
1、在69600000000的以下各表示方法中,是科 学记数法的为( )
(A)696× 108 (B)69.6× 109 (C)6.96 ×1010 (D)0.696× 1011
2、用科学记数法表示的数3.61× 108 ,它的
原数是( ) (A)361 00 000 000 (B)361 0 000 000 (C)361 000 000 (D)361 00 000
解决问题
3、在以下的各数中,最大的数为( ) (A)7.2 × 105 (B)2.5×106
人教版七年级数学上课件课件:1.5.2.科学计数法

2.某公司今年用于投资的资金约为5300万元,用
科学记数法表示 5.3×107 元。 3.用科学计数法表示:70000= 7×104 ;
-3280.5= -3.2805×;103 19.9×105= 1.99×10。6
左边的数缩小10倍,右边的指数就多1,
326.9×106= 3.269×108
。
当堂检测 • 小练习P33
一组数据: 102=_1_0_0_, 103=_1_0_00_,
那么100 也可以表示成__1_0_2_______, 1 000也可以表示成___1_0_3______,
思考:
200 000
=2×100 000 2 105
2 600 000 =2.6× 1 000 000 2.6 106
9 35 3
(3) 1 ( 3 5 7 ) 1
4 9 12 36
(4)
3
(5
|
4
|)
3 2
2 3
(
81) 8
二、计算
(1) 7 (7) 2 (11)
4
3
8
(2) 12 7 ( 2 1 ) 1 (4)2
C.1.62×108 D.0.162×109
3.(2015•山东潍坊)2015年5月17日是第25个全国助残 日,今年全国助残日的主题是“关注孤独症儿童,走向 美好未来”.第二次全国残疾人抽样调查结果显示,我 国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记 数法表示为( )
A. 1.11×104 B. 11.1×104 C. 1.11×105 D. 1.11×106 4.(2015•南宁)南宁快速公交(简称:BRT)将在今年底 开始动工,预计2016年下半年建成并投入试运营,首条 BRT西起南宁火车站,东至南宁东站,全长约为11300 米,其中数据11300用科学记数法表示为( ).
科学记数法表示 5.3×107 元。 3.用科学计数法表示:70000= 7×104 ;
-3280.5= -3.2805×;103 19.9×105= 1.99×10。6
左边的数缩小10倍,右边的指数就多1,
326.9×106= 3.269×108
。
当堂检测 • 小练习P33
一组数据: 102=_1_0_0_, 103=_1_0_00_,
那么100 也可以表示成__1_0_2_______, 1 000也可以表示成___1_0_3______,
思考:
200 000
=2×100 000 2 105
2 600 000 =2.6× 1 000 000 2.6 106
9 35 3
(3) 1 ( 3 5 7 ) 1
4 9 12 36
(4)
3
(5
|
4
|)
3 2
2 3
(
81) 8
二、计算
(1) 7 (7) 2 (11)
4
3
8
(2) 12 7 ( 2 1 ) 1 (4)2
C.1.62×108 D.0.162×109
3.(2015•山东潍坊)2015年5月17日是第25个全国助残 日,今年全国助残日的主题是“关注孤独症儿童,走向 美好未来”.第二次全国残疾人抽样调查结果显示,我 国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记 数法表示为( )
A. 1.11×104 B. 11.1×104 C. 1.11×105 D. 1.11×106 4.(2015•南宁)南宁快速公交(简称:BRT)将在今年底 开始动工,预计2016年下半年建成并投入试运营,首条 BRT西起南宁火车站,东至南宁东站,全长约为11300 米,其中数据11300用科学记数法表示为( ).
人教版初一上册数学1.5.2科学计数法.课件

解: 2×0.05×60×60×4 =1440 =1.44×103(毫升)
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
最新人教版七年级上册数学培优课件第一章第18课时 科学计数法

思路点拨:把一个记成a×10n(1≤︱a︱<10,n为正整数)的 形式的数还原成一般形式,n是多少小数点就向右移动多少位.
返回目录
举一反三
2. 将下列用科学记数法表示的数还原: (1)2.45×105=____2_4_5_0_0_0____; (2)-8.73×106=___-_8_7_3_0_0_0_0___; (3)3.7×109=__3_7_0_0_0_0_0_0_0_0__.
返回目录
对点范例
1. 将27600用科学记数法表示为__2_._7_6_×__1_0_4_.
返回目录
知识重点
知识点二 会用科学记数法表示较大的数 用科学记数法表示数时要特别注意: (1)a的取值范围是_1_≤__︱__a_︱__<_1_0__; (2)n的值是__比__原__数__的__整__数__位__数__少__1_的__数___.
返回目录
解: 1011101 =1×26+0×25+1×24+1×23+1×22+0×21+1 =64+0+16+8+4+0+1 =93. 答:二进制中的1011101等于十进制中的数93.
思路点拨:认真观察已知给出的两个式子:101=1×22+0×21+1
等于十进制的数5;10111=1×24+0×23+1×22+1×21+1等于十进
返回目录
对点范例
2. 将26000用科学记数法表示为2.6×10n,则n的值为___4____.
返回目录
典例精析
【例1】把下列各数用科学记数法表示:
(1)6960000=____6_._9_6_×__1_0_6___;
返回目录
举一反三
2. 将下列用科学记数法表示的数还原: (1)2.45×105=____2_4_5_0_0_0____; (2)-8.73×106=___-_8_7_3_0_0_0_0___; (3)3.7×109=__3_7_0_0_0_0_0_0_0_0__.
返回目录
对点范例
1. 将27600用科学记数法表示为__2_._7_6_×__1_0_4_.
返回目录
知识重点
知识点二 会用科学记数法表示较大的数 用科学记数法表示数时要特别注意: (1)a的取值范围是_1_≤__︱__a_︱__<_1_0__; (2)n的值是__比__原__数__的__整__数__位__数__少__1_的__数___.
返回目录
解: 1011101 =1×26+0×25+1×24+1×23+1×22+0×21+1 =64+0+16+8+4+0+1 =93. 答:二进制中的1011101等于十进制中的数93.
思路点拨:认真观察已知给出的两个式子:101=1×22+0×21+1
等于十进制的数5;10111=1×24+0×23+1×22+1×21+1等于十进
返回目录
对点范例
2. 将26000用科学记数法表示为2.6×10n,则n的值为___4____.
返回目录
典例精析
【例1】把下列各数用科学记数法表示:
(1)6960000=____6_._9_6_×__1_0_6___;
七年级数学上册教学课件《科学记数法》

A. 5.5×103 B. 55×103 C. 5.5×104
D. 6×104
方法点拨:用科学记数法表示大于10的数的“三步法”
1.定a:确定a,a必须满足1≤a<10;
2.定n:确定n,n的值比原数的整数位数少1;
3.写数:写成a×10n的形式.
巩固练习
2.10 科学记数法
变式训练
2018年11月6日上午,在上海召开的首届中国国际进口博览会 北京主题活动上,北京市交易团重点发布了2022北京冬奥会、 北京大兴国际机场等北京未来发展的重要规划及采购需求,
素养目标
2.10 科学记数法
2.感受科学记数法的作用,体会科学记数法表示大数的 优越性及必要性.
1.使学生了解科学记数法的意义,并会用科学记数法 表示比较大的数.
探究新知 知识点 1 科学记数法
问题241 回顾有理数的乘方运算,算一算:
2.10 科学记数法
102 = 100
104 = 10 000
2.10 科学记数法
一个正常人的平均心跳速率约为每分70次,一年大约跳几 次?用科学记数法表示这一结果.一个正常人一生心跳次数能达 到1亿次吗?请说明理由.
解:70×60×24 ×365 = 36792000 =3.6792 ×107(次)
100 000 000÷36 792 000 ≈2.7(年)
数学 七年级 上册
2.10 科学记数法
2.10 科学记数法
导入新知
2.10 科学记数法
第六次人口普查时,中国人口约为1370 000 000人.
导入新知
2.10 科学记数法
地球的半径约为6400 000 m.
导入新知
2.10 科学记数法
人教版七年级数学科学计数法

6
7
不是 是 不是
6
5
是
2.用科学记数法写出下列各数:
10 0000, 800 00000, -556 000 000, =105 =8×107 =-5.56×108
3.下列用科学记数法表示的数,原数是什么?
3.2 10 =32 000
4
6 10
3
=6 000
7
3.25 10 =32 500 000
例2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000 8.5×106 =8 500 000 4×103 =4 000 7 1.下列各数是否是用科学记数法表示的?
2 400 000 0.2410 2 400 000 2.4 10 3 100 000 3110 3 100 000 3.110
所以一个正常人一生心跳次数能达到1亿次.
这节课你有什么收获?
本节结束
=6.1×109
负数能用科学计数法吗?
负数也可以用科学计数法 例如:-29 8000 0000 = -2.98×109 例1 用科学记数法表示下列各数:
①1 000 000= 106 ②57 000 000= 5.7×107 ③-123 000 000 000= -1.23×1011 思考:等号左边整数的位数与右边10的指 数有什么关系?用科学记数法表示一个n 位 整数,其中10的指数是 _______ . n- 1
1.5有理数的乘方
1.5.2科学计数法
复习回顾
有理数混合运算的运算顺序
1.有乘方运算,先计算乘方,再乘除后加减; 2.同级运算,从左到右计算;
3.如有括号,先做括号内的运算,按小括号,中括号,
大括号依次进行。
7
不是 是 不是
6
5
是
2.用科学记数法写出下列各数:
10 0000, 800 00000, -556 000 000, =105 =8×107 =-5.56×108
3.下列用科学记数法表示的数,原数是什么?
3.2 10 =32 000
4
6 10
3
=6 000
7
3.25 10 =32 500 000
例2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000 8.5×106 =8 500 000 4×103 =4 000 7 1.下列各数是否是用科学记数法表示的?
2 400 000 0.2410 2 400 000 2.4 10 3 100 000 3110 3 100 000 3.110
所以一个正常人一生心跳次数能达到1亿次.
这节课你有什么收获?
本节结束
=6.1×109
负数能用科学计数法吗?
负数也可以用科学计数法 例如:-29 8000 0000 = -2.98×109 例1 用科学记数法表示下列各数:
①1 000 000= 106 ②57 000 000= 5.7×107 ③-123 000 000 000= -1.23×1011 思考:等号左边整数的位数与右边10的指 数有什么关系?用科学记数法表示一个n 位 整数,其中10的指数是 _______ . n- 1
1.5有理数的乘方
1.5.2科学计数法
复习回顾
有理数混合运算的运算顺序
1.有乘方运算,先计算乘方,再乘除后加减; 2.同级运算,从左到右计算;
3.如有括号,先做括号内的运算,按小括号,中括号,
大括号依次进行。
七年级数学上册第一章有理数1.5.2科学计数法(图文详解)

全国财政收入7 917.66亿元 阿根廷队球员的身价总和已经达到了3.9亿欧元 像这样较大的数据,书写和阅读都有一定困难,那么 有没有一种表示方法,使得这些大数易写,易读,易于计 算呢?
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
人教版七年级数学上册各章知识点总结-PPT

14
二、选择题
三、计算题 1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8-0.73+1.2
减第 二 章 整 式 的 加
1.整式的概念: (1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和 ※注意 ①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1时,“1”通常 省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。如23a6的次数为6 ④单项式的系数是带分数时,应化成假分数。 ⑤单项式的系数包括它前面的符号。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数 的次数是0。
如果a=b,那么ac=bc; 如果a=b(c≠0),那么a/c=b/c 此外等式还有其它性质: 若a=b,则b=a.
若a=b,b=c,则a=c.
说明:①等式两边不可能同时除以为零的数或式子 ②等式的性质是解方程的重要依据.
22
3:方程的概念:含有未知数的等式叫方程,方程中 一定含有未知数,而且必须是等式,二者缺一不可. 说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得
把绝对值相
。
,异号得
,并
0除以任何一个不等于0的数都得 。
12
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
二、选择题
三、计算题 1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8-0.73+1.2
减第 二 章 整 式 的 加
1.整式的概念: (1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。 ②单项式的次数:单项式中所有的字母的指数和 ※注意 ①圆周率π是常数; ②只含有字母因式的单项式的系数是1或-1时,“1”通常 省略不写,如x2,-a2b等; ③单项式次数只与字母指数有关。如23a6的次数为6 ④单项式的系数是带分数时,应化成假分数。 ⑤单项式的系数包括它前面的符号。 ⑥单独的一个数字是单项式,它的系数是它本身;非零常数 的次数是0。
如果a=b,那么ac=bc; 如果a=b(c≠0),那么a/c=b/c 此外等式还有其它性质: 若a=b,则b=a.
若a=b,b=c,则a=c.
说明:①等式两边不可能同时除以为零的数或式子 ②等式的性质是解方程的重要依据.
22
3:方程的概念:含有未知数的等式叫方程,方程中 一定含有未知数,而且必须是等式,二者缺一不可. 说明:代数式不含等号,方程是用等号把代数式连接而成 的式子,且其中一定要含有未知数.
(2)有理数除法法则: 1、除以一个不等于0的数,等于乘这个数的
.
2、两数相除,同号得
把绝对值相
。
,异号得
,并
0除以任何一个不等于0的数都得 。
12
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变