博弈论与纳什均衡
博弈论和纳什均衡

博弈论和纳什均衡博弈论是一门研究决策者在特定情境下进行策略选择的学科,它主要研究个体或团体之间的冲突与合作关系,并提供一种分析和解决这些问题的方法。
在博弈论中,纳什均衡是一个非常重要的概念,它被广泛应用于社会科学、经济学、政治学、生物学等领域。
一、博弈论的基本概念1. 博弈博弈是指在特定情境下,两个或多个决策者进行策略选择的过程。
每个决策者都有自己的目标和利益,他们通过选择不同的策略来达到自己的目标。
2. 策略策略是指在博弈中每个决策者可以采取的行动方案。
每个决策者根据自己的利益和目标选择最优的行动方案。
3. 支配策略支配策略是指在某种情况下,一个决策者采取某种行动方案时,其他所有决策者都会采取同样的行动方案。
这种情况下,该行动方案被称为支配策略。
4. 纳什均衡纳什均衡是指在博弈中,每个决策者都采取最优的策略,且没有任何一方可以通过改变自己的策略来获得更多的利益。
在纳什均衡下,每个决策者都做出了最优的选择,整个博弈过程达到了一个稳定状态。
二、纳什均衡的应用1. 社会科学在社会科学领域中,纳什均衡被广泛应用于研究人类行为和社会现象。
例如,在政治学中,研究政治家之间的竞争和合作关系时可以使用博弈论模型,并通过计算纳什均衡来预测政治家们可能采取的行动。
2. 经济学在经济学领域中,博弈论和纳什均衡被广泛应用于市场竞争分析、价格战、拍卖等问题。
例如,在拍卖中,参与者可以根据自己的信息和目标选择不同的出价策略。
通过计算纳什均衡,可以预测最终获胜者以及他所支付的价格。
3. 生物学在生物学领域中,博弈论和纳什均衡被用于研究动物之间的竞争和合作关系。
例如,在动物群体中,个体之间会存在资源的竞争和合作,通过使用博弈论模型并计算纳什均衡,可以预测不同类型的动物在不同情境下采取的行动。
三、纳什均衡的局限性虽然纳什均衡在博弈论中被广泛应用,并且在很多情况下能够提供准确的预测结果,但是它也存在一些局限性。
1. 纳什均衡不一定是唯一的在某些情况下,博弈模型可能存在多个纳什均衡。
盘点博弈论纳什均衡囚徒困境零和博弈智猪博弈

盘点博弈论&纳什均衡&囚徒困境&零和博弈&智猪博弈1.博弈论是什么博弈论(game theory),又译为对策论,或者赛局理论,经济学的一个分支,1944年冯·诺伊曼与奥斯卡·摩根斯特恩合著《博弈论与经济行为》,标志着现代系统博弈理论的的初步形成,因此他被称为“博弈论之父”。
博弈论被认为是20世纪经济学最伟大的成果之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
主要研究公式化了的激励结构(游戏或者博弈)间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
具有竞争或对抗性质的行为称为博弈行为。
在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。
为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
比如日常生活中的下棋,打牌等。
博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
2.纳什均衡(Nash equilibrium)3.囚徒困境(Prisoner’s Dilemma)纳什平衡的经典例子就是囚徒困境。
囚徒困境(Prisoner’s Dilemma)是博弈论的非零和博弈中具代表性的例子,反映个人最佳选择并非团体最佳选择。
或者说在一个群体中,个人做出理性选择却往往导致集体的非理性。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
1950年,由就职于兰德公司的梅里尔·弗勒德和梅尔文·德雷希尔拟定出相关困境的理论,后来由顾问艾伯特·塔克以囚徒方式阐述,并命名为“囚徒困境”。
经典的囚徒困境如下:警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人有罪。
于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择:若一人认罪并作证检控对方(相关术语称“背叛”对方),而对方保持沉默,此人将即时获释,沉默者将判监10年。
博弈论和纳什均衡

博弈论和纳什均衡引言博弈论是一门研究决策制定者之间相互作用的学科。
纳什均衡是博弈论中的一个重要概念,表示在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
本文将介绍博弈论的基本概念和纳什均衡的理论,并探讨其在现实生活中的应用。
博弈论基本概念博弈论研究的对象是决策制定者之间的相互作用,其中包括两个或更多个决策制定者,每个决策制定者可以选择不同的策略。
博弈论的基本元素包括玩家、策略和收益。
玩家是决策制定者的角色,策略是玩家在每个决策点上可以采取的行动,收益是每个玩家在不同策略组合下所获得的利益。
博弈论中常见的博弈形式包括合作博弈和非合作博弈。
在合作博弈中,玩家之间可以进行合作并达成协议,而在非合作博弈中,玩家之间相互独立且没有协作的能力。
纳什均衡的概念纳什均衡是博弈论中的一个重要概念,由诺贝尔经济学奖得主约翰·纳什提出。
纳什均衡指的是在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
具体来说,在一个博弈中,如果每个玩家选择了一个策略组合,且任何一个玩家单独改变自己的策略都无法提高自己的收益,那么这个策略组合就是一个纳什均衡。
纳什均衡可以通过数学方法进行计算,其中最常用的方法是利用最优响应函数。
最优响应函数指的是一个玩家在其他玩家的策略给定时,可以最大化自己的收益的策略选择。
纳什均衡的特性纳什均衡具有以下几个重要的特性:1.独立于个体的理性决策:纳什均衡的形成不依赖于玩家之间的协商或合作,而是由每个玩家根据自己的利益进行独立的决策而达成的。
2.稳定性:在纳什均衡中,每个玩家都在最优响应下选择策略,没有动机或能力单独改变自己的策略来获得更好的结果。
这种稳定性使得纳什均衡成为一种理想的博弈状态。
3.不一定最优:纳什均衡并非一定是博弈的最优结果,即每个玩家获得的收益并不一定是最大化的。
纳什均衡是一种均衡状态,每个玩家在给定其他玩家的策略下无法获得更多的收益。
博弈论与纳什平衡

博弈论与纳什平衡博弈论(game theory)对人的基本假定是:人是理性的(rational,或者说自私的),理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。
纳什(John Nash)编制的博弈论经典故事"囚徒的困境",说明了非合作博弈及其均衡解的成立,故称"纳什平衡"。
所有的博弈问题都会遇到三个要素。
在囚徒的故事中,两个囚徒是当事人(players)又称参与者;当事人所做的选择策略(strategies)是承认了杀人事实,最后两个人均赢得(payoffs)了中间的宣判结果。
如果两个囚徒之中有一个承认杀人,另外一个抵赖,不承认杀人,那么承认者将会得到减刑处理,而抵赖者将会得到最严厉的死刑判决,在纳什故事中两个人都承认了犯罪事实,所以两个囚徒得到的是中间的结果。
类似的:我们也能从“自私的基因”等理论中看到“纳什平衡”的体现。
在互联网这个原始丛林中:最优策略是如何产生的呢?一、博弈中最优策略的产生艾克斯罗德(Robert Axelrod)在开始研究合作之前,设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策。
也就是说,个人可以完全按照自己利益最大化的企图进行决策。
在此前提下,合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的,什么时候又是不合作的;第三、如何使别人与你合作。
社会实践中有很多合作的问题。
比如国家之间的关税报复,对他国产品提高关税有利于保护本国的经济,但是国家之间互提关税,产品价格就提高了,丧失了竞争力,损害了国际贸易的互补优势。
在对策中,由于双方各自追求自己利益的最大化,导致了群体利益的损害。
对策论以著名的囚犯困境来描述这个问题。
A和B各表示一个人,他们的选择是完全无差异的。
选择C代表合作,选择D代表不合作。
如果AB都选择C合作,则两人各得3分;如果一方选C,一方选D,则选C的得零分,选D的得5分;如果AB都选D,双方各得1分。
博弈论纳什均衡

博弈论纳什均衡什么是纳什均衡?1、纳什均衡(Nash equilibrium ),又称非合作博弈均衡,是博弈论概念,指的是:一种博弈稳定结果,谁单方改变策略,谁就会损失。
两个囚徒互相揭发,就是一种纳什均衡。
对于每个囚徒来说,如果打破纳什均衡,在对方实施揭发策略时,改变揭发策略,保持沉默,自己就会由判刑2年,变成判刑5年。
也就是说,两个囚徒互相揭发是稳定博弈结果,谁单方改变策略,就会受到损失。
这也就是均衡涵义所在,两个囚徒从利己角度,都不会单方改变策略。
博弈策略稳定,博弈结果也稳定。
之所以命名为纳什均衡,是因为提出者是经济学家、博弈论创始人约翰.纳什。
之所以称为非合作博弈均衡,原因就是:两个囚徒如果合作,互相保持沉默,各自只要坐牢1年;但最终博弈结果,也就是纳什均衡显著特征,是不合作。
2、纳什均衡意义重大。
纳什均衡提出,震动整个经济学界。
诺贝尔经济学奖得主萨缪尔森曾说:“你只要教会鹦鹉说‘需求和供给’,它也是经济学家。
”博弈论专家坎多瑞则说:“这只鹦鹉现在必须多学一个词了,那就是‘纳什均衡’。
”诺贝尔经济学奖得主迈尔森也说:“发现纳什均衡意义,可以和生命科学中发现DNA 双螺旋结构相媲美。
”纳什也因为提出纳什均衡,创立博弈论,而获得1994年诺贝尔经济学家奖。
纳值均衡意义重大,简单来说,就是它对于经济学具有重大意义。
读友们如果了解经济学看不见的手原理,就知道,古典经济学认为,通过市场这只‘看不见的手’调节,个体追求私利行为,会促进集体利益最大化。
但纳什均衡却违反上述原理:两个囚徒分别追求私利行为,并没有促进集体(囚徒整体)利益最大化,反而是损人不利己。
这正是市场失灵软肋之处,通过博弈论视角可以得到合乎逻辑解释,更有条件找到合适解决方案。
从上述这点,读友们可以“一斑窥全豹”,感受到博弈论重要性。
更重要的是,纳什均衡非常普遍,小至个人沟通,中到公司竞争,大到国家往来,都可以观察到。
Q2:怎样运用纳什均衡?1、分析囚徒困境。
智猪博弈论与纳什均衡

智猪博弈论与纳什均衡智猪博弈论与纳什均衡智猪博弈理论介绍在博弈论(GameTheory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择:从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。
综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。
在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。
在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。
这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。
“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。
这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。
博弈论和纳什均衡

(记为:Q=a-bP),并且A、B两个厂商都准确地了解市 场的需求曲线(完全信息)。 5. A、B两个厂商各自再作出决策时都假定另一个厂商的行 为是既定不变的。厂商都是在已知对方产量的情况下, 各自确定能够给自己带来最大利润的产量。即每一个产 商都是消极地以自己的产量去适应对方已确定的产量。 6. 两个厂商同时决策,无行动的先后差别。
博弈论和纳什均衡
.
1
博弈无处不在
2
三国中的博弈——联吴抗魏
诸葛亮在《隆中对》中提出“跨有 荆益、东有孙权、北图中原”,他 舌战群儒,力劝东吴孙权与刘备联 盟。
3
三国中的博弈—华容道
火烧赤壁一战,孙刘联军大败曹操,曹操北 逃。诸葛亮明知关羽重义气,必然放走曹操, 为何还将捉曹重任交给关羽? 结论:诸葛亮并不想杀掉曹操——曹操一死,刘备亦亡矣!
11
案例扩展—性别大战
“性别战”:一对恋人有两种选择,或去看足球 比赛,或去看芭蕾舞。男方偏好足球,女方偏好 芭蕾,但他们宁愿在一起,不愿分开。
12
在这个博弈中,如果双方同时决定,则有两个纳 什均衡,即都去看足球比赛或者都去看芭蕾演出。 但是到底最后他们去看足球比赛还是去看芭蕾演 出,并不能从中获得结论。
* i
的最好的策略。
纳什均衡的定义
定义2.1 设 G N,S1,,Sn , u1,, un 为一具有完全信息的策略型博弈模型,称
策略组合s*
(s
* i
,
s
* i
),
s
* i
S i ,
s
*
i
S
\ Si
为G的一个纳什均衡。如果对
博弈论(潜在博弈、纳什均衡

博弈论(潜在博弈、纳什均衡潜在博弈和纳什均衡是博弈论中的重要概念。
潜在博弈是指在博弈开始之前,参与者对博弈规则和结果的假设和预期。
纳什均衡是指在博弈中,各参与者都采取最优策略时所达到的结果。
在现实生活中,我们经常会遇到各种潜在博弈的情况。
比如,在一个拍卖会上,卖家和买家都会根据对市场的了解和对对方行为的预期来制定自己的策略。
卖家希望以最高的价格卖出物品,而买家则希望以最低的价格购买物品。
他们的策略取决于对对方行为的预期,以及对市场供求关系的判断。
在这种情况下,纳什均衡的概念就显得尤为重要。
纳什均衡是指在博弈中,各参与者都选择了最优策略,没有人可以通过改变自己的策略来获得更好的结果。
换句话说,纳什均衡是一种稳定的状态,参与者不会主动改变自己的策略。
然而,纳什均衡并不一定是最优解。
在某些情况下,博弈参与者可能会因为缺乏信息或信任问题而无法达到纳什均衡。
在这种情况下,博弈参与者可能会采取非最优策略,导致整个博弈结果下降。
潜在博弈和纳什均衡的概念不仅适用于经济学领域,也可以应用于其他领域。
比如在政治上,各国之间的战略决策也可以看作是一种博弈。
每个国家都会根据对其他国家行为的预期来制定自己的策略,以达到自己的最大利益。
而纳什均衡的概念则可以帮助我们理解为什么有些国家会选择合作,而有些国家会选择对抗。
潜在博弈和纳什均衡是博弈论中的重要概念,可以帮助我们理解各种博弈情况下参与者的策略选择和结果。
在现实生活中,这些概念也可以应用于经济学、政治学等领域,帮助我们分析和解决各种复杂的决策问题。
通过理解和应用潜在博弈和纳什均衡的原理,我们可以更好地把握博弈中的机会和挑战,做出更明智的决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《博弈论与纳什均衡理论》姓名张贺祺学号 2010010404 专业政治经济学指导老师张秉云摘要博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
关键字:博弈论;纳什均衡;合作博弈;非合作博弈目录摘要 (2)关键字 (2)一、引言 (4)二、博弈论与纳什均衡的主要内容 (4)(一)博弈论的主要思想 (4)(二)博弈论的分类 (5)三、经典案例 (7)(一)博弈论的经典案例 (7)(二)纳什均衡经典案例 (7)四、博弈论和纳什均衡的重要影响 (8)(一)博弈论的重要影响 (8)(二)纳什均衡的重要影响 (8)参考文献 (9)博弈论与纳什均衡理论一、引言近代对于博弈论的研究,开始于策墨咯(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈论(Game Theory):亦名“对策论”、“赛局理论”,属应用数学的一个分支,主要研究公式化了的激励结构间的相互作用。
是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡:(Nash equilibrium)又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。
假设有n人局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。
所有局中人策略构成一个策略组合(Strategy Profile)。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
二、博弈论与纳什均衡的主要内容(一)博弈论的主要思想一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。
博弈论模型可以用五个方面来描述:G = {P, A S, I, U)P:为局中人,博弈的参与者,也称为博弈方,局中人是能够独立决策,独立承担责任的个人或组织,局中人以最终实现自身利益最大化为目标。
决策人:在博弈中率先做出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。
对抗者:在博弈二人对局中行动滞后的那个人,与决策人要做出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。
他的策略可能依赖于决策人劣势的策略选择,因此对抗是唯一占优的方式,实为领导人的阶段性终结行为。
局中人(players):在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人。
只有两个局中人的博弈现象称为两人博弈,而多于两个局中人的博弈称为多人博弈。
A:为各局中人的所有可能的策略或行动的集合。
根据该集合是有限还是无限,可分为有限博弈和无限博弈,后者表现为连续对策、重复博弈和微分对策等。
策略(strategy):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。
如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。
S: 博弈的进程:也是博弈进行的次序、局中人同时行动的一次性决策的博弈,称为静态博弈;局中人行动有先后次序,称为动态博弈。
I:博弈信息,能够影响最后博弈结局的所有局中人的情报。
信息在博弈中占重要的地位,博弈的赢得很大程度上依赖于信息的准确度与多寡。
得益信息是博弈中的重要信息,如果博弈各方对各种局势下所有局中人的得益状况完全清楚,称之为完全信息博弈。
反之为不完全信息博弈。
在动态博弈中还有一类信息:轮到行动的博弈方是否完全了解此前对方的行动。
如果完全了解则称之为具有完美信息的博弈。
反之称为不完美信息的动态博弈。
由于信息不完美,博弈的结果只能是概率期望, 而不能像完美信息博弈那样有确定的结果。
U: 为局中人获得利益,也是博弈各方追求的最终目标。
根据各方得益的不同情况,分为零和博弈与变和博弈。
零和博弈中各方利益之间是完全对立的。
变和博弈有可能存在合作关系,争取双赢的局面。
得失(payoffs):一局博弈结局时的结果称为得失。
每个局中人在一局博弈结束时的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。
所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。
次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。
(二)博弈论的分类博弈模型一般分为合作博弈(cooperative game)和非合作博弈(non- cooperative game),如图 1.1。
合作博弈是以单个参与者的可能行动集合为基本元素,而非合作博弈是以参与人群的可能联合行动集合为基本元素(Martin J.Osborne and Ariel Rubinstein,2000,P2),也就是说,在合作博弈中,博弈中所有参与者都独立行动,不存在有约束力的合作、联合或联盟的关系,而在非合作博弈中,在一些参与者之间存在着有约束力的合作、联合或联盟的关系,并因为这种关系影响到博弈的结局。
合作博弈强调的是团体理性(collective rationality)、效率、公正和公平;非合作博弈强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是低效率或无效率的(张维迎,1996,P5)。
20世纪50年代,合作博弈的研究达到鼎盛期,同时开始出现对非合作博弈的研究,此后,博弈论的研究主流逐步转向在非合作博弈领域。
有些人认为非合作博弈模型比合作博弈更“基本”,但有些人认为两者不相上下(Martin J.Osborne and Ariel Rubinstein,2000,P2)。
合作博弈,有时也叫做联盟博弈(coalitional game),一般根据有无转移支付而分为两类:可转移支付联盟博弈(coalitional game with transferablepayoff)和不可转移支付联盟博弈(coalitional game with non-transferable payoff)。
可转移支付也叫有旁支付(side payment),可转移支付联盟博弈假设博弈中各参与者都用相同的尺度来衡量他们的赢得,且各联盟的赢得可以按任意方式在联盟成员中分摊;否则,就是不可转移支付联盟博弈。
非合作博弈的分类主要从两个角度进行划分。
一是参与者的行动顺序。
从这个角度博弈可以分为静态博弈(static game)和动态博弈(dynamic game)。
静态博弈是指参与者同时选择行动或虽非同时但后行动者并不知前行动者采取了何种行动;动态博弈是指参与者的行动有先后顺序且后行动者能够观察到先行动者所选择的行动。
二是参与者掌握的信息水平。
从这个角度,博弈可以分为完全信息博弈和不完全信息博弈。
完全信息(complete information)指的是每一个参与者对所有其他参与者的特征、战略空间及支付函数有准确的知识;否则就是不完全信息(incomplete information)。
图1.1 博弈的分类综合上述两种分类方法,可将非合作博弈分成四类。
这四类博弈及其对应的均衡概念,大致上反映了20世纪50年代以来非合作博弈理论的主要进展和1994年三位诺贝尔经济学将得主的主要贡献,同时也大致表明了“纳什均衡”及其精炼在博弈论发展中的地位和影响(如表2.1)。
表2.1 非合作博弈的分类及对应的均衡概念、主要贡献者三、经典案例(一)博弈论的经典案例智猪博弈(Pigs’payoffs)讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
枪手博弈:王者的悲哀。
三人对枪自决,甲乙丙枪法优劣递减。
最后无奈而神奇的结局,将不取决于同时开枪还是先后开枪,最优良的枪手,倒下的概率将最高;而最蹩脚的枪手,存活的希望却最大。
因为没有人会把威胁最小的枪手列为一号清楚目标。
在这里,后发制人的弱势者将胜出。
以弱胜强,绝不是神话。
(二)纳什均衡经典案例和的革命,非合作博弈理论已经成为范式的中心……在经济学或者与经济学原理相关的金融、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘消费’近期文献的领域。