河北省2020年九年级数学中考模拟 2(pdf版,含答案)
2020年河北省中考数学模拟试卷(二)(含答案解析)

2020年河北省中考数学模拟试卷(二)一、选择题(本大题共16小题,共80.0分)1.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.某红外线波长为0.00 000 094m,用科学记数法把0.00 000 094m可以写成()A. 9.4×10−7mB. 9.4×107mC. 9.4×10−8mD. 9.4×108m3.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A. 45°B. 55°C. 125°D. 135°4.计算20142−4024×2014+20122等于()A. 2B. 4C. 6D. 85.如图,已知AB//CD,AD平分∠BAE,∠D=38°,则∠AEC的度数是()A. 19°B. 38°C. 72°D. 76°6.借助计算器比较12与21,23与32,34与43,45与54,56与65,67与76,……的大小关系,根据你发现的规律,判断P=n n+1与Q=(n+1)n(n为大于2的整数)的值的大小关系是()A. P>QB. P=QC. P<QD. 与n的取值有关7.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A. 180x −180x−2=3 B. 180x−180x+2=3C. 180x+2−180x=3 D. 180x−2−180x=38.图(一)、图(二)分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A. a>b,c>dB. a>b,c<dC. a<b,c>dD. a<b,c<d9.化简a2−1a +a+1a的结果是()A. a+a2B. a−1C. a+1D. 110.下列计算正确的是()A. (ab2)2=ab4B. (3xy)3=9x3y3C. (−2a2)2=−4a4D. (−3a2bc2)2=9a4b2c411.如图,为固定电线杆AC,在离地面高度为6m的A处引拉线AB,使拉线AB与地面上的BC的夹角为48°,则拉线AB的长度约为()(结果精确到0.1m,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)A. 6.7mB. 7.2mC. 8.1mD. 9.0m12.如图,分别以△ABC的顶点A,B为圆心,以大于12AB的长为半径,画弧,过两弧交点的直线交AC于点D,连接DB,若BC=6,AC=10,则△DBC的周长等于()A. 12B. 14C. 16D. 2413.如图,⊙O与正方形ABCD的两边AB,AD相切,且DE与⊙O相切于点E.若⊙O的半径为5,且AB=11,则DE的长度为()A. 5B. 6C. √30D. 11214.二次函数y=−x2+2kx+1(k<0)的图象可能是()A. B.C. D.15.若一个直角三角形的一条直角边长是7cm,另一条直角边比斜边短1cm,则斜边长为()A. 18cmB. 20cmC. 24cmD. 25cm16.如图所示,下列一组图案,每一个图案均由边长为1的小正方形按照一定的规律堆叠而成,照此规律,第10个图案中共有()个小正方形.A. 121B. 100C. 81D. 64二、填空题(本大题共3小题,共20.0分)17.比较大小:√11 3.18.分解因式:2b2−8b+8=______ .19.如图是某机械零件的平面图形,尺寸如图所示,则A,B两点之间的距离是________.三、解答题(本大题共7小题,共66.0分)=0有两个相等的实数根,求k的值.20.已知关于x的方程(k−2)x2−(k−2)x+1421.贾宪三角(如图1)最初于11世纪被发现,原图载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.与我们现在的学习练习最紧密的要算施蒂费尔的二项式乘方后展开式的系数规律(如图2).在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式(a+b)2=a2+2ab+b2展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式(a+b)3=a3+3a2b+3ab2+b3展开式的系数,第五行的五个数恰好对应着两数和的四次方公式(a+b)4=a4+4a3b+6a2b2+ 4ab3+b4展开式的系数,等等.由此可见,贾宪三角可以看作是对我们现在学习的两数和的平方公式的指数推广而得到的.同学们,贾宪三角告诉了我们二项式乘方展开式的系数规律,你发现其中的字母及字母指数的排列规律了吗?如果发现了,请你试着写出(a+b)5、(a+b)6与(a+b)7的展开式.(a+b)5=______(a+b)6=______(a+b)7=______22.如图,已知直线l1:y1=2x+1与坐标轴分别交于A,C两点,直线l2:y2=−x−2与坐标轴分别交于B,D两点,两条直线的交点为P点.(1)求△APB的面积;(2)利用图象求当x取何值时,y1<y2.23.一次函数y=kx+b的图像经过点A(2,−3),B(0,−1),求这个一次函数的解析式.24.某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?25.若抛物线的顶点坐标是A(1,6),并且抛物线与x轴一个交点坐标为(5,0).(1)求该抛物线的关系式;(2)已知点P(m,n)在抛物线上,当−2≤m<3时,求n的取值范围.26.如图1,在Rt△ABC中,∠ACB=Rt∠,sin∠B=3,AB=10,点D以每秒5个单位长度的速度5从点B处沿沿射线BC方向运动,点F以相同的速度从点A出发沿边AB向点B运动,当F运动至点B时,点D、F同时停止运动,设点D运动时间为t秒.(1)用含t的代数式分别表示线段BD和BF的长度.则BD=_____,BF=_____.(2)设△BDF的面积为S,求S关于t的函数表达式及S的最大值.(3)如图2,以DF为对角线作正方形DEFG.①在运动过程中,是否存在正方形DEFG的一边恰好落在Rt△ABC的一边上,若存在,求出所有符合条件的t值;若不存在,请说明理由.②设DF的中点为P,当点F从点A运动至点B时,请直接写出点P走过的路程.【答案与解析】1.答案:D解析:解:A.是轴对称图形,不是中心对称图形,故A错误;B.不是轴对称图形,是中心对称图形,故B错误;C.是轴对称图形,不是中心对称图形,故C错误;D.既是轴对称图形,又是中心对称图形,故D正确.故选D.根据轴对称图形与中心对称图形的概念对各选项分析判断,利用排除法求解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:A解析:解:0.00 000 094m=9.4×10−7,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3.答案:B解析:解:由图形所示,∠AOB的度数为55°,故选B.由图形可直接得出.本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.4.答案:B解析:解:20142−4024×2014+20122=(2014−2012)2=4.故选:B.直接利用完全平方公式将原式变形进而得出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.5.答案:D解析:本题考查了平行线的性质和角平分线定义,根据平行线的性质得出∠CEA=∠EAB,∠D=∠BAD= 38°,结合角平分线的定义求出∠EAB,即可求出∠AEC.解:∵CD//AB,∴∠CEA=∠EAB,∠D=∠BAD=38°,∵AD平分∠BAE,∴∠EAB=2∠DAB=76°,∴∠AEC=∠EAB=76°,故选:D.6.答案:A解析:[分析]先通过计算器比较数据大小.从中归纳可以得出n n+1与(n+1)n的大小关系即可解答.[详解]解:∵12=1,21=2,∴12<21;∵23=8,32=9∴23<32;∵34=81,43=64∴34>43;∵45=1024,54=625∴45>54;∵56=15625,65=7776∴56>65...∴n n+1>(n+1)n(n为大于2的整数);故选A.[点评]本题主要考查了学生的归纳总结的数学能力.解题关键是会从材料中找到数据之间的关系,并利用数据之间的规律总结出一般结论,然后利用结论直接进行解题.7.答案:B解析:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.解:设小组原有x人,可得:180x −180x+2=3.故选B.8.答案:A解析:解:由图(三)、图(四)可知a=8,b=6⇒a>b,甲班共有5+15+20+15=55(人),乙班共有25+5+15+10=55(人),则甲、乙两班的中位数均为第28人,得c=8,d=7⇒c>d.故选A.根据众数是一组数据中出现次数最多的数据,确定众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;依此即可求解.此题考查了众数与中位数的知识.解题的关键是熟记众数与中位数的定义.9.答案:C解析:本题考查的是分式的加减法,在解答此类题目时要注意约分的灵活运用.根据分式的加法进行计算即可.解:原式=a2−1+a+1a =a(a+1)a=a+1.故选:C.10.答案:D解析:本题考查幂的乘方与积的乘方.根据幂的乘方与积的乘方的法则逐项计算,即可解答.解:A.(ab2)2=a2b4;则A错误;B.(3xy)3=27x3y3;则B错误;C.(−2a2)2=4a4;则C错误;D.(−3a2bc2)2=9a4b2c4;则D正确.故选D.11.答案:C解析:解:在直角△ABC中,sin∠ABC=ACAB,∴AB=AC÷sin∠ABC=6÷sin48°=60.74≈8.1(米).故选:C.在直角△ABC中,利用正弦函数即可求解.此题主要考查了解直角三角形的条件,把实际问题转化为数学问题是解题的关键.12.答案:C解析:解:由作图得DA=DB,所以△DBC的周长=BC+DC+BD=BC+DC+AD=BC+AC=6+10=16.故选:C.根据基本作图得到点D在AB的垂直平分线上,则DA=DB,然后利用等线段代换得到△DBC的周长=BC+AC.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).13.答案:B解析:本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,关键是求出AM长和得出DE=DM.得出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.解:连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∵圆O的半径为5,∴AM=OM=5,∵AD和DE与圆O相切,∴DM=DE,∴DE=DM=AD−AM=11−5=6,故选B.14.答案:A=k<0,得到对称轴在y轴的解析:解:二次函数y=−x2+2kx+1(k<0)的对称轴是x=−b2a左侧.当x=0时,y=1,图象与y轴的交点在x轴的上方,故A正确;故选:A.根据对称轴公式,可得对称轴在y轴的左侧,根据函数图象与y轴的交点,可得答案.本题考查了二次函数图象,利用函数图象的对称轴及图象与y轴的交点是解题关键.15.答案:D解析:本题考查了勾股定理的运用,设直角三角形的斜边是xcm,则另一条直角边是(x−1)cm.根据勾股定理列方程求解即可.解:设直角三角形的斜边是xcm,则另一条直角边是(x−1)cm.根据勾股定理,得(x−1)2+72=x2,解得:x=25.则斜边的长是25cm.故选:D.16.答案:B解析:解:设第n个图案中共有a n个小正方形(n为正整数),观察图形,可知:a1=1=12,a2=1+3=22,a3=1+3+5=32,a4=1+3+5+7=42,…,∴a n=n2(n为正整数),∴a10=102=100.故选:B.设第n个图案中共有a n个小正方形(n为正整数),观察图形,根据图形中小正方形个数的变化可找出变化规律“a n=n2(n为正整数)”,再代入n=10即可求出结论.本题考查了规律型:图形的变化类,根据图形中小正方形个数的变化找出变化规律“a n=n2(n为正整数)”是解题的关键.解析:此题主要考查了实数的大小比较,比较两个实数的大小可以采用作差法,取近似值法,平方法等,首先把3和√11分别平方,由于两数均为正数,所以该数平方越大,数越大.解:∵3²=9,(√11)²=11,∵11>9,∴√11>3.故答案为>.18.答案:2(b−2)2解析:解:原式=2(b2−4b+4)=2(b−2)2.故答案为:2(b−2)2.先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2=(a−b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.答案:39解析:本题主要考查两点间的距离公式.解题关键是认真看图,构造直角三角形求解A,B两点间距离.解:从图形中可得:AB=√(60−24)2+(40−25)2=√362+152=39故答案为:39.=0有两个相等的实数根,20.答案:解:∵关于x的方程(k−2)x2−(k−2)x+14∴[−(k−2)]2−4(k−2)×14=0,整理得,k2−5k+6=0,即(k−2)(k−3)=0,解得:k=2或k=3.∵k−2≠0,∴k≠2,∴k=3.解析:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.根据根的判别式令△=0,建立关于k的方程,解方程即可.21.答案:a5+5a4b+10a3b2+10a2b3+5ab4+b5;a6+6a5b+15a4b2+20a3b3+15a2b4+ 6ab5+b6;a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7解析:解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7.跟答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5;a6+6a5b+15a4b2+20a3b3+15a2b4+ 6ab5+b6;a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7.观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.本题考查了整式的混合运算,学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.22.答案:解:(1)解方程组{y=2x+1,y=−x−2,得{x=−1y=−1.∴P点坐标为(−1,−1).又∵A(0,1),B(0,−2),∴S▵ABP=12×AB×1=12×3×1=32.(2)由题图可知,当x <−1时,直线l 1上的点都在直线l 2的下方,∴当x <−1时,y 1<y 2.解析:本题考查了一次函数与二元一次方程组,属于基础题,关键是掌握根据图象进行解题.(1)先求出A ,B ,P 的坐标,根据面积公式即可求解;(2)求出交点P 的坐标,正确根据图象即可得出答案.23.答案:解:∵一次函数y =kx +b 的图象经过点(2,−3)和(0,−1),∴{2k +b =−3b =−1, 解得{k =−1b =−1, ∴一次函数的解析式为y =−x −1.解析:本题考查的是待定系数法求一次函数解析式.将点(2,−3)和(0,−1)代入y =kx +b 可得出方程组,解出即可得出k 和b 的值,即得出了函数解析式.24.答案:解:(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元. 得{5x +6y =9503x +2y =450解得{x =100y =75. 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(2m +4)套.根据题意得:{2m +4≤4030m +20(2m +4)≥1200解得16≤m ≤18∵m 为正整数,∴m =16、17、18,∴2m +4=36、38、40答:有三种进货方案(1)A种品牌得化妆品购进16套,B种品牌得化妆品购进36套.(2)A种品牌得化妆品购进17套,B种品牌得化妆品购进38套.(3)A种品牌得化妆品购进18套,B种品牌得化妆品购进40套.解析:略25.答案:解:(1)设抛物线解析式y=a(x−1)2+6,把(5,0)代入,得a(5−1)2+6=0,.解得a=−38(x−1)2+6;故该抛物线解析式为:y=−38<0,开口向下,对称轴为x=1,(2)∵a=−38P(m,n)在抛物线上,−2≤m<3,∵−2≤m<1时,n随m的增大而增大,当m=−2时,有最小值n=21;81≤m≤3时,n随m的增大而减小,当m=1时,有最大值n=6;当m=3时,有最小值n=9.2≤n≤6.∴218解析:(1)设抛物线解析式为顶点式y=a(x−1)2+6,把点(5,0)代入,即利用待定系数法求出抛物线的解析式;(2)根据二次函数的性质可求n的取值范围.本题考查了用待定系数法求函数解析式的方法,同时还考查了二次函数的性质,难度不大,属于中档题.26.答案:解:(1)5t,10−5t;(2)如图1中,作FM⊥BC于M,∵FM//AC,∴FMAC =BFBA,∴FM6=10−5t10,∴FM=35(10−5t)=6−3t,∴S=12⋅BD⋅FM=12⋅5t⋅(6−3t)=−152t2+15t;当t=1时,S max=7.5.(3)①如图2中,当DE在BC边上时,作FM⊥AC于M,易知FM=EC=4t,AM=3t,CM=EF=DE=6−3t,∵BD+DE+EC=8,∴5t+6−3t+4t=8,∴t=13s,如图3中,当FG在AB边上时,易知DG=FG=3t,BG=4t,∵BG+FG+AF=10,∴4t+3t+5t=10,∴t=56s,如图4中,当DG在BC边上时,易知FG=DG=6−3t,BG=8−4t,∵BD=BG+DG=5t,∴8−4t+6−3t=5t,∴t=7 6 s.如图5中,当EF在边AB上时,易知BE=4t,DE=EF=3t,∵BE−EF=BF,∴4t−3t=10−5t,∴t=5 3 s.综上所述,t=53s或76s或56s或13s时,正方形DEFG的一边恰好落在Rt△ABC的一边上;②如图6中,当点F与B重合时,点D在点K处,易知点P的运动轨迹是△ABK的中位线MN,在Rt△ACK中,AK=√AC2+CK2=√62+22=2√10.MN=12AK=√10,S P=√10.解析:本题主要考查的是正方形的性质、列代数式、平行线分线段成比例定理、三角形的面积、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题(1)由题意BD=5t,BF=10−5t;(2)如图1中,作FM⊥BC于M,由FM//AC,利用平行线分线段成比例和三角形的面积公式进行求解即可;(3)①分三种情形在图2~图5中,分别列方程求解即可;②如图6中,当点F与B重合时,点D在点K处,易知点P的运动轨迹是△ABK的中位线MN,求出AK即可解决问题.解:(1)在Rt△ABC中,∵AB=10,tanB=3,5∴AC=6,BC=8,由题意BD=5t,BF=10−5t,故答案为5t,10−5t;(2)见答案;(3)①见答案;②见答案.。
2020年河北省中考数学二模试卷(含答案解析)

2020年河北省中考数学二模试卷一、选择题(本大题共16小题,共42.0分)1.某日,A市的最高气温为12℃,最低气温为−2℃,A市这天的最高气温比最低气温高()A. 10℃B. 14℃C. −10℃D. −14℃2.下列各组数中,数值相等的有()①−27与(−2)7;②−22与(−2)2;③(−1)2018与−1;④455与1625.A. 1组B. 2组C. 3组D. 4组3.下列标志中不是中心对称图形的是()A. B. C. D.4.比较三个数−3,−π,−√10的大小,下列结论正确的是()A. −π>−3>−√10B. −√10>−π>−3C. −√10>−3>−πD. −3>−π>−√105.如图所示,是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()A. 4B. 5C. 6D. 76.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()A. m+nB. m−nC. n−mD. |m+n|7.如图,一艘补给船从A点出发沿北偏东65°方向航行,给B点处的船补给物品后,向左进行了90°的转弯,然后沿着BC方向航行,则∠DBC的度数为()A. 25°B. 35°C. 45°D. 65°8.化简x2−y2(y−x)2的结果是()A. −1B. 1C. x+yy−x D. x+yx−y9.如图,可以由第一个五角星平移得到的是()A.B.C.D.10.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A. 12B. 13C. 16D. 2311.如图,两个三角形是全等三角形,x的值是()A. 30B. 45C. 50D. 8512.关于x的一元二次方程(a−1)x2+3x−2=0有实数根,则a的取值范围是()A. a >−18 B. a ≥−18 C. a >−18且a ≠1D. a ≥−18且a ≠113. 在下列二次函数中,其图象对称轴为直线x =−2的是( )A. y =(x +2)2B. y =2x 2−2C. y =−2x 2−2D. y =2(x −2)214. 如图,AB 为⊙O 的直径,P 点在AB 延长线上,PM 切⊙O 于M 点,若OA =a ,PM =√3a ,那么△PMB 的周长为( )A. 2aB. 2√3aC. aD.(2+√3)a15. 如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省( )A. 1元B. 2元C. 3元D. 4元16. 如图,把菱形ABCD 向右平移至DCEF 的位置,作EG ⊥,垂足为,与相交于点,的延长线交于点,连接,则下列结论:①;②;③;④其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共3小题,共10.0分)17. 分解因式:(1)3m(a −b)+2n(b −a)=______; (2)2a −1−a 2=______.18. 我们规定一种新运算,对于实数a ,b ,c ,d ,有∣∣∣a b cd∣∣∣=ad −bc.若正整数x 满足∣∣∣x +22x −12−3∣∣∣≥−18,则满足条件的x 的值为______.19. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF//AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AEAB =23,则3S △EDH =13S △DHC ,其中结论正确的有______.三、计算题(本大题共1小题,共11.0分)20. 已知某种产品的进价为每件40元,现在的售价为每件59元,每星期可卖出300件,市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元. (1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该厂产品销售定价为每件多少元时,每星期的销售利润最大?最大利润是多少元?四、解答题(本大题共6小题,共57.0分)21. 解不等式75x +32>−x10,并把解集在数轴上表示出来.22.某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,90%以后为D等级)(1)抽取了______名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在扇形的圆心角度数是_____;(4)若测试总人数前90%为合格,该校初二年级有1050名学生,求全年级生物合格的学生共约多少人.23.如图,点D在△ABC的边CB的延长线上,以AB为直径作⊙O交线段AC于点E,过点E作EF//CD分别交⊙O、AB于点F、G,连接BE、BF,若∠CBE=∠DBF.(1)求证:CD为⊙O的切线;(2)已知AB=18,BE=6,求弦EF的长.(x<0)的图24.如图,一次函数y=k1x+b的图象与反比例函数y=k2x象相交于点A(−1,2)、点B(−4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.25.(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.求证:△BCD≌△BAE.(2)在(1)的条件下,当 BD//AE时,延长CD交AE于点F,如图②,求AF的长.(3)在(2)的条件下,线段BC上是否存在一点P,使得△PBD为等腰三角形?若存在,请直接写出满足△PBD为等腰三角形时,线段PB的长;若不存在,请说明理由.26.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.【答案与解析】1.答案:B解析:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解..解:12−(−2)=14℃.故选B.2.答案:A解析:本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方的计算方法.根据有理数的乘方进行计算,再逐一判断即可.解:①(−2)7=−27,故①−27与(−2)7相等;②−22=−4,(−2)2=4,故②−22与(−2)2不相等;③(−1)2018=1,故③(−1)2018与−1不相等;④455=10245,故④455与1625不相等;相等的有1组.故选:A.3.答案:C解析:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.解:A.是中心对称图形,故A选项错误;B.是中心对称图形,故B选项错误;C.不是中心对称图形,是轴对称图形,故C选项正确;D.是中心对称图形,故D选项错误;故选C.4.答案:D解析:本题考查实数的大小比较,关键是得到对应数的绝对值的大小.由于3<π<√10,再根据负数比较大小的方法:绝对值大的反而小,比较即可求解.解:∵|−3|=3,|−√10|=√10,;又∵3<π<√10,∴−3>−π>−√10,故选D.5.答案:B解析:解:综合三视图可知,这个几何体的底层应该有2+1+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:B.根据该几何体的俯视图可确定该几何体共有两行三列,再结合主视图,即可得出该几何体的小正方体的个数.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6.答案:C解析:本题考查了实数与数轴:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示.用B点表示的数减去A点表示的数即可得到A,B间的距离.解:A,B间的距离=n−m.故选C.7.答案:D解析:解:如图,由AE//BF,可得∠FBG=∠EAB=65°,又∵∠CBG=∠DBF=90°,∴∠DBC=∠FBG=65°,故选:D.由AE//BF,可得∠FBG=∠EAB=65°,再根据∠CBG=∠DBF=90°,即可得出∠DBC=∠FBG=65°.本题考查了方向角,解决本题的关键是利用平行线的性质:两直线平行,同位角相等.8.答案:D解析:本题考查了分式的约分,对分子、分母进行因式分解是约分的关键.先将分子、分母分别因式分解,找出公因式约去即为结果.解:原式=(x+y)(x−y)(x−y)2=x+y.x−y故选D.9.答案:B解析:本题考查了生活中的平移现象,根据平移只改变图形的位置,不改变图形的形状与大小对各选项分析即可.解:可以由第一个五角星平移得到的是,故选B.10.答案:B解析:解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=1.3故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得小红从入口A进入景区并从C,D出口离开的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.答案:A解析:本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.解:∠A=180°−105°−45°=30°,∵两个三角形是全等三角形,∠D和∠A所对边长都为3,∴∠D=∠A=30°,即x=30,故选A.12.答案:D解析:本题考查了一元二次方程根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.根据一元二次方程的定义和判别式的意义得到a≠1且Δ=32−4(a−1)×(−2)≥0,然后求出两个不等式解集的公共部分即可.解:根据题意得a≠1且Δ=32−4(a−1)×(−2)≥0,且a≠1.解得a≥−18故选D.13.答案:A解析:本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解:A.y=(x+2)2的对称轴为x=−2,A正确;B.y=2x2−2的对称轴为x=0,B错误;C.y=−2x2−2的对称轴为x=0,C错误;D.y=2(x−2)2的对称轴为x=2,D错误.故选A.14.答案:D解析:此题考查了切线的性质以及直角三角形的性质.注意准确作出辅助线是解此题的关键.先连接OM,由PM切⊙O于M点,若OA=a,PM=√3a,可求得OP的长,继而求得BP的长,即可得OB=BP,利用直角三角形斜边上的中线等于斜边的一半,可求得BM的长,则可求得△PMB 的周长.解:连接OM,∵PM切⊙O于M点,∴OM⊥PM,∴∠OMP=90°,∵OM=OA=a,PM=√3a,∴OP=√OM2+PM2=2a,∵OB=OA=a,∴BP=OP−OB=2a−a=a,OP=OM,∴OB=12∴MB=1OP=a,2∴△PMB的周长为:BM+BP+PM=a+a+√3a=(2+√3)a.故选D.15.答案:B解析:本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB的函数解析式.根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:{2k +b =204k +b =36, 解得:{k =8b =4, ∴y =8x +4,当x =3时,y =8×3+4=28.则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元,故选:B .16.答案:C解析:本题考查菱形的性质,平移变换,全等三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题.首先证明△ADG≌△FDH ,再利用菱形的性质、直角三角形斜边中线的性质即可判断.解:∵四边形ABCD 和四边形DCEF 是菱形,∴AB//CD//EF ,AD =CD =DF ,∴∠GAD =∠F ,∵∠ADG =∠FDH ,∴△ADG≌△FDH ,∴DG =DH ,AG =FH ,∴BG =AB +AG =AB +HF ,故①正确.∵EG ⊥AB ,∴∠BGE =∠GEF =90°,∴DE =DG =DH ,故②正确,∴∠DHE =∠DEH ,∵∠DEH =12∠CEF ,∠CEF =∠CDF =∠BAD , ∴∠DHE =12∠BAD ,故③正确,∵四边形ABCD 和四边形DCEF 是菱形,∴∠B =∠DCE =∠F ,∵∠DHE >∠F ,∠DHE =∠DEF ,∴∠DEF>∠B,故④错误.故选C.17.答案:(1)(a−b)(3m−2n);(2)−(a−1)2解析:解:(1)3m(a−b)+2n(b−a)=(a−b)(3m−2n);故答案为:(a−b)(3m−2n);(2)2a−1−a2=−(a2−2a+1)=−(a−1)2.故答案为:−(a−1)2.(1)直接提取公因式(a−b),进而分解因式得出即可;(2)直接提取负号,再利用完全平方公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.18.答案:1,2解析:此题主要考查了解一元一次不等式,正确得出不等式是解题关键.直接利用已知定义得出一元一次不等式,进而得出答案.解:由题意可得:−3(x+2)−2(2x−1)≥−18,解得:x≤2,满足条件的x的值为:1,2.故答案为1,2.19.答案:①②③④解析:解:①∵四边形ABCD为正方形,EF//AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,{EF=DC∠EFH=∠DCH FH=CH,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,{EF=DC∠EFH=∠DCH FH=CH,∴△EHF≌△DHC(SAS),故③正确;④∵AEAB =23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,{EG=DF∠EGH=∠HFD GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=√26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故答案为:①②③④.①根据题意可知∠ACD=45°,则GF=FC,则EG=EF−GF=CD−FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=180°;③同②证明△EHF≌△DHC即可;④若AEAB =23,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=√26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.20.答案:解:(1)根据题意,w=(59−40−x)(300+20x)=−20x2+80x+5700,由300+20x≤380可得x≤4;所以0≤x≤4,且x为整数;(2)∵w=−20x2+80x+5700=−20(x−2)2+5780,∴当x=2时,w取得最大值,最大值为5780,答:该厂产品销售定价为每件57元时,每星期的销售利润最大,最大利润是5780元.解析:本题主要考查二次函数的应用,解题的关键是理解题意找到题目蕴含的相等关系,据此列出函数解析式.(1)根据“总利润=每件产品的利润×销售量”可得函数解析式;(2)将(1)中所得函数解析式配方成顶点式,利用二次函数的性质求解可得.21.答案:解:去分母得:14x+15>−x,移项得:14x+x>−15,系数化为1得:x>−1..解析:此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,是一道基本题型.先去分母、移项、根据不等式的基本性质把系数化为1即可求出不等式的解集.画出数轴在数轴上表示出来即可.22.答案:解:(1)50;(2)D等级的学生有50−(10+23+12)=5(名),补全直方图,如图所示:(3)72°;(4)根据题意得:1050×90%=945(人),则全年级生物合格的学生共约945人.解析:此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.(1)根据B等级的人数除以占的百分比确定出学生总数即可;(2)求出D等级的人数,补全频数分布直方图即可;(3)求出A等级的百分比,乘以360即可得到结果;(4)由学生总数乘以90%即可得到结果.解:(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩;故答案为50;(2)见答案;(3)根据题意得:20%×360°=72°,故答案为72°;(4)见答案.23.答案:证明:(1)∵EF//CD,∴∠EFB=∠DBF,∵BE⏜=BE⏜,∴∠EFB=∠BAC,∴∠DBF=∠BAC,又∵∠CBE=∠DBF,∴∠CBE=∠BAC,∵AB是直径,∴∠AEB=90°,∴∠ABE+∠BAC=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴CD⊥AB,∴CD为⊙O的切线;(2)解:连接OE,∵CD⊥AB,EF//CD,∴EF⊥AB,又∵AB是直径,∴EG=FG,连接EO,设OG=x,则BG=9−x,由勾股定理可知:OE2−OG2=BE2−BG2=EG2,即92−x2=62−(9−x)2,解得x=7,∴EF=2EG=2√92−72=8√2.解析:(1)求出∠EFB=∠DBF,∠CBE=∠BAC,根据圆周角定理得出∠AEB=90°,求出∠ABE+∠BAC=90°,推出∠ABC=90°,根据切线的判定推出即可;(2)根据垂径定理求出EG=FG,设OG=x,则BG=9−x,由勾股定理得出方程92−x2=62−(9−x)2,求出x =7,即可求出答案.本题考查了圆周角定理,切线的判定,勾股定理,三角形内角和定理,垂径定理的应用,题目比较典型,综合性比较强.24.答案:解:(1)∵反比例y =k 2x (x <0)的图象经过点A(−1,2), ∴k 2=−1×2=−2, ∴反比例函数表达式为:y =−2x ,∵反比例y =−2x 的图象经过点B(−4,n),∴−4n =−2,解得n =12,∴B 点坐标为(−4,12),∵直线y =k 1x +b 经过点A(−1,2),点B(−4,12),∴{−k 1+b =2−4k 1+b =12, 解得:{k 1=12b =52, ∴一次函数表达式为:y =12x +52.(2)设直线AB 与x 轴的交点为C ,如图1,当y =0时,12x +52=0,x =−5;∴C 点坐标(−5,0),∴OC =5.S △AOC =12⋅OC ⋅|y A |=12×5×2=5.S △BOC =12⋅OC ⋅|y B |=12×5×12=54.S △AOB =S △AOC −S △BOC =5−54=154;(3)如图2,作点A 关于x 轴的对称点A′,连接A′B ,交x 轴于点P ,此时△PAB 的周长最小,∵点A′和A(−1,2)关于x 轴对称,∴点A′的坐标为(−1,−2),设直线A′B 的表达式为y =ax +c ,∵经过点A′(−1,−2),点B(−4,12) ∴{−a +c =−2−4a +c =12,解得:{a =−56c =−176, ∴直线A′B 的表达式为:y =−56x −176, 当y =0时,则x =−175,∴P 点坐标为(−175,0).解析:(1)先根据点A 求出k 2值,再根据反比例函数解析式求出n 值,利用待定系数法求一次函数的解析式;(2)利用三角形的面积差求解.S △AOB =S △AOC −S △BOC .(3)作点A 关于x 轴的对称点A′,连接A′B ,交x 轴于点P ,此时△PAB 的周长最小,设直线A′B 的表达式为y =ax +c ,根据待定系数法求得解析式,令y =0,即可求得P 的坐标.主要考查了反比例函数与一次函数的交点.熟练掌握用待定系数法确定函数的解析式是解题的关键. 25.答案:(1)证明:∵∠ABC =∠DBE =90°,∴∠CBD =∠ABE ,在△BCD 和△BAE 中,{BC =BA ∠CBD =∠ABE BD =BE,∴△BCD≌△BAE(SAS);(2)解:如图②中,AB 与CF 交于点O .由(1)可知:△BCD≌△BAE ,∴∠OAF =∠OCB ,CD =AE ,∵∠AOF =∠COB ,∴∠AFO =∠CBO =90°,∴CF⊥AE,∵BD//AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE=√BC2−BD2=2√2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE−EF=2√2−1;(3)存在.PB的长为1或2.3①当PB=BD=1时,△PBD为等腰三角形,∴PB=1;②当PD=BD=1时,△PBD为等腰三角形,∴PB=2.3解析:本题主要考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是灵活运用全等三角形的性质和判定解决问题.(1)根据“即可得△BCD≌△BAE;(2)由△BCD≌△BAE,得到∠OAF=∠OCB,根据“8字型”证明∠AFO=∠CBO=90°,在RT△BDC 中利用勾股定理求出CD,再证明BD=EF即可解决问题;(3)分两种情况:①当PB=BD=1时;②当PD=BD=1时,分别求出PB的长.26.答案:解:(1)证明:∵四边形ABCD是矩形,∴AD//BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,{∠EAO=∠FCO OA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.(2)∵四边形AFCE是菱形,∴AF=FC,设AF=xcm,则CF=xcm,BF=(8−x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8−x)2=x2,解得x=5,即AF=5cm;(3)分为三种情况:第一、P在AF上.∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8−(0.8t−4),CP=5+(t−5),∴8−(0.8t−4)=5+(t−5),t=203;第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;∴t=20.3解析:本题考查的是四边形综合题型,主要考查了矩形的性质,全等三角形的判定与性质,翻折变换的性质,菱形的判定与性质,平行四边形的性质.(1)根据全等推出OE=OF,得出平行四边形AFCE,根据菱形判定推出即可;(2)根据菱形性质得出AF=CF,根据勾股定理得出方程,求出方程的解即可;(3)分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.。
河北省邢台市2020年中考数学二模试卷(解析版)

河北省邢台市2020年中考数学二模试卷(解析版)一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,最小的数是()A.0B.﹣3C.﹣πD.﹣2.如图,a∥b,则下列结论中,不一定正确的是()A.∠4=∠5B.∠1+∠2=180°C.∠2+∠3=180°D.∠2+∠4=180°3.下列关于代数式“3+a”的说法,正确的是()A.表示3个a相加B.代数式的值比a大C.代数式的值比3大D.代数式的值随a的增大而减小4.如图,光线由上向下照射正五棱柱时的正投影是()A.B.C.D.5.体育老师对亮亮和薇薇两名同学的立定跳远进行了五次测试(满分为10分),把他们的成绩绘制成如统计图.根据图中信息,下列说法正确的是()A.亮亮的跳远成绩比薇薇的跳远成绩稳定B.亮亮的成绩越来越好,如果再跳一次一定还是10分C.亮亮的第三次成绩与第二次成绩相比,增长率超过50%D.亮亮和薇薇的成绩都在8分上下波动,两个人的成绩稳定性一样6.下列计算正确的是()A.|﹣2|=﹣2B.=±2C.=﹣2D.7.如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()A.3B.C.3D.68.由于新冠肺炎得到了有效控制,省教育厅要求各学校做好复课准备.某校计划对学校60个相同大小的教室进行全面清扫和消毒,在实际进行消毒时,每天消毒的教室数量是原计划的1.2倍,使得完成全部教室消毒的时间缩短了2天.设原计划每天可以清扫、消毒x个教室,则下列符合题意的方程是()A.﹣1.2=B.+2=C.+1.2=D.+2=9.如图,在△ABC中,∠ACB=45°,∠BAC=30°,过点A,C的圆的圆心在边AB上,点M是优弧AC(不与点A,C重合)上的一点,则∠AMC=()A.75°B.60°C.55°D.52.5°10.能说明命题“关于x的不等式组的解集为无解”是假命题的反例是()A.m=﹣3B.m=﹣2C.m=﹣1D.m=011.(2分)如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为()A.5B.6C.8D.1012.(2分)关于x的一元二次方程x2﹣2x=1﹣k,下列结论不正确的是()A.当方程有实数根时k≤2B.当k>0时,方程一定有两个不相等的实数根C.当k=1时,方程的实数根为x1=0,x2=2D.若x1,x2为方程的两个实数根,则有|x1﹣1|=|x2﹣1|13.(2分)如图,将直角三角板ABC放在平面直角坐标系中,点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,点B的对应点B'刚好落在反比例函数y =(x>0)的图象上,则点C平移的距离CC'=()A.3B.5C.7D.1014.(2分)将两张面积分别为64和36的正方形纸片按两种方式放置在矩形ABCD中,如图1,图2.AB=m,AD=n,条形波纹表示两正方形的重叠部分,L形阴影表示未被两张正方形纸片覆盖的部分,图1,图2中L形阴影部分的面积分别为S1,S2.则下列结论:①BF=m﹣8;②S1=mn﹣6m﹣16;③S2=mn﹣6n﹣16;④若m﹣n=2,则S2﹣S1=12.其中正确的个数是()A.1B.2C.3D.415.(2分)在平行四边形ABCD中,AB=3,BC=4.5,在图中按下列步骤进行尺规作图:①以A为圆心,AB长为半径画弧交AD于点M;②分别以M,B为圆心,以大于MB的长为半径画弧,两弧相交于点P;③画射线AP交CB于点E,交DC的延长线于点F,连接ME.下列说法错误的是()A.EF=BEB.=2C.D.若cos∠AEB=,则AE=5.416.(2分)如图,点A(﹣5,m),B(3,n)在直线l:y=﹣上.抛物线L:y=ax2﹣2x+2(a≠0)与线段AB围成封闭图形G(包括边界),则G内的整点(横、纵坐标都为整数)最多有()A.4个B.5个C.6个D.7个二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.)17.x15÷x3•x5=.18.(4分)已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=;若[m]表示不大于m的最大整数,那么[﹣1]=.19.(4分)如图1,在三角形纸板ABC中,∠C=90°,AC=1cm,BC=cm,点M是边AB上的一个点(不与点A,B重合),沿CM折叠纸板,点B的对应点是点B'.(1)如图2,当点B'在射线BA上时,∠BCM=.(2)若∠AMB'=30°,且点B'不在直线AC右侧,则点M到BC的距离是cm.三、解答题(本大题有7个小题,共67分,解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0;(2)先化简,再求值:,其中x=+2.21.(8分)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是,小明说:232﹣212是“4倍数”,嘉淇说:122﹣6×12+9也是“4倍数”,他们谁说的对?.(2)设x是不为零的整数.①x(x+1)是的倍数;②任意两个连续的“4倍数”的积可表示为,它(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.22.(8分)今年在2月27日国务院对外新闻发布会上,中国疾控中心发言人提到:“在新冠肺炎低风险区域出行仍需戴口罩.”某单位复工,采购了一批医用外科口罩,单价分别为1元、1.5元、3元、5元、10元,每天随机配发给每位在岗员工一个口罩.现将连续10天口罩配发量的情况制成如统计表.配发量/个30252015天数/天2x y1已知配发量的平均数是23个,中位数是m个,众数是n个.(1)求x,y的值,并计算m﹣n;(2)将配发15个口罩那一天中不同型号的口罩发放情况进行统计,绘制成如图所示的尚不完整的统计图.补全统计图,并求小李当天获得不低于3元口罩的概率;(3)若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同(例如:只要在第11天,第12天都发放30个口罩,则这12天口罩发放量的众数为30个和20个),写出这12天口罩配发量的众数(括号内示例情况不必再述).23.(8分)如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P 是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k经过点P,并与l1交于点M,过点P作PN⊥l2,交l1于点N.(1)求l1的函数表达式;(2)当k=时,①求点M的坐标;②求S△APM.(3)将点N的横坐标记为x n,在点P移动的过程中,直接写出x n的范围.24.(4分)如图,扇形AOB的半径为3,面积为3π.点C是的中点,连接AC,BC.求证:四边形OACB是菱形.25.(5分)如图1,扇形AOB的半径为3,面积为3π,点C是的中点,连接AC,BC,(1)求证四边形OACB是菱形;(2)如图2,∠POQ=60°,∠POQ绕点O旋转,与AC,BC分别交于点M,N(点M,N与点A,B,C均不重合),与交于E,F两点.①求MC+NC的值;②如图2,连接FC,EC,若∠ECF的度数是定值,则直接写出∠ECF的度数;若不是,请说明理由.26.(12分)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.27.(14分)如图1,直角三角形MPN的直角顶点P在矩形ABCD的对角线AC上(点P 不与点C重合,可与点A重合),满足tan N=,PM⊥CD于点M,已知CD=12,AD=16.(1)若CP=5,则MD=;(2)当点M在∠DAC的平分线上时,求CM的长;(3)当点P的位置发生改变时:①如图2,△MPN的外接圆是否与AC一直保持相切?说明理由;②直接写出△MPN的外接圆与AD相切时CM的长.2020年河北省邢台市中考数学二模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,最小的数是()A.0B.﹣3C.﹣πD.﹣【分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵,∴最小的数是﹣π.故选:C.【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.如图,a∥b,则下列结论中,不一定正确的是()A.∠4=∠5B.∠1+∠2=180°C.∠2+∠3=180°D.∠2+∠4=180°【分析】由a∥b,利用平行线的性质可得出∠4=∠5,∠2+∠3=180°,结合∠1=∠3可得出∠1+∠2=180°,再对照四个选项即可得出结论.【解答】解:∵a∥b,∴∠4=∠5,∠2+∠3=180°.又∵∠1=∠3,∴∠1+∠2=180°.故选:D.【点评】本题考查了平行线的性质以及对顶角,牢记各平行线的性质定理是解题的关键.3.下列关于代数式“3+a”的说法,正确的是()A.表示3个a相加B.代数式的值比a大C.代数式的值比3大D.代数式的值随a的增大而减小【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:由于a是任意实数,所以代数式“3+a”的值不一定比3大,但随a的增大而增大.故选:B.【点评】本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.4.如图,光线由上向下照射正五棱柱时的正投影是()A.B.C.D.【分析】直接利用正投影的定义得出答案.【解答】解析:光线由上向下照射正五棱柱时的正投影与俯视图一致.故选:C.【点评】此题主要考查了平行投影,正确掌握相关定义是解题关键.5.体育老师对亮亮和薇薇两名同学的立定跳远进行了五次测试(满分为10分),把他们的成绩绘制成如统计图.根据图中信息,下列说法正确的是()A.亮亮的跳远成绩比薇薇的跳远成绩稳定B.亮亮的成绩越来越好,如果再跳一次一定还是10分C.亮亮的第三次成绩与第二次成绩相比,增长率超过50%D.亮亮和薇薇的成绩都在8分上下波动,两个人的成绩稳定性一样【分析】根据方差的意义即可判断A、D;根据随机事件的不确定性即可判断B;求出亮亮的第三次成绩与第二次成绩相比的增长率,即可判断C.【解答】解:从两个折线图可以直观看出薇薇的跳远成绩较稳定,故A、D两个选项说法均错误,不符合题意;由于跳远成绩具有随机性,如果再跳一次不一定还是10分,故B选项说法错误,不符合题意;亮亮的第三次成绩与第二次成绩相比,增长率为,故C选项说法正确,符合题意;故选:C.【点评】本题主要考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.下列计算正确的是()A.|﹣2|=﹣2B.=±2C.=﹣2D.【分析】根据绝对值,二次根式的性质,立方根以及有理数的运算逐项进行计算即可.【解答】解:因为|﹣2|=2,因此A不正确,因为=2,因此B不正确,因为=﹣2,因此C正确,因为(﹣1)÷(﹣)=1×2=2,因此D不正确,故选:C.【点评】本题考查绝对值,二次根式的性质,立方根以及有理数的运算,掌握绝对值,二次根式的性质,立方根以及有理数的运算法则是正确判断的前提.7.如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()A.3B.C.3D.6【分析】根据正方形的性质和勾股定理,可以得到DB的长,然后三角形中位线,可以得到MN的长,本题得以解决.【解答】解:连接DB,∵四边形ABCD是正方形,AB=6,∴∠A=90°,AD=AB=6,∴DB===6,∵点M,N分别是DQ,BQ的中点,∴MN是△DQB的中位线,∴MN=DB=3,故选:A.【点评】本题考查正方形的性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.8.由于新冠肺炎得到了有效控制,省教育厅要求各学校做好复课准备.某校计划对学校60个相同大小的教室进行全面清扫和消毒,在实际进行消毒时,每天消毒的教室数量是原计划的1.2倍,使得完成全部教室消毒的时间缩短了2天.设原计划每天可以清扫、消毒x个教室,则下列符合题意的方程是()A.﹣1.2=B.+2=C.+1.2=D.+2=【分析】设原计划每天可以清扫、消毒x个教室,则实际每天清扫、消毒1.2x个教室.根据实际完成消毒时间缩短2天建立等量关系,列出方程即可.【解答】解析:设原计划每天可以清扫、消毒x个教室,则实际每天清扫、消毒1.2x个教室.根据题意,得.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.9.如图,在△ABC中,∠ACB=45°,∠BAC=30°,过点A,C的圆的圆心在边AB上,点M是优弧AC(不与点A,C重合)上的一点,则∠AMC=()A.75°B.60°C.55°D.52.5°【分析】过点A,C的圆的圆心为O,连接OC,如图,利用等腰三角形的性质和三角形内角和计算出∠AOC=120°,然后根据圆周角定理得到∠AMC的度数.【解答】解:过点A,C的圆的圆心为O,连接OC,如图,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=180°﹣∠OAC﹣∠OCA=120°,∴∠AMC=∠AOC=60°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.能说明命题“关于x的不等式组的解集为无解”是假命题的反例是()A.m=﹣3B.m=﹣2C.m=﹣1D.m=0【分析】先解出不等式组,根据不等式组的解集解答.【解答】解:,解①得,x≤1,解②得,x>3+m,当3+m≥1,即m≥﹣2时,不等式组无解,则当m=﹣3时,不等式组有解,∴当m=﹣3时,不等式组无解是假命题,故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.11.(2分)如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为()A.5B.6C.8D.10【分析】先求出正五边形每个内角,求得在每个顶点处的度数,再求得正六边形的每个内角,依此即可求解.【解答】解:正五边形每个内角的度数为108°,在每个顶点处有360°﹣108°×2﹣24°正六边形的每个内角为120°,因此这n个正五边形拼接一圈围成的内部为正六边形.故选:B.【点评】本题考查了正多边形和圆、多边形的内角与外角等知识;熟练掌握多边形内角和和外角和是解题的关键.12.(2分)关于x的一元二次方程x2﹣2x=1﹣k,下列结论不正确的是()A.当方程有实数根时k≤2B.当k>0时,方程一定有两个不相等的实数根C.当k=1时,方程的实数根为x1=0,x2=2D.若x1,x2为方程的两个实数根,则有|x1﹣1|=|x2﹣1|【分析】根据一元二次方程的解,结合根的判别式解答即可.【解答】解:A、原方程可以化为(x﹣1)2=2﹣k,当2﹣k≥0时,方程有实数解,即k ≤2,故A正确.B、∵当k≤2时,方程有实数根,∴当k>2时,方程没有实数个;故B不正确;C、当k=1时,则x2﹣2x=0,解得x1=0,x2=2.故C正确;D、当k≤2时,由(x﹣1)2=2﹣k可以求得,则有|x1﹣1|=|x2﹣1|.故D正确;故选:B.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程根的判别与方程解的关系是解题的关键.13.(2分)如图,将直角三角板ABC放在平面直角坐标系中,点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,点B的对应点B'刚好落在反比例函数y =(x>0)的图象上,则点C平移的距离CC'=()A.3B.5C.7D.10【分析】先根据平移的性质得到点B'的纵坐标为1,BB′=CC′,则利用反比例函数解析式可确定B'(10,1),则BB'=3,从而得到CC'的长度.【解答】解:∵点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,∴点B'的纵坐标为1,BB′=CC′,当y=1时,=1,解得x=10,∴B'(10,1),∴BB'=10﹣7=3,∴CC'=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了平移的性质.14.(2分)将两张面积分别为64和36的正方形纸片按两种方式放置在矩形ABCD中,如图1,图2.AB=m,AD=n,条形波纹表示两正方形的重叠部分,L形阴影表示未被两张正方形纸片覆盖的部分,图1,图2中L形阴影部分的面积分别为S1,S2.则下列结论:①BF=m﹣8;②S1=mn﹣6m﹣16;③S2=mn﹣6n﹣16;④若m﹣n=2,则S2﹣S1=12.其中正确的个数是()A.1B.2C.3D.4【分析】①根据图形中线段的数量关系,可表示BF的长度;②利用图1中的面积关系可以表示出S1;③利用图1中的面积关系可以表示出S2;④将②和③中计算出的S1和S2相减,利用整式的混合运算计算它们的差即可.【解答】解:①BF=AB﹣AF=m﹣8,正确;②,正确;③,正确;④若m﹣n=2,则S2﹣S1=mn﹣6n﹣16﹣(mn﹣6m﹣16)=6(m﹣n)=6×2=12,正确.故选:D.【点评】本题考查了整式的混合运算,利用图形,正确列式,是解题的关键.15.(2分)在平行四边形ABCD中,AB=3,BC=4.5,在图中按下列步骤进行尺规作图:①以A为圆心,AB长为半径画弧交AD于点M;②分别以M,B为圆心,以大于MB的长为半径画弧,两弧相交于点P;③画射线AP交CB于点E,交DC的延长线于点F,连接ME.下列说法错误的是()A.EF=BEB.=2C.D.若cos∠AEB=,则AE=5.4【分析】利用等腰三角形的判定和性质,菱形的性质,解直角三角形等知识,一一判断即可.【解答】解:由尺规作图可知,AF平分∠DAB,由AB∥CD,AD∥CB,可知△DAF,△ABE,△FCE都为等腰三角形,且四边形ABEM为菱形.EB=AB=3,DF=AD=4.5,CE=CF=1.5.∴,.连接MB,MB垂直平分AE于点O.在Rt△EBO中,,∴EO=2.7,∴AE=5.4.故B,C,D正确,故选:A.【点评】本题考查作图﹣基本作图,角平分线的性质,等腰三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2分)如图,点A(﹣5,m),B(3,n)在直线l:y=﹣上.抛物线L:y=ax2﹣2x+2(a≠0)与线段AB围成封闭图形G(包括边界),则G内的整点(横、纵坐标都为整数)最多有()A.4个B.5个C.6个D.7个【分析】求得A、B的坐标,然后分两种情况讨论画出函数的图象,根据图象即可得到结论.【解答】解:∵点A(﹣5,m),B(3,n)在直线l:y=﹣上.∴m=﹣×(﹣5)+=5,n=﹣×3+=1,∴A(﹣5,5),B(3,1),线段AB上的整点有(3,1),(1,2),(﹣1,3),(﹣3,4),(﹣5,5).当a<0,图象过点A时,G中的整数点最多,把A(﹣5,5)代入y=ax2﹣2x+2得,5=25a+10+2,解得a=﹣,∴y=﹣x2﹣2x+2,∴顶点(﹣,),画出函数图象如图1:由图象可知,G内的整点(横、纵坐标都为整数)有6个;当a>0,图象过点B时,G中的整数点最多,把B(3,1)代入y=ax2﹣2x+2得,1=9a﹣6+2,解得a=,∴y=x2﹣2x+2,画出图象如图2:由图象可知,G内的整点(横、纵坐标都为整数)有5个;故G内的整点(横、纵坐标都为整数)最多有6个,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数的图象和性质,分类讨论是解题的关键.二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.)17.x15÷x3•x5=x17.【分析】直接利用同底数幂的乘除运算法则计算得出答案.【解答】解析:x15÷x3•x5=x15﹣3+5=x17.故答案为:x17.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.18.(4分)已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=7;若[m]表示不大于m的最大整数,那么[﹣1]=2.【分析】先解方程5x﹣2=3x+16,得x=9,将x=9代入4a+1=4(x+a)﹣5a,求出a 的值,代入a的值进而可得结果.【解答】解:解方程5x﹣2=3x+16,得x=9,将x=9代入4a+1=4(x+a)﹣5a,得a=7,所以.故答案为:7;2.【点评】本题考查了同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.19.(4分)如图1,在三角形纸板ABC中,∠C=90°,AC=1cm,BC=cm,点M是边AB上的一个点(不与点A,B重合),沿CM折叠纸板,点B的对应点是点B'.(1)如图2,当点B'在射线BA上时,∠BCM=60°.(2)若∠AMB'=30°,且点B'不在直线AC右侧,则点M到BC的距离是cm.【分析】(1)由锐角三角函数可求∠B=30°,由折叠的性质可得点M是BB'的中点,BC =B'C,由等腰三角形的性质可求CM⊥BB',即可求解;(2)过点M作MN⊥BC于N,由题意可得点C,点A,点B'共线,由直角三角形的性质可求解.【解答】解:(1)如图2,当点B'在射线BA上时,由折叠的性质可得点M是BB'的中点,BC=B'C,∴CM⊥BB',∵∠C=90°,AC=1cm,BC=cm,∴tan B==,∴∠B=30°,∴∠BCM=60°,故答案为:60°;(2)如图3,过点M作MN⊥BC于N,由折叠的性质可得∠B=∠B'=30°,∵∠B'+∠B'MA=60°,∴∠B'+∠B'MA=60°=∠BAC,∴点C,点A,点B'共线,∴∠ACM=∠BCM=45°,∵MN⊥BC,∴BN=MN,MN=NC,∵BN+NC=BC=cm,∴MN=(cm),故答案为.【点评】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,灵活运用这些性质解决问题是本题的关键.三、解答题(本大题有7个小题,共67分,解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0;(2)先化简,再求值:,其中x=+2.【分析】(1)先计算立方根、负整数指数幂、零指数幂、代入三角函数值,再计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算即可.【解答】解:(1)原式=;(2)===x(x﹣2).当时,原式=.【点评】本题主要考查实数的运算和分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则、立方根、负整数指数幂、零指数幂、熟记特殊锐角的三角函数值.21.(8分)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是32,小明说:232﹣212是“4倍数”,嘉淇说:122﹣6×12+9也是“4倍数”,他们谁说的对?小明.(2)设x是不为零的整数.①x(x+1)是2的倍数;②任意两个连续的“4倍数”的积可表示为4x(4x+4)或16x(x+1),它是(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.【分析】(1)根据“4倍数”的定义即可求解;(2)①可得x和(x+1)必有1个是偶数,依此即可求解;②根据“4倍数”的定义即可求解;(3)根据因式分解的进行计算,然后进行分解即可求解.【解答】解:(1)30到35之间的“4倍数”是32;小明:232﹣212=(23﹣21)×(23+21)=2×44=4×22,是“4倍数”,嘉淇:122﹣6×12+9=(12﹣3)2=92=81,不是“4倍数”.故答案为:32,小明;(2)①∵x是不为零的整数,∴x和(x+1)必有1个是偶数,∴x(x+1)是2的倍数;故答案为:2;②任意两个连续的“4倍数”的积可表示为4x(4x+4)或16x(x+1),它是32的倍数.故答案为:4x(4x+4)或16x(x+1),是;(3)三个连续偶数为2n﹣2,2n,2n+2,(2n﹣2)2+(2n)2+(2n+2)2=4n2﹣8n+4+4n2+4n2+8n+4=12n2+8=4(3n2+2),∵n为整数,∴4(3n2+2)是“4倍数”.【点评】本题主要考查了因式分解的应用,熟练掌握因式分解的应用是解答此题的关键.22.(8分)今年在2月27日国务院对外新闻发布会上,中国疾控中心发言人提到:“在新冠肺炎低风险区域出行仍需戴口罩.”某单位复工,采购了一批医用外科口罩,单价分别为1元、1.5元、3元、5元、10元,每天随机配发给每位在岗员工一个口罩.现将连续10天口罩配发量的情况制成如统计表.配发量/个30252015天数/天2x y1已知配发量的平均数是23个,中位数是m个,众数是n个.(1)求x,y的值,并计算m﹣n;(2)将配发15个口罩那一天中不同型号的口罩发放情况进行统计,绘制成如图所示的尚不完整的统计图.补全统计图,并求小李当天获得不低于3元口罩的概率;(3)若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同(例如:只要在第11天,第12天都发放30个口罩,则这12天口罩发放量的众数为30个和20个),写出这12天口罩配发量的众数(括号内示例情况不必再述).【分析】(1)题中有两个等量关系:①配发口罩一共10天,②配发量的平均数是23个.依此列出二元一次方程组,解方程组求出x,y的值,再根据中位数与众数的定义求出m、n,代入m﹣n计算即可;(2)根据各组频数之和等于数据总数15,求出单价为3元的口罩的个数,即可补全统计图,用不低于3元口罩的个数除以15求出小李当天获得不低于3元口罩的概率;(3)根据“若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同”,得出第11天,第12天的口罩发放量,进而求出这12天口罩配发量的众数.【解答】解:(1)∵平均数为23个,∴,解得,将10个数据按从大到小的顺序排列,第5、6个数据分别是25,20,所以中位数m==22.5,数据20出现了4次,次数最多,所以众数n=20.∴m﹣n=2.5.(2)补全统计图如图所示:在这5种型号中,单价不低于3元的有3元、5元、10元三种,∴小李当天获得不低于3元的口罩的概率为:.(3)由表格可知:配发量/个30252015天数/天2341因为这12天口罩配发量的众数发生改变,除示例情况外还有两种情况:情况一:两天都配发25个,众数变为25个;情况二:其中一天配发25个,另一天配发30个或15个,众数变为25个和20个.【点评】本题考查的是概率公式,中位数,众数,条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P 是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k经过点P,并与l1交于点M,过点P作PN⊥l2,交l1于点N.(1)求l1的函数表达式;(2)当k=时,①求点M的坐标;②求S△APM.(3)将点N的横坐标记为x n,在点P移动的过程中,直接写出x n的范围.【分析】(1)设l1的表达式为:y=k1x+b,把A与C的坐标代入求出k1与b的值,即可确定出l1函数表达式;(2)①把k的值代入确定出l2表达式,与l1表达式联立求出解,得到M的坐标即可;②把y=2代入l2的表达式求出x的值,确定出P的坐标,得到AP的长,求出M到AP的距离,即可求出三角形APM的面积;(3)由y=kx+2k(k≠0)=k(x+2)恒过点(﹣2,0),l2与线段AB有交点,得到点P 的运动范围是线段AB(点P不与点A重合),①点N的横坐标随着P A变小而变小,即x n趋于0;②当l2过点B时,此时点P与点B重合,求出此时x n的值,即可确定出x n 的范围.【解答】解:(1)设l1的表达式为:y=k1x+b,将点A(0,2)和C(6,﹣2)代入得:,。
2020届河北省九地市中考模拟联考数学试题二含答案

2020年河北省九地市初三模拟联考数学试卷(二)本试卷分卷I (选择题)和卷II (非选择题)两部分,满分120分,考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、班级等信息填写在答题卡相应位置上2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第II 卷时,将答案用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效. 4.考试结束后,将本试卷和答题卡一并交回.卷I (选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()5-的值是( ) A .5B .1C .5-D .1-2.下列计算正确的是( ) A .32a a a -= B .236a a a ⋅=C .()23639aa =D .2(21)(21)21a a a +-=-3.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,50ABG ∠=︒,则FAE ∠的度数是( )A .22︒B .32︒C .50︒D .130︒4.一种细菌的半径用科学记数法表示为53.6810-⨯米,则这个数据可以写成( ) A .368000米B .0.00368米C .0.000368米D .0.0000368米5.如图,小亮用6个相同的小正方体搭成一个立体图形,研究几何体的三视图的变化情况,若由图①变到图②,其三视图中不改变的是( )① ② A .主视图B .主视图和左视图C .主视图和俯视图D .左视图和俯视图6.关于反比例函数2y x=,下列说法不正确的是( ) A .函数图象分别位于第一、第三象限 B .当0x >时,y 随x 的增大而减小 C .函数图象经过点()1,2D .点()11,A x y ,()22,B x y 都在函数图象上,若12x x <,则12y y >7.下列图形是物理学中实验器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中既是中心对称图形又是轴对称图形的是( )A .B .C .D .8.有下列说法:①为预防新型冠状病毒肺炎,学校检查师生佩戴口罩的情况,应采用全面调查;②从2000名学生中选出200名学生进行抽样调查,样本容量为2000;③“任意买一张电影票座位号是奇数”这个事件是必然事件;④数据1,2,3,4,5的方差是1.其中说法正确的有( ) A .1个B .2个C .3个D .4个9.求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠ 理论依据1:内错角相等,两直线平行;理论依据2:过直线外一点,有且只有一条直线与已知直线平行. 以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠, ②依据理论依据1,可得//A B CD '', ③假设AOF EO D '∠≠∠, ④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立. 证明步骤的正确顺序是( )图1 图2 A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④10.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m 的道路进行改造拓宽.为了尽量减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务,求实际每天改造道路的长度与实际施工天数.嘉琪同学根据题意列出方程8608606(110%)x x -=+,则方程中未知数x 所表示的量是( ) A .实际每天改造道路的长度 B .原计划每天改造道路的长度 C .原计划施工的天数D .实际施工的天数11.如图所示,下列说法错误的是( )A .嘉琪家在图书馆南偏西60︒方向上B .学校在图书馆南偏东30︒方向上C .学校在嘉琪家南偏东60︒方向上D .图书馆到学校的距离为5km12.若化简222m m m ---( )的最终结果是整式,则( )里的式子可以是( ) A .1m -B .1m +C .mD .213.如下图,已知线a ,b ,其中2b a =,用尺规作图的方法作出一个直角三角形,要求斜边的长为b ,一条直角边的长为a ,则下列作图中,不正确的是( )A .B .C .D .14.若a ,b ,c 为常数,且222()a c a c ->+,则关于x 的方程20ax bx c ++=根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .有一个根15.如图,已知点E 是ABC ∆的外心,点P 、Q 分别是AB 、AC 的中点,连接EP 、EQ 分别交BC 于点F 、D ,若5BF =,3DF =,4CD =,则ABC ∆的面积为( )A .18B .24C .30D .3616.在平面上,边长为2的正方形和短边长为1的矩形几何中心重合,如图①,当正方形和矩形都水平放置时,容易求出重叠面积212S =⨯=.甲、乙、丙三位同学分别给出了两个图形不同的重叠方式;图① 图② 图③ 图④ 图⑤ 甲:矩形绕着几何中心旋转,从图②到图③的过程中,重叠面积S 大小不变.乙:如图④,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图③的重叠面积.丙:如图⑤,将图④中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线,此时的重叠面积是5个图形中最小的. 下列说法正确的是( ) A .甲、乙、丙都对B .只有乙对C .只有甲不对D .甲、乙、丙都不对卷II (非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分,18~19小题各有两个空,每空2分)17.计算:822⎛⎫⨯-= ⎪ ⎪⎝⎭_______.18.王老师设计了一个如图所示的数值转换程序. (1)当输入4x =-时,输出M 的值为______; (2)当输出5M =时,输入x 的值为_______.19.如图1,将一个正三角形绕其中心最少旋转60︒,所得图形与原图的重叠部分是正六边形;如图2,将一个正方形绕其中心最少旋转45︒,所得图形与原图形的重叠部分是正八边形;依此规律,将一个正七边形绕其中心最少旋转(______)︒,所得图形与原图的重叠部分是正多边形.在图2中,若正方形的边长为4,则所得正八边形的面积为_______.图1 图2三、解答题(本大题有7个小题,共67分.解答应写出文字说明证明过程或演算步骤)20.定义新运算:对于任意实数m 、n 都有3m n mm n =-☆ 例如424232862=⨯-⨯=-=☆,请根据上述知识解决下列问题: (1)142x >☆,求x 取值范围; (2)若134x ⎛⎫-= ⎪⎝⎭☆,求x 的值; (3)若方程6x x =☆,是一个常数,且此方程的一个解为1x =,求中的常数.21.小亮在课余时间写了三个算式:223181-=⨯,225382-=⨯,227583-=⨯,通过认真观察,发现任意两个连续奇数的平方差是8的倍数.验证(1)2297-的结果是8的几倍?(2)设两个连续奇数为21n +,21n -(其中n 为正整数),写出它们的平方差,并说明结果是8的倍数; 延伸 直接写出两个连续偶数的平方差是几的倍数.22.为了能够帮助武汉疫情,某公司通过武汉市慈善总会二维码给武汉捐款,根据捐款情况制成不完整的扇形统计图(图1)、条形统计图(图2).图1 图2(1)根据以上信息可知参加捐款总人数为______,m =______,捐款金额中位数为______,请补全条形统计图;(2)若从捐款的人中,随机选一人代表公司去其它公司做捐款宣传,求选中捐款不低于150元的人的概率; (3)若其它公司有几人参与了捐款活动,把新捐款数与原捐款数合并成一组新数据,发现众数发生改变,请求出至少有几人参与捐款. 23.如图,直线1l 的解析式为112y x =+,且1l 与x 轴交于点D ,直线2l 经过定点A 、B ,直线1l 与2l 交于点C .(1)求直线2l 的解析式; (2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由.24.如图,AB 是半圆的直径,O 为半圆O 的圆心,AC 是弦,取BC 的中点D ,过点D 作DE AC ⊥交AC 的延长线于点E .(1)求证:DE 是半圆O 的切线;(2)当10AB =,53AC =时,求BC 的长;(3)当20AB =时,直接写出ABC ∆面积最大时,点D 到直径AB 的距离.25.某公司计划投资A 、B 两种产品,若只投资A 产品,所获得利润A W (万元)与投资金额x (万元)之间的关系如图所示,若只投资B 产品,所获得利润B W (万元)与投资金额x (万元)的函数关系式为213005B W x nx =-++.(1)求A W 与x 之间的函数关系式;(2)若投资A 产品所获得利润的最大值比投资B 产品所获得利润的最大值少140万元,求n 的值; (3)该公司筹集50万元资金,同时投资A 、B 两种产品,设投资B 产品的资金为a 万元,所获得的总利润记作Q 万元,若30a ≥时,Q 随a 的增大而减少,求n 的取值范围. 26.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达点B 的点C ,连接BC ,取BC 的中点P (点P 可以直接到达点A ),利用工具过点C 作//CD AB 交AP 的延长线于点D ,此时测得200CD m =,那么A ,B 间的距离是______m .图1思维探索:(2)在ABC ∆和ADE ∆中,AC BC =,AE DE =,且AE AC <,90ACB AED ∠=∠=︒.将ADE ∆绕点A 顺时针旋转,把点E 在AC 边上时ADE ∆的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当ADE ∆在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是_______;_______.图2②如图3,当90α=︒,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论. ③当150α=︒时,若3BC =,1DE =,请直接写出2PC 的值.图3 备用图数学试卷参考答案卷 卷I (选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1-5:BCADD6-10:DCADB11-15:DADCB16.C卷II (非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分,把答案写在题中横线上)17.2-18.3;8-19.1807;32- 三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.解:(1)142x >☆3422x -> 38x -> 11x >(2)|x 134x ⎛⎫-= ⎪⎝⎭☆3344x -+= ①3344x -+= 312x -+= 312x -+=- 123x -=- 9x -= 9x =-②3344x -+=- 312x -+=-123x -=-- 15x -=- 15x =(3)设中数为a6x ax =☆236ax ax -=解1x =36a a ∴-= 26a -= 3a =-ε∴中数为3-.21.解:验证(1)2297(97)(97)16284-=+⨯-=⨯=⨯,2297∴-的结果是8的4倍;(2)设两个连续奇数为21n +,21n -(其中n 为正整数),则它们的平方差22(21)(21)(2121)(2121)248n n n n n n n n =+--=+-+++-=⨯= 88n n ÷=n 为正整数,∴两个连续奇数的平方差是8的倍数;延伸两个连续偶数的平方差是4的倍数. 22.(1)50;32;150(2)1210830350505P ++===(3)至少4人参与捐款原数据众数为100元若至少增加4人,每人捐款150元则新众数为100元和150元∴至少增加4人23.解:(1)设直线2l 的解析式是y kx b =+,因为图象过()4,0A ,()1,5B - 根据题意得:405k b k b +=⎧⎨-+=⎩,解得14k b =-⎧⎨=⎩则直线2l 的解析式是:4y x =-+;(2)在112y x =+中,令0y =,解得:2x =-,则D 的坐标是()2,0-, 解方程组4112y x y x =-+⎧⎪⎨=+⎪⎩得22x y =⎧⎨=⎩则C 的坐标是()2,2, 则16262ADC S ∆=⨯⨯=(3)存在;()2,2C 关于x 轴的对称点是()2,2-,则设经过点()2,2-和点()1,5B -的直线所对应的函数解析式是y mx n =+, 则225m n m n +=-⎧⎨-+=⎩, 解得7383m n ⎧=-⎪⎪⎨⎪=⎪⎩ 则直线为7833y x =-+令0y =,解得:87x =,则E 的坐标是8,07⎛⎫⎪⎝⎭,∴当E 点坐标为8,07⎛⎫ ⎪⎝⎭时,BCE ∆的周长最短.24.解:(1)证明:如解图①,连接ODD 是的中点,BD CD ∴=,12∴∠=∠OA OD =13∴∠=∠,23∴∠=∠,//OD AE ∴DE AC ⊥OD DE ∴⊥又OD 是半圆O 的半径,DE ∴是半圆O 的切线;图①(2)如解图②,连接BC 、OC ,则ACB ∠是直角.当10AB =,53AC =时,则3cos ACBAC AB ∠==30BAC ∴∠=︒,60BOC ∠=︒60551803BC ππ⋅∴==图②(3)如解图③所示:连接OD 、BC 、OC ,过点O 作OF AC ⊥,垂足为F . 由(1)可知OD DE ⊥.90OFE ODE DEA ∴∠=∠=∠=︒∴四边形ODEF 为矩形,OF ED ∴=,当45BAC ∠=︒时,ABC ∆为等腰直角三角形,此时ABC ∆面积最大, cos45AC ∴=︒ 2201022AB =⨯=1522DE OF AC ===BD CD =,AD ∴平分BAC ∠∴点D 到AB 的距离52DE ==.图③25.解:(1)由图象可知点()20,240是抛物线的顶点坐标,设A W 与x 之间的函数关系式为2(20)240A W a x =-+,又点()10,230在抛物线2(20)240A W a x =-+上,2230(1020)240a ∴=-+,解得110a =-.A W ∴与x 之间的函数关系式为2211(20)24042001010A W x x x =--+=-++; (2)由(1)得,投资A 产品所获得利润的最大值为240,22211553003005524B n W x nx x n ⎛⎫=-++=--++ ⎪⎝⎭,∴投资B 产品所获得利润的最大值为253004n +.由题意可得,252401403004n +=+,解得8n =±.当8n =-时不符合题意,8n ∴=;(3)由题意可得,2211300(50)4(50)200510B A Q W W a na a a =+=-++--+-+.23(6)45010a n a =-+++当30a ≥时,Q 随a 的增大而减小,6303210n +∴-≤⎛⎫⨯- ⎪⎝⎭解得12n ≤.n ∴的取值范围为12n ≤.26.(1)200(2)①PC PE ⊥,PC PE =②解:PC PE =,PC PE ⊥.证明如下:如图2,过点B 作//BF DE 交EP 延长线于点F ,连接CE ,CF . DEP BFP ∴∠=∠,EDP FBP ∠=∠点P 是线段BD 的中点,DP BP ∴=,EPD FPB ∴∆≅∆DE BF ∴=,12PE PF EF ==DE AE =,BF AE ∴=90α=︒,90EAC ∴∠=︒.180AED EAC ∠+∠=︒,//DE AC ∴.//BF DE ,//BF AC ∴90CBF ACB ∴∠=∠=︒,CBF CAE ∴∠=∠.又BC AC =,CBF CAE ∴∆≅∆.CF CE ∴=,BCF ACE ∠=∠BCF BCE ACE BCE ∴∠+∠=∠+∠, 90ECF ACB ∴∠=∠=︒. 在Rt ECF ∆中,PE PF = 12PC EF PE ∴== CE CF =,PE PF =, PC PE ∴⊥.图2 ③21033PC +=。
【精品】2020年河北省中考数学二模试卷及答案解析

(1)甲、乙两队单独完成这项工程各需几个月?
(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队少20万元.在保证工程质量的前提下,为缩短工期,拟安排甲、乙两队合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1200万元?(甲、乙两队的施工时间按月取整数)
三、解答题(共0分)
20.(本题0分)对于实数 ,定义关于“ ”的一种运算: .例如 .
(1)求 的值;
(2)若 ,求 的取值范围;
(3)若 , ,求 和 的值.
21.(本题0分)点A、B、C在数轴上表示的数分别为a,b,c,且a,b,c满足(b+2)2+(c﹣24)2=0,多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.
乙:若 ,则点 的个数为1;
丙:若 ,则点 的个数为1.
下列判断正确的是()
A.乙错,丙对B.甲和乙都错
C.乙对,丙错D.甲错,丙对
16.(本题0分)我国古代伟大的数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.后人借助这种分割方法所得的图形证明了勾股定理,如图所示若a=3,b=4,则该三角形的面积为( )
A.10B.12C. D.
二、填空题(共0分)
17.(本题0分)若 , ,则 的值为________.
18.(本题0分)如图,正六边形 内部有一个正五形 ,且 ,直线 经过 、 ,则直线 与 的夹角 ________ .
2020届河北省石家庄市中考数学二模试卷(有答案)(加精)

河北省石家庄市中考数学二模试卷、选择题(本大题共 16小题,共42分,1-10小题各3分,11-16小题,各2分)1 .下列各对数是互为倒数的是( )A. 4 和—4B. - 3 和二C. — 2 和1D. 0 和 03 2\2 .如图,/ 1=40° ,如果 CD// BE,那么/ B 的度数为()A. 160° B, 140° C. 60° D, 50°3 .如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为(5 .下面的图形中,既是轴对称图形又是中心对称图形的是(6 .函数y=工十6中自变量x 的取值范围在数轴上表示正确的是(7 .若等腰三角形中有一个角等于 70。
,则这个等腰三角形的顶角的度数是(A. 70° B, 40° C. 70° 或 40° D, 70° 或 55°8 .如图,ABI BC, /ABD 的度数比/ DBC 的度数的2倍少15° ,设/ ABD 与/ DBC 的度数另为x > y ,A. a 2?a 2=2a 2B. a 2+a 2=a 4 C. (- a 2) 2=a 4 D. (a+1) 2=a 2+14.下列计算,正确的是(C. D.根据题意,下列的方程组正确的是(%中产90 「34产90D. 4产15”2V [耳:2产+159.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()班般篁漫球数的扇烂计图A.中位数是3个B .中位数是2.5个C.众数是2个D.众数是5个12.(2分)如图,在平面直角坐标系中,一次函数y=/s x+1的图象分别与X轴、y轴交于A B两点,以A为圆心,适当长为半径画弧分别交AR AO于点C、D,再分别以C、D为圆心,大于一CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是/ BAO勺平分线;②/ BAO=60 ;③点F在线段AB的垂直平分线上;13.(2分)如图,正十二边形AAT-A12,连接AA, A7A必则/ AAA0的度数为()厂Ip *A B 4A.60°B. 65°C. 70° D, 75°14.(2分)如图,在平面直角坐标系中,一条直线与反比例函数y=^- (x>0)的图象交于两点A、B,与x ……… 口,一—,………公……… 2 ,…、轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数yL (x>0)的图象交于两点D、E,连接DE,则四边形ABEM面积为()15. (2分)如图,正^ ABC 的边长为4,点P 为BC 边上的任意一点(不与点 B 、C 重合),且/ APD=60 ,PD 交AB 于点D.设BP=x, BD=y,则y 关于x 的函数图象大致是( )l : y=x - 1与x 轴交于点A,如图所示依次作正方形 AB 。
2 2020年 河北 中考 数学 模考(二)答案

2020年河北中考数学押题模考(二)参考答案一.选择题(共16小题,满分42分)1.【答案】D【解析】解:根据题意知1a =-、0b =、1c =,则原式20172018(1)201601=-+⨯+101=-++0=,故选:D .2.【答案】C【解析】解:50.000035 3.510-=⨯,故选:C .3.【答案】C【解析】解:由题意知23120∠=∠-︒,12180∠+∠=︒,13120180∴∠+∠-︒=︒,解得:150∠=︒,故选:C .4.【答案】C【解析】解:2(2)4-⨯-=.故选:C .5.【答案】D【解析】解:A 、B 、C 都不是中心对称图形,D 是中心对称图形,故选:D .6.【答案】A【解析】解:A 、67是有理数,故此选项正确;BC、π是无理数,故此选项错误;D、3.1313313331⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.7.【答案】C【解析】解:A、菱形对应边成比例,对应角不一定相等,所以不一定是相似图形,故本选项错误.B、各边对应成比例的多边形对应角不一定相等(如菱形),所以不一定是相似多边形,故本选项错误;C、等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D、矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;故选:C.8.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.9.【答案】C【解析】解:由于菱形的两条对角线的长为6和8,∴5,⨯=,∴菱形的周长为:4520故选:C.10.【答案】C【解析】解:903060∠=︒-︒=︒,ABD则609015165ABC∠=︒+︒+︒=︒.故选:C.11.【答案】A【解析】解:选项A 不正确.理由正方形的边长为10,所以对角线14=, 因为1514>,所以这个图形不可能存在.故选:A .12.【答案】D【解析】解:A 、原式8=,错误;B 、原式2=+C 、原式1=,错误;D 、原式6633x x y y -==,正确. 故选:D .13.【答案】A 【解析】解:原式11(1)(1)(1)(1)x x x x x -=++-+- (1)(1)x x x =+- 21x x =-, 故选:A .14.【答案】C 【解析】解:抽查的学生数816%50=÷=,∴第二组的学生数5020%10=⨯=,第四组的学生数5026%13=⨯=,∴第25个数和第26个数都在第四组,∴样本的中位数落在第四组.故选:C .15.【答案】D【解析】解:抛物线23y x =-+,当0y =时,x =;当0x =时,3y =,则抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(1,1)-,(0,1),(0,2),(1,1);共有4个,4k ∴=;故选:D .16.【答案】C【解析】解:如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的红线,观察图象可知点B ,M 间的距离大于等于2小于等于1,故选C .二.填空题(共3小题,满分10分)17.【答案】24cm【解析】解:D 、E 分别是ABC ∆的边AB 、BC 的中点, 12DE AC ∴=, 同理,12EF AB =,12DF BC =, 11111()482422222DEF C DE EF DF AC BC AB AC BC AC cm ∆∴=++=++=++=⨯=. 故答案为:24cm18.【答案】见解析【解析】解:AP AM =,BP BM =,AB AB =,ABP ABM ∴∆≅∆,BAP BAM ∴∠=∠,AP AM =,AQ PM ∴⊥.故答案为:到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一19.【答案】1x =【解析】解:222412(1)1y x x x =-+=--,∴对称轴为直线1x =,故答案为:1x =.三.解答题(共7小题,满分68分)20.【答案】见解析【解析】解:(1)点B 表示的数是31815-+=;点C 表示的数是131833-+⨯=. 故答案为:15,3;(2)点P 与点Q 相遇前,42186t t +=-,解得2t =;点P 与点Q 相遇后,42186t t +=+,解得4t =;(3)假设存在,当点P 在点C 左侧时,64PC t =-,2QB t =,4PC QB +=,6424t t ∴-+=,解得1t =.此时点P 表示的数是1;当点P 在点C 右侧时,46PC t =-,2QB t =,4PC QB +=,4624t t ∴-+=,解得53t =. 此时点P 表示的数是113. 综上所述,在运动过程中存在4PC QB +=,此时点P 表示的数为1或113. 21.【答案】见解析【解析】解:(1)在甲超市摇奖的顾客获得奖金金额的中位数是1010102+=元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为205151010155201050⨯+⨯+⨯+⨯=(元),在乙超市平均获奖为20215310205258.250⨯+⨯+⨯+⨯=(元);(4)获得奖金10元的概率是3601447236336010---=.22.【答案】见解析【解析】解:ABC ∆是等边三角形,理由:22222()0a b c b a c ++-+=2222220a b c ba bc b ∴++--+=,22()()0a b b c ∴-+-=,则a b =,b c =,故a b c==,则ABC∆是等边三角形.23.【答案】见解析【解析】(1)解:射线BM从与线段AB重合的位置起,以每秒6︒的旋转速度绕B点按顺时针方向旋转至BP的位置,B∴一秒P转动的圆心角为12︒,∴每秒走过的弧长为:1262/ 1805cm s ππ⨯=;(2)①证明:如图所示:点C始终为AE的中点,过C作CD AB⊥于D,AE交CD、CB分别于G、F,过F作//FN CD,过C作圆的切线交FN于N.ACD CAG CGF∴∠+∠=∠,ABC GAC ACG∠=∠=∠,MCA ABC∠=∠,MCA ACG ACD CAG∴∠+∠=∠+∠,//CN AE∴;②证明://FN CD,//CN AE;∴四边形CGFN是平行四边形,90GCF ACG∠=︒-∠,90CFG EFB EBC∠=∠=︒-∠,EBC ACD∠=∠,GCF GFC∴∠=∠,CG GF∴=,∴平行四边形CGFN为菱形;③解:连接EO,CO.存在,理由如下:ACF ACB∠=∠,CAF CBA∠=∠,ACF BCA∴∆∆∽,∴AC CF BC AC=, 2AC BC CF ∴=,当10t s =时,1602AOC AOE ∠=∠=︒, 60BOE ∴∠=︒,AOC ∴∆,BOE ∆都是等边三角形,且此时全等, AC BE ∴=,2BE BC CF ∴=.24.【答案】见解析【解析】解:(1)把(2,0)A -,(0,4)B 代入y kx b =+中得:204k b b -+=⎧⎨=⎩, 解得:24k b =⎧⎨=⎩, 则直线AB 解析式为24y x =+;(2)如图1所示:作PC y ⊥轴于C ,直线l 经过点B ,并且与直线AB 垂直. 90ABO PBC ∴∠+∠=︒,90ABO BAO ∠+∠=︒,BAO PBC ∴∠=∠,ABP ∆是等腰直角三角形,AB PB ∴=,在ABO ∆和BPC ∆中,BAO PBC AOB BCP AB PB ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABO BPC AAS ∴∆≅∆,2AO BC ∴==,4BO PC ==,∴点P 的坐标(4,6)-或(4,2);(3)①点(,)Q a b 在第二象限,且QAB PAB S S ∆∆=. Q ∴点在经过1P 点且垂直于直线l 的直线上,∴点Q 所在的直线平行于直线AB , 直线AB 解析式为24y x =+,∴设点Q 所在的直线为2y x n =+,1(4,6)P -,62(4)n ∴=⨯-+,解得14n =,∴点Q 所在的直线为214y x =+,点(,)Q a b ,214b a ∴=+;(2,0)A -,(0,4)B②QA QB =,2222(2)(4)a b a b ∴++=+-,214b a =+,2222(2)(214)(2144)a a a a ∴+++=++-, 整理得,1050a =-,解得5a =-,4b =,Q ∴的坐标(5,4)-.25.【答案】见解析【解析】(1)证明:在正方形ABCD 中,AB BC =, 45ABP CBP ∠=∠=︒,在ABP ∆和CBP ∆中,AB BC ABP CBP PB PB =⎧⎪∠=∠⎨⎪=⎩,()ABP CBP SAS ∴∆≅∆,PA PC ∴=,PA PE =,PC PE ∴=;(2)由(1)知,ABP CBP ∆≅∆,BAP BCP ∴∠=∠,DAP DCP ∴∠=∠,PA PE =,DAP E ∴∠=∠,DCP E ∴∠=∠,CFP EFD ∠=∠(对顶角相等), 180180PFC PCF DFE E ∴︒-∠-∠=︒-∠-∠, 即90CPF EDF ∠=∠=︒;(3)在菱形ABCD 中,AB BC =,ABP CBP ∠=∠, 在ABP ∆和CBP ∆中,AB BC ABP CBP PB PB =⎧⎪∠=∠⎨⎪=⎩,()ABP CBP SAS ∴∆≅∆,PA PC ∴=,BAP BCP ∠=∠,DAP DCP ∴∠=∠, PA PE =,PC PE ∴=,11 / 11PA PE =,DAP E ∴∠=∠,DCP E ∴∠=∠,CFP EFD ∠=∠,CPF EDF ∴∠=∠120ABC ADC ∠=∠=︒,18060CPF EDF ADC ∴∠=∠=︒-∠=︒,EPC ∴∆是等边三角形,PC CE ∴=,AP CE ∴=;26.【答案】见解析【解析】解:(1)设y kx b =+,把(40,600),(75,250)代入可得4060075250k b k b +=⎧⎨+=⎩, 交点101000k b =-⎧⎨=⎩, 101000y x ∴=-+,当50x =时,10501000500y =-⨯+=件.(2)2(40)(101000)10140040000w x x x x =--+=-+-.(3)由题意275101400400008000x x x ⎧⎨-+-⎩……, 解得6075x 剟,设成本为S ,40(101000)40040000S x x ∴=-+=-+,4000-<,S ∴随x 增大而减小,75x ∴=时,S 有最小值10000=元.。
2020-2021学年河北省数学中考模拟试题(2)含答案解析

河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得:CE=2, 故 AE=AC﹣CE=9﹣2=7. 故答案为:7.
20 如图,二次函数 y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和 (﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当 x>﹣1 时,y>0,其中正确结论的是________
当 t=2 时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),
(1,3),(1,4),(2,2),(2,3),(2,4),共 7 个点;
故选项 A 错误,选项 B 错误;选项 D 错误,选项 C 正确;
故选 C.
二、二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在题中横线上)
数法表示该病菌的长度,结果正确的是( )
A.1×10-10 米 B.1×10-9 米 C.1×10-8 米
D.1×10-7 米
解:100 纳米=100×10-9 米=1×10-7 米.
故选 D.
3.下列计算结果正确的是( )
A.3a﹣(﹣a)=2a
B.a3×(﹣a)2=a5 C.a5÷a=a5
D.(﹣a2)3=a6
17.分解因式:3x2﹣18x+27=
解答:
解:3x2﹣18x+27,
=3(x2﹣6x+9),
=3(x﹣3)2.
故答案为:3(x﹣3)2
18.若一组数据 1,7,8,a,4 的平均数是 5、中位数是 m、极差是 n,则 m+n=
.
解:∵平均数为 5,
∴
=5,
解得:a=5, 这组数据按从小到大的顺序排列为:1,4,5,7,8, 则中位数为:5, 极差为:8﹣1=7,
A.20 B.35 C.40 D.55 考点:矩形的性质;等腰三角形的性质. 解答:解:∵以 B、M 为圆心,分别以 BC 长、MC 长为半径的两弧相交于 P 点, ∴BP=PC,MP=MC, ∵∠PBC=80°, ∴∠BCP= (180°﹣∠PBC)= (180°﹣80°)=50°,
在长方形 ABCD 中,∠BCD=90°, ∴∠MCP=90°﹣∠BCP=90°﹣50°=40°, ∴∠MPC=∠MCP=40°. 故选 D. 13 在平面直角坐标系中,已知点 E(﹣4,2),F(﹣2,﹣2),以原点 O 为位似中心, 相似比为,把△EFO 缩小,则点 E 的对应点 E′的坐标是( ) A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1) 解答: 解:根据题意得:
故船继续航行与钓鱼岛 A 的最近距离 50 (海里.故选 B
11 已知 x﹣ =3,则 4﹣ x2+ x 的值为( )
A.1
B.
C.
D.
解:∵x﹣ =3,即 x2﹣3x=1, ∴原式=4﹣ (x2﹣3x)=4﹣ = . 故选 D.
12 如图,长方形 ABCD 中,M 为 CD 中点,今以 B、M 为圆心,分别以 BC 长、MC 长为半 径画弧,两弧相交于 P 点.若∠PBC=80°,则∠MPC 的度数为何?( )
则点 E 的对应点 E′的坐标是(﹣2,1)或(2,﹣1). 故选 D. 14 有这样一组数据 a1,a2,a3,…an,满足以下规律:
,
(n
≥2 且 n 为正整数),则 a2013 的值为 ﹣1 (结果用数字表示). 解答: 解:a1= ,
a2=
=2,
a3=
=﹣1,
a4=
=,
…, 依此类推,每三个数为一个循环组依次循环, ∵2013÷3=671, ∴a2013 为第 671 循环组的最后一个数,与 a3 相同,为﹣1. 故答案为:﹣1. 15 张如图 1 的长为 a,宽为 b(a>b)的小长方形纸片,按图 2 的方式不重叠地放在 矩形 ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分 的面积的差为 S,当 BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则 a,b 满足( )
故∠BOC=∠BOD+∠COD=140°. 故选 D
7 如图,直线 a∥b,直线 c 与 a、b 都相交,从所标识的∠1、∠2、∠3、∠4、∠5 这五 个角中任意选取两个角,则所选取的两个角互为补角的概率是( )
A. B.
C.
D.
解答:
解:列表得:
5
(1,5)
(2,5)
(3,5)
(4,5)
4
(1,4)
解答:
解:当 t=0 时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,
2),(1,3),(2,1),(2,2),(2,3),共 6 个点;
当 t=1 时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),
(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共 8 个点;
5 不等式组
的解集在数轴上表示为( )
A.
B.
C.
D.
在数轴上表示不等式的解集;解一元一次不等式组.
解:
,由①得,x<4;由②得,x≥3,
故此不等式组的解集为:3≤x<4, 在数轴上表示为:
故选 D. 6 如图,点 A,B,C,在⊙O 上,∠ABO=32°,∠ACO=38°,则∠BOC 等于( )
A.60° B.70° C.120° D.140° 考点:圆周角定理. 解答:解:过 A 作⊙O 的直径,交⊙O 于 D;△OAB 中,OA=OB, 则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,
即 m=5,n=7,
则 m+n=12.
故答案为:12.
19 如图,在边长为 9 的正三角形 ABC 中,BD=3,∠ADE=60°,则 AE 的长为
.
解答: 解:∵△ABC 是等边三角形, ∴∠B=∠C=60°,AB=BC; ∴CD=BC﹣BD=9﹣3=6; ∴∠BAD+∠ADB=120° ∵∠ADE=60°, ∴∠ADB+∠EDC=120°, ∴∠DAB=∠EDC, 又∵∠B=∠C=60°, ∴△ABD∽△DCE, 则=,
2020 河北数学模拟试卷(二)
一、一、选择题(本大题共 16 个小题,1~6 小题,每小题 2 分;7~16 小题,每小题 3 分, 共 42 分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.﹣3 的相反数是( )
A.﹣
B.
C.﹣3
D.3
解答:
解:﹣3 的相反数是 3,
故选 D.
2.纳米是非常小的长度单位,1 纳米=10-9 米.某种病菌的长度约为 100 纳米,用科学记
D.50+50
解答: 解:过点 A 作 AD⊥BC 于 D,根据题意得 ∠ABC=30°,∠ACD=60°, ∴∠BAC=∠ACD﹣∠ABC=30°, ∴CA=CB. ∵CB=50×2=100(海里), ∴CA=100(海里), 在直角△ADC 中,∠ACD=60°, ∴AD= AC= ×100=50 (海里).
由图可知,当 x0>x>﹣1 时,y>0,错误; 综上所述,正确的结论有①②③④. 三、解答题(本大题共 6 个小题,共 66 分.解答应写出文字说明、证明过程或演算步骤)
21 (本小题满分 8 分)求值:
,其中 x 满足 x2+x﹣2=0
解答:
解:原式=
•
=
•
=
,
由 x2+x﹣2=0,解得 x1=﹣2,x2=1, ∵x≠1, ∴当 x=﹣2 时,原式=
A.a=b B.a=3b C.a=b
D.a=4b
解:左上角阴影部分的长为 AE,宽为 AF=3b,右下角阴影部分的
长为 PC,宽为 a,
∵AD=BC,即 AE+ED=AE+a,BC=BP+PC=4b+PC,
∴AE+a=4b+PC,即 AE﹣PC=4b﹣a, ∴阴影部分面积之差 S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2
∠A=20°,则∠BDC 等于( )
A.44°
B.60°
C.65°
D.77°
解答:解:△ABC 中,∠ACB=90°,∠A=20°, ∴∠B=90°﹣∠A=70°, 由折叠的性质可得:∠CED=∠B=70°,∠BDC=∠EDC, ∴∠ADE=∠CED﹣∠A=50°,
∴∠BDC=
=65°.
故选 C.
8 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了 10000 人,并进行统计 分析.结果显示:在吸烟者中患肺癌的比例是 2.5%,在不吸烟者中患肺癌的比例是 0.5%, 吸烟者患肺癌的人数比不吸烟者患肺癌的人数多 22 人.如果设这 10000 人中,吸烟者患肺 癌的人数为 ,不吸烟者患肺癌的人数为 ,根据题意,下面列出的方程组正确的是 ( ).
解答:A、由于 3a+a=4a≠2a,故本选项错误;
B、由于 a3×(﹣a)2=a3×a2=a5,故本选项正确;
C、由于 a5÷a=a5﹣1=a4≠a5,故本选项错误;
D、由于(﹣a2)3=﹣a6,故本选项错误.
故选 B.
4 如图,△ABC 中,∠ACB=90°,沿 CD 折叠△CBD,使点 B 恰好落在 AC 边上的点 E 处.若
﹣3ab,
则 3b﹣a=0,即 a=3b.
故选 B
16.已知点 A(0,0),B(0,4),C(3,t+4),
D(3,
t). 记 N(t)为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐