CD的倍频电路设计
简易倍频放大电路课程设计

课程设计报告电路与电子技术课程设计简易倍频发大电路的设计与制作学生姓名学号所在学院专业名称班级指导教师成绩二〇一三年六月课程设计任务书简易倍频放大电路的设计与制作内容摘要:倍频放大电路实际上就是将输入信号频率成整数倍(2倍、3倍……n倍)增加的电路。
它主要用于甚高频无线电发射机或其它电子设增加的电路。
随着现代通信技术的日益发展,倍频技术应用的领域也越来越广。
实现倍频主要有三种方法:傅里叶法,锁相环法,参量法.传统倍频电路利用R C微分电路和施密特触发与非门分别检出脉冲的上升沿和下降沿,然后经过一个输入端或门叠加输出。
电路能够完成信号的倍频工作,但实现起来比较繁琐,电路工作稳定性差。
为克服上述电路设计方法的缺陷,便于电路调试,我设计了一种全数字型倍频电路。
在此电路中,输入脉冲由A点输入,由时钟C LK上升沿打入D触发器1,D触发器1输出信号B,B信号在下一个时钟的上升沿被打入下一级D触发器2,D触发器2输出信号C,再将B、C信号异或,即可得到脉冲宽度为一个时钟周期的倍频信号。
采用这种方法实现的电路输出信号的脉冲宽度可由输入时钟周期的大小随意调节,唯一的要求是时钟的频率要大于两倍的输入信号的频率。
关键词:倍频电路数字型时钟CLK D触发器Design and manufacture of a kind of simple Multiplefrequency amplifierAbstract:Frequency amplifier circuit is actually the frequency of the input signal into integer (2 times, 3 times, N times) increased circuit. It is mainly used for VHF radio transmitter or other electronic equipment to increase the circuit. With the development of modern communication technology, the application of frequency doubling technology becomes more and more wide. Realization of frequency has mainly three kinds of methods: Fourier method, PLL, parametric method. The traditional frequency multiplier circuit using RC differential circuit and Schmidt trigger NANDgate were rising and falling edge of pulse, and then through an input or output. The circuit can complete the work of the signal of frequency multiplication, it is more tedious, circuit stability.In order to overcome the defect in the circuit design method, and let it be convenient for circuit debugging, I design a digital frequency multiplier circuit. In this circuit, Inputting the input pulse by the A point, along into the D flip-flop 1 by the leading-edge clock CLK, D flip-flop 2 output signal B, signal B rise on the next clock edge into the next level of D 2 triggers, D flip-flop 2 output signal C, then signal B and signal C would be obtained by XOR, pulse width of frequency doubling signal clock cycle a. The pulse width circuit output signal of realization of this method can be freely adjusted the size of input clock cycle, the only requirement is the input clock frequency must be greater than two times the frequency.Keywords:clock multiplier amplifier circuit clock CLK D flip-flop digital目录前言 (5)1倍频的3种方法 (5)1.1傅里叶法 (5)1.2锁相环法 (6)1.3参量法 (7)2 钟控D触发器 (8)2.1电路组成和工作原理 (9)2.2功能描述 (9)3主要芯片介绍 (11)3.1 74LS375简介 (11)3.1.1引出端符号: (11)3.1.2外接管腿: (11)3.1.3逻辑图如下 (12)3.1.4功能表: (12)3.1.5推荐工作条件 (12)3.1.6静态特性(TA为工作环境温度范围) (12)4电路原理 (13)4.1传统倍频电路的缺陷 (13)4.2全新数字型倍频电路 (14)5电路的组装和调试 (15)5.1电路的组装 (15)5.2整机的布线存在 (15)6结束语 (16)附录: (18)附录1设计需要的仪器和元件 (18)附录2实物图 (18)参考文献: (19)简易倍频放大电路前言倍频器的工作原理:倍频器是一种将输入信号频率成整数倍(2倍、3倍n倍)增加的电路。
倍频电路设计范文

倍频电路设计范文倍频电路是一种通过倍频器将信号频率倍增的电路。
在许多应用中,需要将信号频率倍增,比如在通信领域中将低频信号转换为高频信号,以增加传输距离和可靠性。
倍频电路设计需要根据具体的应用需求和信号特性,选择合适的倍频器电路和参数。
常用的倍频器电路有倍频整波电路、倍频整数倍电路和倍频锁相环电路。
倍频整波电路通过整流和滤波将信号频率倍增,适用于低功率小幅度信号的倍频。
倍频整数倍电路则是通过电路中的倍频元件(如倍频器二极管、倍频晶体管)将信号频率乘以整数倍。
倍频锁相环电路则是通过锁定一个参考频率,并通过控制多级倍频器的相位和频率来实现信号频率倍增。
在设计倍频电路时,首先要确定输入信号的频率范围、幅度和功率。
然后选择合适的倍频器电路和倍频器元件。
对于倍频整波电路,可以选择使用整流电路和滤波电路,如谐振电路和低通滤波器。
对于倍频整数倍电路,可以选择使用适合的倍频器元件,如倍频晶体管、倍频二极管等。
对于倍频锁相环电路,需要选择合适的相位比较器、VCO(压控振荡器)和分频器等。
在设计倍频电路时,还需要考虑电路的带宽、失真、稳定性和功耗等方面的问题。
带宽要求决定了电路的频率响应范围,失真要求决定了电路的非线性和波形失真程度,稳定性要求决定了电路的抗干扰能力和稳定性,功耗要求决定了电路的能效。
总之,倍频电路设计需要根据具体应用需求和信号特性,选择合适的倍频器电路和元件,考虑电路的带宽、失真、稳定性和功耗等方面的问题,并可以使用仿真软件进行模拟和分析。
这样可以设计出满足要求的倍频电路,提高信号处理和传输的效果。
高频倍频器三倍频器电路设计

西安航空学院高频电子线路课程设计题目: 3倍频器电路设计专业班级:电信1431 学号: 46 学生姓名:**指导教师:教师职称:起止时间: 2012.12.29——2013.1.6 课程设计(论文)任务及评语目录第一章倍频器工作原理分析 01.1工作原理 01.2晶体管倍频原理电路、工作状态及其特点 (1)第二章丙类倍频器功效分析 (3)第三章三倍频器的主要质量指标 (6)3.1 变频增益 (6)3.2 失真和干扰 (6)3.3 选择性 (6)3.4噪声系数 (6)第四章电路设计与仿真 (7)第五章设计分析与总结 (9)参考文献 .................................................. 错误!未定义书签。
第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。
图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。
因为振荡器的频率越高,频率稳定度就越低。
一般主振频率不宜超过5MHz 。
因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。
在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。
一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。
超过这一频率,就宜在石英振荡器后面采用倍频器。
如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。
这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。
倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。
如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。
在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。
倍频器按其工作原理可分为三类。
基于CPLD的全数字倍频电路设计

2 0 1 3年 3 期 ( 上)
基于 C P L D的全数字倍频电路设计
魏达 ( 西安 外事学院 陕西 西安 7 1 0 0 7 7 )
 ̄ i i - J t - :随 着' E - t - 技 术的发展 ,当前数字 系统的设计正朝着速度 快、容量 大、体积小、重量轻 的方向发展 。推动该潮流迅猛发展的引擎就是 日 趋进步和完善的设
象。 3总体设计 锁相环倍频系统 由两块 C M O S 集成电路 C D 4 0 4 6 、C D 4 5 1 8等元件组成 。C D 4 O 4 6是 双十进制 同步计数器 , 在锁相环倍频 电路 的 反馈支路 中,作 N = 1 0 0 分频器 ;C D 4 0 4 6 为 数字锁相环 ,内部由两个相位 比较器 、 压控 振荡器 V C D( 附有跟随器 )、稳压管组成。
品。
基于 C P L D的数字频率计设计 .它 由锁 相环倍频器 、及基 于 C P L D的测频单元两部 分组成 , 可 以将 待测频率放大一百倍之后通 过测频单元 ,由于 C P L D往往存在一个波形 的误差 ,将待测频率放大一百倍后,误差变 为 以前 的百分之一 , 这样就大大提高了测频 计 的精度 。 传统 的频率计直接测量低频的待 测频率 ,精度不高 ,本设计改善 了这点 。 1系统顶层 电路设计 基于 C P L D的数字 频率计设计 ,它 由锁 相环倍频器 、及基 于 C P L D的测频单元两部 分组成 , 可 以将待测频率放大一百倍之后 通 过测频单元 ,由于 C P L D往往存在一个 波形 的误差 ,将待测频率放大一 百倍后 ,误差变 为 以前 的百分之一 , 这样就大大提高了测频 计 的精度 。 传统 的频率计直接测量低频 的待 测频率 ,精度不高 ,本设计改善了这点 。 2方案选择 基于 C P L D的数字频率计 :该方案选择 Q U A R T U S作为软件平台 ,用 E P M 2 4 0核 心 板及外 围硬件实现数字频率计的功能。 倍频器工作 原理 电路 ( a ) 倍频 电路可 以把待测频率放大 1 0 0 倍后通过测频单元 ,进 而通过 L E D显示控制模块及七段译 码模块将锁存器 中的数通过数码管输 出。 基于 C P L D的数字频率计 :主控制模块 的输入为一个 1 H z 的时钟信 号, 并 为整个程 序提供计数信号 , 计数器清零信号及锁存信 号, 将 1 H z 的时钟信号二分频作为计数使能 信号 ,将这个使能信号反相 1 8 0 。作 为锁存 器的锁存信号 ,清零端在锁存后的 0 . 5 秒给 计数器清零 。 控制 电路为整个频率计提供工 作时序 ,控制器能在无延时的条件下工作 。 是每个模块正常工作的前提条件。 锁相环倍频器属于高频电子的范 围, 焊 接 时各个焊点之间可能形成耦合电容 ,由此 会对 电路测试产生一定的影响 ; 合适 的工作 电压对于电路正常工作也非常重要 , 如果不 在合 适 的电压下 工作 也不会 产生倍 频的现
高频谐振功率放大及倍频实验电路设计浅析

高频谐振功率放大和倍频作为高频电子线路的重要知识 点,其将高频振荡、甲乙类谐振放大、丙类谐振功率和倍频电 路等融合起来,其中,冰雷功放通过应用并馈串联谐振实现功 率放大,为后续电路的设计奠定了基础。
1 高频谐振功率放大和倍频实验原理分析
高频谐振功放晶体管馈电方式包括串联馈电和并联馈电 两种,而这两种方式的电源电压都是位于集电极上,二者的区 别主要是滤波匹配网络接入不同。串联馈电滤波网络位于直流 高电位,网络元件无法直接接地,并联馈电位于直流地电位, 网络元件能够直接接地,安装也更加便利[1]。但是,高频扼流 圈并联琵琶网络会导致分布参数对网络调谐产生影响。谐振回 路也分成了并联谐振、串联谐振两种方式,当前大部分资料主 要介绍了串馈并联谐振,对于并馈串联谐振的研究比较少。因 此,本文以并馈串联谐振为对象展开研究。
2.2 测试分析 本文的电路设计测试时,通过设计的匹配网络参数对乙类 放大器输出电压进行调整,将其调整成5/12,正弦波,通过级 间匹配网络可得2/12正弦信号,利用跳线对功放负载电阻进行 选择,得到输出电波。 在分析放大器负载特性时,若负载回路谐振可以将负载电 阻改变,进而得到负载特性。功率管基极输入信号2/12,谐振功 放负载电阻得以改变,采用示波器对负载两边输出电压进行观 察,并记录数据,绘制曲线图。当负载电阻上升时,放大器会从 欠压状态进入到过压状态,电流脉冲也形成了凹陷型的脉冲波。
TECHNOLOGY AND INFORMATION
工业与信息化
高频谐振功率放大及倍频实验电路设计浅析
徐海飞 符宇鑫 盛晓春 任恒志 四川九洲电器集团有限责任公司 四川 绵阳 621000
摘 要 作为电子通信专业的基础课程之一,高频电子线路主要是学习电子元器件、模拟电路和电路系统,并掌握 高频电子线路概念及其原理,同时掌握非线性电路分析设计方法,为学习电子系统工程奠定坚实的基础。基于此, 本文就高频谐振功率放大和倍频实验电路设计展开研究,首先阐述了其原理,其次对电路设计和分析进行了研究, 希望能够了解谐振功放知识,并掌握倍频电路相关内容。 关键词 高频谐振功率放大;倍频试验电路;设计
高频倍频器三倍频器电路设计

西安航空学院高频电子线路课程设计题目: 3倍频器电路设计专业班级:电信1431 学号: 46 学生姓名:**指导教师:教师职称:起止时间: 2012.12.29——2013.1.6 课程设计(论文)任务及评语目录第一章倍频器工作原理分析 01.1工作原理 01.2晶体管倍频原理电路、工作状态及其特点 (1)第二章丙类倍频器功效分析 (3)第三章三倍频器的主要质量指标 (6)3.1 变频增益 (6)3.2 失真和干扰 (6)3.3 选择性 (6)3.4噪声系数 (6)第四章电路设计与仿真 (7)第五章设计分析与总结 (9)参考文献 .................................................. 错误!未定义书签。
第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。
图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。
因为振荡器的频率越高,频率稳定度就越低。
一般主振频率不宜超过5MHz 。
因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。
在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。
一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。
超过这一频率,就宜在石英振荡器后面采用倍频器。
如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。
这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。
倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。
如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。
在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。
倍频器按其工作原理可分为三类。
倍频电路设计

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:倍频电路设计初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:1. 采用晶体管或集成电路设计一个倍频电路;2. 额定电压5V,电流10~15 mA ;3. 输入频率4MHz,输出频率12 MHz 左右;4. 输出电压≥ 1 V,输出失真小;5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。
时间安排:1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。
2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。
3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1 绪论 (1)2 设计内容及要求 (2)2.1 设计目的及主要任务 (2)2.1.1 设计的目的 (2)2.1.2 设计任务及主要技术指标 (2)2.2 设计思想 (2)3 设计原理及方案 (3)3.1 设计原理 (3)3.1.1锁相环组成介绍 (3)3.1.2锁相环原理 (5)3.1.3 NE564芯片介绍 (6)3.2 设计方案 (7)4 电路制作及硬件调试 (9)5 心得体会 (10)参考文献 (11)摘要倍频器实质上就是一种输出信号等于输入信号频率整数倍的电路,经倍频处理后,调频信号的频偏可成倍提高,即提高了调频调制的灵敏度,这样可降低对调制信号的放大要求。
采作倍频器可以使载波主振荡器与高频放大器隔离,减小高频寄生耦合,有得于减少高频自激现象的产生,提高整机工作稳定性。
在要求倍频噪声较小的设备中,可采用NE564芯片根据锁相环原理构成的锁相环倍频器。
CD4046的倍频电路设计

设计项目:基于CD4046的倍频电路设计
使用TI产品及设计过程:本设计采用锁相环芯片CD4046和分频器CD4040实现,效果良好,CD4046压控振荡输出到分频器CD4040的时钟输入端,经分频后回馈到CD4046的鉴相器输入端,和待倍频的输入信号进行相位比较,得出的相位差经过低通滤波器产生一个控制电压调节压控振荡器的输出振荡频率,当鉴相器的两输入端频率相位一样时(即相位锁定),压控振荡器的输出频率即为倍频和的频率。
整个电路如附件所示。
我在采用CD4046+CD4040进行倍频电路设计过程中走了很多弯路,总结一下以供大家参考:1、芯片外围电路参数的选择应严格按照DATASHEET上的要求进行选择。
2、倍频的倍数不能太大,太大的话会造成倍频出来的结果很不稳定。
3、准确选择R1、C1和R2的参数,这三项的参数如果设置不正确将会造成倍频输出不对的结果。
您的感想:通过这次设计使我充分掌握了分频和倍频的原理以及实现方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C D的倍频电路设计 The latest revision on November 22, 2020
设计项目:基于CD4046的倍频电路设计
使用TI产品及设计过程:本设计采用锁相环芯片CD4046和分频器CD4040实现,效果良好,CD4046压控振荡输出到分频器
CD4040的时钟输入端,经分频后回馈到CD4046的鉴相器输入端,和待倍频的输入信号进行相位比较,得出的相位差经过低通滤波器产生一个控制电压调节压控振荡器的输出振荡频率,当鉴相器的两输入端频率相位一样时(即相位锁定),压控振荡器的输出频率即为倍频和的频率。
整个电路如附件所示。
我在采用CD4046+CD4040进行倍频电路设计过程中走了很多弯路,总结一下以供大家参考:1、芯片外围电路参数的选择应严格按照DATASHEET上的要求进行选择。
2、倍频的倍数不能太大,太大的话会造成倍频出来的结果很不稳定。
3、准确选择R1、C1和R2的参数,这三项的参数如果设置不正确将会造成倍频输出不对的结果。
您的感想:通过这次设计使我充分掌握了分频和倍频的原理以及实现方法。