数学模型.doc

合集下载

数学建模方法模型

数学建模方法模型

数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。

具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。

2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。

3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。

4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。

这种模型的的特点是直观,容易理解。

2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。

数学模型与数学建模

数学模型与数学建模

数学模型与数学建模数学模型数学模型(Mathematical Model)是近些年发展起来的新学科,是数学理论与实际问题相结合的一门科学。

它将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

一、建立数学模型的要求:1、真实完整。

1)真实的、系统的、完整的,形象的映客观现象;2)必须具有代表性;3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。

在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。

随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

根据研究目的,对所研究的过程和现象(称为现实原型或原型)的主要特征、主要关系、采用形式化的数学语言,概括地、近似地表达出来的一种结构,所谓“数学化”,指的就是构造数学模型.通过研究事物的数学模型来认识事物的方法,称为数学模型方法.简称为MM 方法。

数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。

数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。

在体育实践中常常提到优秀运动员的数学模型。

如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。

数学建模

数学建模

于是建立文件备份问题的数学模型如下: min N min N
16
s.t.
X ij 1(i 1,......,16)
j 1
16
si xij 1.44*1024( j 1,.....,16)
i 1
16
N ≥ jxij (i=1,……,16) j 1
最优解如下: 软盘 1 2 3
xij {0,1}(i. j 1,......,16)
便向此公司支付 30 千元的奖励。为缩短工期,建筑公司每周需要支付 额外费用,见表第 6 列。问如何施工才能使得建筑公司的利润最大。 解:(1)模型建立
xi (i=1,…,18)表示第 i 项任务的施工时刻 ti 表示第 i 项任务的耗时;
施工的任务为 i,其先决任务为 j 和 k,于是有约束:
x j + t j xi
文件大小/KB 46,,6,87,137,364,372,388 108,406,432,461 55,114,164,253,851
使用空间/MB 1.4219 1.3740 1.4003
xi 0 (i=1,…,18)
最优解: 各个任务的开工周次为: 0,2,18,29,27,37,37,44,43,37,43,52,39,30,37,46,54,63 相应各个任务的完工周次为: 2,18,27,37,37,43,39,46,52,42,46,54,40,37,41,49,63,64 (2) 模型建立:
(2)模型的建立
定义 0-1 变量 Xij (i=1,……,16;j=1,…..,16), Xij =1 表示文件 i 在软盘 j 中
备份,否则为 0.设 sx 表示文件 i 的大小。
由于文件 i 只能备份到一张软盘中,所以有:

十大经典数学模型

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。

初中48个数学模型

初中48个数学模型

初中48个数学模型
1. 直线方程模型
2. 一次函数模型
3. 二次函数模型
4. 指数函数模型
5. 对数函数模型
6. 三角函数模型
7. 幂函数模型
8. 反比例函数模型
9. 绝对值函数模型
10. 分段函数模型
11. 等差数列模型
12. 等比数列模型
13. 等差数列求和模型
14. 等差数列通项求值模型
15. 等差数列前n项和求值模型
16. 等差数列前n项平均值模型
17. 等比数列求和模型
18. 等比数列通项求值模型
19. 等比数列前n项和求值模型
20. 等差数列与等差数列之和关系模型
21. 平方根模型
22. 平方根与二次方程关系模型
23. 正方形面积模型
24. 三角形面积模型
25. 平行四边形面积模型
26. 斜率模型
27. 切线斜率模型
28. 余弦定理模型
29. 正弦定理模型
30. 几何相似模型
31. 三角形相似模型
32. 平行线与平行线之间的角关系模型
33. 同位角与内错角模型
34. 相交弦定理模型
35. 角平分线定理模型
36. 体积模型
37. 圆锥体积模型
38. 圆柱体积模型
39. 球体积模型
40. 柱台体积模型
41. 三维图形表面积模型
42. 立体图形展开模型
43. 均值不等式模型
44. 不等式求解模型
45. 组合数学模型
46. 排列数学模型
47. 方程求解模型
48. 实际问题建模模型
以上是初中数学常见的48个数学模型,希望对你有所帮助!。

小学数学建模案例:包装问题模型版.doc

小学数学建模案例:包装问题模型版.doc

包装问题1、问题提出生活中我们经常遇到包装问题,如食品、家电、快递物品等,那么我们该如何揭示包装中存在的问题呢?以磁带的包装为例,一盒磁带的长为11cm,宽为7cm,高为2cm,来探讨在包装纸最省的前提下如何对多盒磁带进行包装。

2、模型分析如果忽略包装连接处的重叠部分面积,多盒磁带的最省包装问题归结为求不同叠放方式下的组合物品的表面积问题。

3、模型求解单独一盒磁带的表面积为2×(11×7+11×2+7×2)=226cm2。

(1)两盒磁带的包装问题通常包装的方式有三种包装面积为2×226-2×7×2=424 cm2包装面积为2×226-2×11×2=408 cm2包装面积为2×226-2×11×7=298 cm2我们发现第三种包装方式最节省材料。

(2)三盒磁带的包装问题通常包装方式也是有三种包装面积为3×226-4×7×2=622cm2包装面积为3×226-4×11×2=590 cm2包装面积为3×226-4×11×7=370 cm2结果发现还是第三种包装方式最节省材料。

我们发现,要使包装材料最省,重叠部分的面积越大越好。

(3)四盒磁带的包装问题通常包装方式有六种包装面积为4×226-6×7×2=820 cm2包装面积为4×226-4×7×2-4×11×2=760 cm2包装面积为4×226-6×11×2=772 cm2包装面积为4×226-4×11×7-4×11×2=408cm2包装面积为4×226-4×11×7-4×7×2=540cm2包装面积为4×226-6×11×7=442 cm2结果发现,第六种包装方式最省材料。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

(完整版)初中常用数学模型

(完整版)初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长)【例题1】(2014 深圳某模拟)【例题2】(2014 深圳)答案:1.32;2.D如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE与△CEF相似。

十分好证(外角和什么一大堆),并且也很实用。

经常在矩形里出题。

【例题1】(2009 太原)【例题2】(2006 河南)【例题3】(原创)答案:1. 2或3-24或25 2.(5453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。

巧造旋转往往要有一定的等量关系和特殊角度,如下题:通过观察可得∠ABC=∠C=45°,AB=AC 。

我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。

那么就有EB ⊥BC ,而在RT △AED 中,DE ²=2AD ²(等腰直角三角形) 所以BE ²+BD ²=DE ²,即BD ²+CD ²=2AD ²是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 武汉)【例题2】【例题3】(2014 菏泽改编)答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平分线,如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。

其次:垂直+角平分这个不难理解,因为等腰三角形三线合一。

这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)AB‖CD【例题2】(原创)【例题3】(改编)1.112.33.延长CD交AB于M,利用中位线,证明略【5】倍长中线法常考,选填大证明都可能会用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型复习题1、)(t x 为连续函数,初值条件0)0(x x =,假设其增长率为常数r ,显然有t t rx t x t t x ∆=-∆+)()()(,则其满足微分方程 ;微分方程满足初值条件的解为 ;这个模型称为 。

阻滞增长模型的形式的微分形式 ;求解得到的曲线称为 曲线。

2、叙述数学建模的一般步骤模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用 从思想上理解。

3、简述数学模型按以下方面的分类:按应用领域可分为:人口、交通、能源、环境、经济、规划等等;按建立模型的数学方法可分为:初等数学模型、几何模型、微分方程模型、统计回归模型、数学规划模型等等;按模型的表现特征可以分为:确定性和随机性、线性和非线性、静态和动态、连续与离散等等。

可以灵活理解。

4、在超市购物时你可能注意到大包装商品比小包装商品便宜,比如中华牙膏65g 每支2.5元,120g 每支3.8元,二者单位重量的价格比约为1.21:1。

(1)分析商品单位重量价格C 与商品重量w 的关系。

价格由生产成本、包装成本和其他成本所决定,这些成本中有的与体积成正比、有的与表面积成正比、有的与体积(重量w )无关。

(2)给出单位重量价格C 与w 的关系,画出它们的简图。

说明w 越大C 越小,但是随着w 的增加C 减小的速度变慢,解释其意义是什么?5、2010级新生入学后,统计与应用数学学院共有在校学生1055人,其中统计学专业520人,信息与计算科学专业265人,数学与应用数学专业270人。

要在全院推选23名学生组成学生代表团,试用下面的方法分配各专业的学生代表:(1)按比例分配取整的方法,剩下的名额按惯例分配给小数部分较大者; (2)用Q 值方法进行分配。

6、工厂定期订购原料,存入仓库供生产之用。

设在一个生产周期T 内,原料每天的需求量为常数r,每次的定货费用为1c ,每天每单位原料的存储费为2c ,订货后可立即到货,每次订货量为Q 。

(1)建立一周期的总费用函数(包括订货费与库存费,购货费是常数可不予考虑); (2)为使每天的平均费用最小,求最佳订货批量Q 、订货周期T 和最小成本C 。

7、一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天体重增加2公斤。

目前生猪的出售价格为每公斤8元,但是预测价格每天降低0.1元。

(1)问该饲养场应该在什么时候出售这样的生猪最划算?(2)在最佳出售时机的价格之下,作体重增加关于时间的弹性分析,并对弹性分析作出相应的解释;(3)在最佳出售时机的价格之下,作价格的降低关于时间的弹性分析,并对弹性分析作出相应的解释;8、利润)(p U 是销售收入)(p I 与生产支出)(p C 之差,p为每单位商品的售价,即)()()(p C p I p U -=。

dpdI称为 ;dp dC 称为 ;dpdU 称为 ;利润最大化的条件是 。

给定px p I =)(,qx p C =)(,需求函数bp a p x -=)(,0,,>q b a 已知(1)建立利润函数的表达式;(2)利用上述条件求利润最大化时的价格。

9、消费者对甲、乙两种商品的效用曲线(无差异曲线)),(21q q U ,问他如何利用手中的钱s 购买两种单价分别为1p 和2p 的商品以达到效用最大。

(1)建立效用最大化的数学规划模型;(2)利用Lagrange 乘数法求出利润最大化的条件,并对结果进行解释。

(3)对于上述模型,推广到n商品的情况。

10、某工厂加工A ,B ,C 三种元件,三种元件在粗加工、精加工包装检验三个车间所需要单位工时,可获最大利润。

(1Max=30*x1+20*x2+50*x3; X1+2*x2+x3<430; 3*x1+2*x3<460; X1+4*x2<420;(2)对于你建立的线性规划模型,利用LINGO10.0求解结果如下:请你进行对偶价格分析和进行全面的灵敏度分析(目标函数的系数和约束条件右断的常数项),并作出解释。

Global optimal solution found.Objective value: 13500.00 Total solver iterations: 2Variable Value Reduced Cost X1 0.000000 40.00000 X2 100.0000 0.000000 X3 230.0000 0.000000 Row Slack or Surplus Dual Price 1 13500.00 1.000000 2 0.000000 10.00000 3 0.000000 20.00000 4 20.00000 0.000000 Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 30.00000 40.00000 INFINITY X2 20.00000 80.00000 20.00000X3 50.00000 INFINITY 26.66667Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 430.0000 10.00000 200.00003 460.0000 400.0000 20.000004 420.0000 INFINITY 20.0000011、某疗养院营养师要为病人拟订本周菜单。

可供选择的蔬菜及其费用和所含营养成Min=0.15*x1+0.15*x2+0.24*x3+0.06*x4+0.18*x5+0.1*x6;0.45*x1+0.45*x2+1.05*x3+0.4*x4+0.5*x5+0.5*x6>6;10*x1+28*x2+50*x3+25*x4+22*x5+75*x6>325;415*x1+9065*x2+2550*x3+75*x4+15*x5+235*x6>17500;8*x1+3*x2+53*x3+27*x4+5*x5+8*x6>245;0.3*x1+0.35*x2+0.6*x3+0.15*x4+0.25*x5+8*x6>5;对于你建立的线性规划模型,利用LINGO10.0求解结果如下:写出对偶线性规划问题,并指出对偶规划问题的最优解;请你进行对偶价格分析和进行全面的灵敏度分析(目标函数的系数和约束条件右断的常数项),并作出解释。

Global optimal solution found.Objective value: 1.057771Total solver iterations: 0Variable Value Reduced CostX1 0.000000 0.7908464E-01X2 1.818497 0.000000X3 0.000000 0.6040132E-01X4 12.56693 0.000000X5 0.000000 0.1055289X6 0.3098109 0.000000Row Slack or Surplus Dual Price1 1.057771 -1.0000002 0.000000 -0.14715093 63.32691 0.0000004 0.000000 -0.9125189E-05 5 102.2410 0.0000006 0.000000 -0.3035017E-02 Ranges in which the basis is unchanged: Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 0.1500000 INFINITY 0.7908464E-01 X2 0.1500000 0.2308013 0.8192000E-01 X3 0.2400000 INFINITY 0.6040132E-01 X4 0.6000000E-01 0.1923420E-01 0.5698966E-01 X5 0.1800000 INFINITY 0.1055289 X6 0.1000000 2.971263 0.2370241E-01 Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 6.000000 6.517810 1.0480613 325.0000 63.32691 INFINITY4 17500.00 34276.90 16325.285 245.0000 102.2410 INFINITY6 5.000000 31.53571 2.41951412、用)(t x 和)(t y 分别表示甲乙交战双方时刻t的兵力(人数),每一方的战斗减员率取决于双方的兵力和战斗力,分别为),(),,(y x g y x f ;每一方的非战斗减员率(由疾病、逃跑等因素引起)只与本方的兵力成正比;甲乙双方的增援率是给定的时间的函数,分别为)(),(t v t u 。

则兵力变化的微分方程为:⎪⎩⎪⎨⎧+--=+--=)(),()(),(t v y y x g dtdyt u x y x f dt dxβα 根据以下条件,求出甲乙兵力的函数,分析甲、乙方获胜的条件。

正规战争:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00)0(,)0(y y x x bx dtdyaydt dx游击战争:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00)0(,)0(y y x x dxy dtdycxydt dx混合战争:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00)0(,)0(y y x x bx dtdycxydt dx13、在经济增长模型中,为了适用于不同的对象,可将产量函数折算成现金,考虑到物价上涨因素,我们记物价上升指数为)1)0()((=p t p ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t p 之间有关系)()()(t p t Q t y =。

(1)导出)(),(),(t p t Q t y 的相对增长率之间的关系,并作出解释;(2)设雇佣工人数为)(t L ,每个工人的工资)(t w ,其他成本)(t C 企业的利润函数为)()()()()()()()()()(t C t w t L t p t Q t C t w t L t y t R --=--=根据Cobb —Douglas 生产函数)()()(1t k t aL t Q rr -=讨论,企业应雇佣多少工人可使利润最大? 14、记时刻t 渔场中的鱼量为)(t x ,在无捕捞的条件下)(t x 的增长服从Logistic 规律⎪⎭⎫ ⎝⎛-=N x rx dx dx 1其中r 是固有增长率,N 是环境容许的最大鱼量。

相关文档
最新文档