最新高中三角函数测试题及答案

合集下载

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.3.方程12sin 01x xπ-=-,[2,4]x m m ∈--+(m ∈Z )的所有根的和等于2024,则满足条件的整数m 的值是________4.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.5.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________7.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 8.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.9.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.10.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=13.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >14.已知双曲线22221(,0)x y a b a b-=>的两条渐近线分别与抛物线24y x =交于第一、四象限的A ,B 两点,设抛物线焦点为F ,若7cos 9AFB ∠=﹣,则双曲线的离心率为( )AB .3CD .15.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1616.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-18.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5519.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.在ABC 中,2AB =,,D E 分别是边AB ,AC 的中点,CD 与BE 交于点O ,若OC 3OB =,则ABC 面积的最大值为( )A .3B .33C .63D .93三、解答题21.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值.22.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.24.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知sin 2C =(1)若4a =,c =ABC ∆的面积;(2)若ABC ∆22213sin sin sin 16A B C +=,求c 的值.25.已知向量 2(2,22()),(,2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数.26.已知函数()sin 2f x x x =.(1)求函数()f x 的最小正周期及对称中心坐标; (2)若02πα-<<,()1f α=,求sin 2α的值.27.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值28.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.29.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值; (2)若6,22BC AB AD ==,求b .30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.3π2.2 3.1008或10094.8156.12(,)369-7 8.()135,2169.1π-##1π-+ 10.25二、单选题 11.D 12.C 13.A 14.B 15.C 16.B 17.B 18.B 19.C 20.C 三、解答题21.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4.【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.22.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题. 23.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】 (1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.24.(1)2)c = 【解析】 【分析】(1)先根据sin2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值. 【详解】解:(1)因为sin2C =所以2101cos 12sin122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.25.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.26.(1)最小正周期为π,对称中心坐标为(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭;(2)12-. 【解析】【分析】(1)利用辅助角公式先将函数()y f x =的解析式化简,然后利用周期公式计算出函数()y f x =的最小正周期,令()23x k k Z ππ+=∈,解出x 的表达式可得出对称中心坐标;(2)由()1f α=得出1sin 232πα⎛⎫+= ⎪⎝⎭,结合角α的范围求出α的值,代入sin 2α并结合诱导公式求出sin 2α的值.【详解】(1)()13sin 2322sin 222f x x x x x ⎛⎫== ⎪ ⎪⎝⎭2sin 2cos cos 2sin 2sin 2333x x x πππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()y f x =的最小正周期为22ππ=, 令()23x k k Z ππ+=∈,解得()26k x k Z ππ=-∈, 因此,函数()y f x =的对称中心坐标为(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭; (2)()2sin 213f παα⎛⎫=+= ⎪⎝⎭,得1sin 232πα⎛⎫+= ⎪⎝⎭, 02πα-<<,22333πππα∴-<+<,236ππα∴+=,得26πα=-, 因此,1sin 2sin sin 662ππα⎛⎫=-=-=- ⎪⎝⎭. 【点睛】本题考查三角函数的周期和对称中心,考查三角函数求值,解三角函数问题首先就是要将三角函数解析式化简,在求值时,要利用已知角来配凑未知角,借助同角三角函数的基本关系以及两角和差公式进行计算,考查计算能力,属于中等题.27.(1)1,02⎡⎤--⎢⎥⎣⎦(2)265- 【解析】【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值.【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫- ⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭ 把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭ ()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】 本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.28.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π. 【解析】【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值.【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭, 2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦, 所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=, 故123x x π+=.【点睛】 本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.29.(1)13; (2 【解析】【分析】(1)先由ABC ∆的面积为23sin AD B且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果.【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B, 由三角形的面积公式可知:21sin 26sin AD AB BD B B⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=, (2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =,在ABD ∆中由正弦定理可得sin sin BD AB BAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠ 由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=, ()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==. BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴= 【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。

三角函数高三计算题解析

三角函数高三计算题解析

三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

高中三角函数练习题含答案

高中三角函数练习题含答案

高中三角函数练习题含答案一、填空题1.方程12sin 01x xπ-=-,[2,4]x m m ∈--+(m ∈Z )的所有根的和等于2024,则满足条件的整数m 的值是________2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.4.已知在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且6a =,点O 为其外接圆的圆心.已知·15BO AC =,则当角C 取到最大值时ABC 的面积为______5.已知()()()cos sin 0f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.6.已知函数()()sin 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知向量a 与b 的夹角为θ,sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.8.已知平面四边形ABCD 的面积为4AB =,3AD =,5BC =,6CD =,则cos()A C +=___________.9.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭12.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭13.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2514.已知sin 0.1a =,0.3πb =,20.9πc =,则( ) A .c b a <<B .a b c <<C .a c b <<D .c a b <<15.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin 3B C +=,则实数m 的最大值为( )A .3B .35C .75D .3216.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( ) A .103πB .3πC .3π D 317.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .318.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()(2cos 2g x x =.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A .BC . D19.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=cos 2C C +=,则a b +的取值范围是( )A .(B .(0,C .(D .(6,20.设函数()sin cos f x a x b x ωω=+()0ω>在区间,62ππ⎡⎤⎢⎥⎣⎦上单调,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当12x π=时,()f x 取到最大值4,若将函数()f x 的图象上各点的横坐标伸长为原来的2倍得到函数()g x 的图象,则函数()y g x =为( ) A .4B .5C .6D .7三、解答题21.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.22.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移3y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 23.已知函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,将()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象. (1)求函数()g x 的解析式;(2)若对任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,求实数t 的最大值;(3)若对任意实数,()(0)a y g x ωω=>在,4a a π⎡⎤+⎢⎥⎣⎦上与直线12y =-的交点个数不少于6个且不多于10个,求实数ω的取值范围.24.将函数()sin 2g x x =向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).25.函数()()sin tan f x x ω=,其中0ω≠. (1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.26.已知函数()sin()0,04,||2f x A x b A πωϕωϕ⎛⎫=++><<< ⎪⎝⎭图象的一个最高点和最低点的坐标分别为5,212π⎛+ ⎝和11,212π⎛-⎝. (1)求()f x 的解析式;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦()2f x m ≤-,求m 的取值范围.27.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.28.在ABC ∆中,角,,A B C 的对边分别为,,a b c . 已知sin 2C =(1)若4a =,c =ABC ∆的面积;(2)若ABC ∆22213sin sin sin 16A B C +=,求c 的值.29.已知函数()f x 的图象是由函数()sin g x x =的图象经如下变换得到:先将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向左平移3π个单位长度.(1)求函数(2)y f x =在[0,]π上的单调递增区间;(2)已知关于x 的方程2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β.求26cos(22)m αβ--的值.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.1008或10092.⎛ ⎝⎭3.2⎝4.5.140326.②③ 7.25 8.710##0.7910.二、单选题11.C 12.A 13.C 14.A 15.D 16.B 17.B 18.D 19.D 20.D 三、解答题21.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.22.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+3sin 23x πω⎛⎫=++ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 23f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 2436y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 6y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移3个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点所以2sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.23.(1)2()sin(3)3g x x π=+;(2)6π;(3)4083ω<≤.【解析】 【分析】(1)根据正弦函数的对称性,可得函数()f x 的解析式,再由函数图象的平移变换法则,可得函数()g x 的解析式;(2)将不等式进行转化,得到函数()()f x g x -在[0,t ]上为增函数,结合函数的单调性进行求解即可;(3)求出()y g x ω=的解析式,结合交点个数转化为周期关系进行求解即可. 【详解】(1)因为函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,所以有()0sin[3()]0()(0)9933f k k Z ππππϕϕπϕπϕ-=⇒-+=⇒-=∈<<∴=,()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象.所以 2()sin[3()]sin(3)933g x x x πππ=++=+;(2)由()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,构造新函数为()()()sin3h x f x g x x =-=,由题意可知:任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,说明函数()sin3h x x =在[0,]x t ∈上是单调递增函数,而()sin3h x x =的单调递增区间为:22232()()226363k k k x k k Z x k Z ππππππππ-+≤≤+∈⇒-+≤≤+∈,而[0,]x t ∈, 所以单调递增区间为:06x π≤≤,因此实数t 的最大值为:6π;(3)2()sin(3)3y g x x πωω==+,其最小正周期23T πω=, 而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π,直线12y =-的交点个数不少于6个且不多于10个,则34T π≤,且54T π>,解得:4083ω<≤. 【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.24.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以1cos x =2cos x =②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以1cos x 2cos x =③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题. 25.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析. 【解析】(1)根据奇偶函数的定义进行判断即可; (2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数. 【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()111122g x x x ⎛⎫=+≥⨯ ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个, 当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198.【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.26.(1) ()2sin(2)3f x x π=-[22]-,【解析】 【分析】(1)根据题意得到()21T k Z k π=∈+,42k ω=+所以2ω=,再代入数据计算得到,2A =b =3πϕ=-得到答案.(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以22,333x πππ⎡⎤-∈-⎢⎥⎣⎦得到0()2f x ≤≤+202m m +≥⎧⎪⎨+⎪⎩. 【详解】 (1)由题意得1151()12122k T ππ-=+,则()21T k Z k π=∈+. 又2T πω=,则42k ω=+,因为04ω<<,所以2ω=.2A ==,b ==因为()f x 的图象经过点5(,212π,所以52sin(2)212πϕ⨯+=+ 所以23k πϕπ=-+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.故()2sin(2)3f x x π=-+(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以22,333x πππ⎡⎤-∈-⎢⎥⎣⎦从而,0()2f x ≤≤+()2f x m ≤-≤,所以()2m f x m +≤≤+.要使得存在0,2x π⎡⎤∈⎢⎥⎣⎦()2f x m -≤,则202m m +≥⎧⎪⎨≤⎪⎩解得22m -≤≤.故m 的取值范围为[22]-,. 【点睛】本题考查了三角函数的解析式,存在问题,计算函数的值域是解题的关键. 27.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】 (1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭. 02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题. 28.(1)2)c = 【解析】【分析】(1)先根据sin2C =sin C 与cos C ,再利用余弦定理求出b 边,最后利用1sin 2ABC S ab C ∆=求出答案;(2)利用正弦定理将等式化为变得关系,再利用余弦定理化为2c 与ab 的关系式,再结合面积求出c 的值. 【详解】解:(1)因为sin2C =所以2101cos 12sin122164C C =-=-⨯=-.又()0,C π∈,所以sin C =.因为4a =,c =2222cos c a b ab C =+-, 所以214016244b b ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得4b =,所以11sin 4422ABC S ab C ∆==⨯⨯= (2)因为22213sin sin sin 16A B C +=,由正弦定理,得2221316a b c +=. 又2222cos a b ab C c +-=,所以283c ab =.又1sin 2ABC S ab C ∆=,得18ab =,所以248c =,所以c = 【点睛】本题考查正余弦定理解三角形,属于基础题.29.(1)(2 )y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦(2)6-【解析】 【分析】(1)先求出()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数的图像和性质求函数(2)y f x =在[0,]π上的单调递增区间;(2)先化简得2()422f x g x π⎛⎫-+ ⎪⎝⎭223x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的性质求出cos )αβ-(的值得解. 【详解】(1)将()sin g x x =图象上所有点的纵坐标伸长到原来的2倍,得到2sin y x =的图象, 再将2sin y x =的图象向左平移3π个单位长度后得到2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222232k x k πππππ-++,k ∈Z51212k x k ππππ-+,k ∈Z ,又[0,]x π∈所以(2)y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦.(2)2()422f x g x π⎛⎫-+ ⎪⎝⎭24sin 4sin 232x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos 24cos 23x x π⎛⎫=-+- ⎪⎝⎭23cos 22x x =-+223x π⎛⎫=-+ ⎪⎝⎭.因为2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β,所以23x m π⎛⎫-= ⎪⎝⎭在[0,)π内有两个不同的解α,β,且52,333x πππ⎡⎫-∈-⎪⎢⎣⎭,所以2233ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或22333ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.于是56παβ+=或116παβ+=. 当56παβ+=时,5cos()cos 6παβαα⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭5cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭ sin 23πα⎛⎫=-= ⎪⎝⎭当116παβ+=时, 11cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭113cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭sin 23πα⎛⎫=--= ⎪⎝⎭,因此,26cos(22)m αβ--()2262cos ()1m αβ=---22621612m m ⎛⎫=⋅--=- ⎪⎝⎭. 【点睛】本题主要考查三角函数图像的变换和三角函数的单调区间的求法,考查三角函数图像的零点问题,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1 (2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫=⎪⎝⎭; ②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π; ③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解; ④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦. 其中所有正确结论的编号为________. 5.在ABC 中,记角,,A B C 所对的边分别是,,a b c ,面积为S ,则24Sb ac+的最大值为___________.6.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______. 8.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.9.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-412.已知1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .⎫⎪⎪⎣⎭B .⎛ ⎝⎦C .12⎛ ⎝⎦D .⎫⎪⎪⎣⎭13.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5414.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( )A .103πB .3πC .3π D15.如图,长方形ABCD 中,AB =1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C .15112- D .518- 16.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.()sin()(0)f x x ωφφ=+>的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,若tan 2APB ∠=-,则ω的值为( )A .4π B .3π C .2π D .π18.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( )A .(21,)-+∞B .(12,)++∞C .(1,12)D .(31,)++∞19.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.在ABC 中,2AB =,,D E 分别是边AB ,AC 的中点,CD 与BE 交于点O ,若OC 3OB =,则ABC 面积的最大值为( )A .3B .33C .63D .93三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在520,2x ⎡⎤∈⎢⎥⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围. 22.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.23.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.24.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围. 25.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.26.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由.27.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 28.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )2]x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.29.已知向量 22(2,22()),(,)2a x b ωϕ=+=,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数. 30.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 为ABC 的面积,()222sin SB C a c +=-. (1)证明:2A C =;(2)若2b =,且ABC 为锐角三角形,求S 的取值范围.【参考答案】一、填空题1.3π2.33.12(,)369-4.①②④.56.②③ 7.138 9.10.-7二、单选题 11.A 12.A 13.B 14.B 15.A 16.B 17.C 18.B 19.A 20.C 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T=⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()242f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.23.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥,∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.24.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)]【解析】(1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可. (2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解.【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值, 此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ(2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ= 在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ=所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈令sin cos t θθ=+,则21sin cos 2t θθ-=所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)] 【点睛】本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.25.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tanα.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ在△OPQ 中,OQOP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ. 由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π. 故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f ′(θ)令f ′(θ)=0,得sinθθ0满足0sin θ则0cos θ=,即()02f θ===列表如下:由上表可知,f (θ0)=2是极大值,也是最大值. 由(1)可知tanα=f (θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭, tanα单调递增则当tanαα也取得最大值.故游客在观赏亭P 处的观赏效果最佳时,sinθ 【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 26.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题.27.(1) PN =(0,x ∈;(2) arctan . 【解析】 【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到. 【详解】(1)在APM ∆中,PM =AM =;其中0x <<在MND ∆中,2MN x ⎫=⎪⎪⎝⎭,在PMN ∆中,PN =(0,x ∈;(2)当(0,x 时,PN 最小,此时43PN =.因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以arctan4PNM ∠=,异面直线PN 与11A C 所成角的大小 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题. 28.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()2222g x g m ==-⨯-=-⇒=故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果. 29.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析. 【解析】 【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=.∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1.∵0<φ2π<,∴φ4π=. ∴f (x )=1﹣cos2(44x ππ+)=1+sin2x π,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4. 而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018; (Ⅲ)g (x )=f (x )﹣m ﹣12sin x m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点; ②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点; ③当0≤m <1时,两函数的图象在[0,3]内有两个共点. 综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点; ②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点; ③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.30.(1)见解析;(2)32⎫⎪⎪⎝⎭【解析】 【分析】(1)利用三角形面积公式表示S ,结合余弦定理和正弦定理,建立三角函数等式,证明结论,即可.(2)结合三角形ABC 为锐角三角形,判定tanC 的范围,利用tanC 表示面积,结合S 的单调性,计算范围,即可. 【详解】(1)证明:由()222sin S B C a c +=-,即222sin SA a c =-,22sin sin bc A A a c∴=-,sin 0A ≠,22a c bc ∴-=, 2222cos abc bc A =+-,2222cos a c b bc A ∴-=-,22cos b bc A bc ∴-=,2cos b c A c ∴-=,sin 2sin cos sin B C A C ∴-=,()sin 2sin cos sin A C C A C ∴+-=,sin cos cos sin sin A C A C C ∴-=, ()sin sin A C C ∴-=,A ,B ,()0,C π∈,2A C ∴=. (2)解:2A C =,3B C π∴=-,sin sin3B C ∴=.sin sin a b A B =且2b =, 2sin2sin3Ca C∴=, ()212sin2sin 2sin2sin 2tan2tan 4tan 4sin 32sin 2sin2cos cos2sin tan2tan 3tan tan tan C C C C C C C S ab C C C C C C C C C CC C∴======+++--,ABC 为锐角三角形,20,230,20,2A C B C C ππππ⎧⎛⎫=∈ ⎪⎪⎝⎭⎪⎪⎛⎫∴=-∈⎨ ⎪⎝⎭⎪⎪⎛⎫∈⎪⎪⎝⎭⎩,,64C ππ⎛⎫∴∈ ⎪⎝⎭,tan C ⎫∴∈⎪⎪⎝⎭, 43tan tan S CC=-为增函数, 2S ⎫∴∈⎪⎪⎝⎭.【点睛】考查了正弦定理,考查了余弦定理,考查了三角形面积公式,考查了函数单调性判定,难度偏难.。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)一、填空题1.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.2.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 3.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.4.在角1θ,2θ,3θ,…,29θ的终边上分别有一点1P ,2P ,3P ,…,29P ,如果点k P 的坐标为()()()sin 15,sin 75k k-+,129k ≤≤,k ∈N ,则12329cos cos cos cos θθθθ+++⋅⋅⋅+=______5.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.6.平面向量a ,b ,c 满足1a a b c =-==,()222b ac b c b a c +⋅+-=⋅+,1a b b a b b cb⋅+=+⋅,则()2b c-=______.7.设向量OA a =,OB b =,OC c =,2a b a b ==⋅=,点C 在AOB ∠内,且向量c 与向量a c -的夹角为3π,则||||c c b -的取值范围是____________.8.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且23a A π==.若mb nc +(0,0m n >>)有最大值,则nm的取值范围是__________. 9.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.10.如图,在棱长为1的正方体1111ABCD A B C D -中,若点P 是棱上一点,则满足1222PA PC +=的点P 有__________个.二、单选题11.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,212.已知ABC 的内角分别为,,A B C ,23cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1213.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C 3D 314.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,且有()02f ()()1g x f x =-的图象在()0,2π内有5个不同的零点,则ω的取值范围为( )A .5571,2424⎛⎤⎥⎝⎦B .5571,2424⎛⎫ ⎪⎝⎭C .4755,2424⎛⎫ ⎪⎝⎭D .4755,2424⎛⎤ ⎥⎝⎦15.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( )A .()f x 为常数B .()f x 有极小值C .()f x 有极大值D .()f x 是单调函数16.()sin()(0)f x x ωφφ=+>的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,若tan 2APB ∠=-,则ω的值为( )A .4π B .3π C .2π D .π17.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .318.已知直线1y x =+上有两点1122(,),(,)A a b B a b ,且12a a >.已知1122,,,a b a b 满足12122||a a b b +22221122a b a b ++||23AB =,则这样的点A 个数为( )A .1B .2C .3D .419.△ABC 中,BD 是AC 边上的高,A=4π,5BD AC =( )A .14B .12C .23D .3420.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象.(1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos ,3sin 2)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围. 26.已知函数()23sin 212cos f x x x +-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.27.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.函数()()2sin f x x ωϕ=+(其中0,2πωϕ><),若函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,且函数()f x 的图象过点()0,1. (1)求()f x 的解析式; (2)求()f x 的单调增区间:(3)求()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域. 30.已知在ABC ∆中,,,a b c 分别为角A,B,C 的对应边,点D 为BC 边的中点,ABC ∆的面积为23sin AD B. (1)求sin sin BAD BDA ∠⋅∠的值; (2)若6,2BC AB AD ==b .【参考答案】一、填空题1.②④23.③④4.05.742ω<<或91322ω<≤.6.227. 8.1,22⎛⎫ ⎪⎝⎭910.18二、单选题 11.A 12.A 13.C 14.A 15.A 16.C 17.B 18.D 19.A 20.D 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】 【分析】(1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫= ⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭, 即sin sin 2sincos22αβαβαβ+-+=(3)因为222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)2()2sin 233f x x π⎛⎫=-+ ⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x 的解析式;(2)令()t f x =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭. (2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12.【解析】 【分析】(1)由数量积的坐标运算可得2()2cos 2f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间 (2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 2f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭,∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增,解得:36k x k ππππ-≤≤+,故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈.(2)∵02x π≤≤,∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值.(1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-= 整理得sin (cos cos sin sin )sin A A C A C C -=∴sin cos()sin A A C C +=∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π= (2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-,∵ACD ∆为正三角形,∴2254cos CD C A α=-=,在ABC ∆中,由正弦定理得:1sin sin AC βα=, ∴sin sin AC βα=,∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=-- 2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-,12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.25.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)](1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可.(2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解. 【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值, 此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ (2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ= 在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ= 所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈ 令sin cos t θθ=+,则21sin cos 2t θθ-= 所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)]本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.26.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴;(2)先求平移后的函数解析式,再求值域.【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭ 令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦, 故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2.【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.27.(1) PN =(0,x ∈;(2) arctan . 【解析】【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到.【详解】(1)在APM ∆中,PM =AM =;其中0x <<在MND ∆中,2MN x ⎫=⎪⎪⎝⎭,在PMN ∆中,PN =(0,x ∈;(2)当(0,x 时,PN 最小,此时43PN =. 因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以arctan 4PNM ∠=,异面直线PN 与11A C 所成角的大小 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题.28.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论; 对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin 64sin cos S θθθθ=-+ ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin 64sin cos f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值.【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos 3AB OA OB OA OB π=+-⋅⋅,即222m n mn =++.所以22222()3()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值,此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大.(2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点,所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦. 在ODF ∆中,DF 200sin θ=,OF 200cos θ=.又在AOE ∆中,OE OAcos 253π==,故EF 200cos 25θ=-. 所以1(503400sin )(200cos 25)2S θθ=- 625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦. 令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦, ()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭. 又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数, 故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数. 因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数. 所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +. 【点睛】 本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题. 29.(1)2sin(2)6y x π=+;(2),,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(3)[)2,1- 【解析】【分析】(1)依据题意可得函数周期为π,利用周期公式算出ω,又函数过定点()0,1,即可求出ϕ,进而得出解析式;(2)利用正弦函数的单调性代换即可求出函数()f x 的单调区间;(3)利用换元法,设26t x π=+,结合2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象即可求出函数()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域 【详解】(1)因为函数()f x 的图象与x 轴的任意两个相邻交点间的距离为2π,所以函数()f x 的周期为π,由2T ππω==,得2ω=,又函数()f x 的图象过点()0,1,所以(0)1f =,即2sin 1=ϕ,而,所以6π=ϕ, 故()f x 的解析式为2sin(2)6y x π=+. (2)由sin y x =的单调增区间是2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦可得 222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+故故函数()f x 的单调递增区间是,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)设 26t x π=+,,02x π⎛⎫∈- ⎪⎝⎭,则5,66t ππ⎛⎫∈- ⎪⎝⎭ ,由2sin y t =在5,66t ππ⎛⎫∈- ⎪⎝⎭上的图象知,当2t π=- 时,min 2f =- 当t 趋于6π时,函数值趋于1,故()()2sin f x x ωϕ=+在,02π⎛⎫- ⎪⎝⎭的值域为[)2,1- . 【点睛】本题主要考查正弦型函数解析式的求法,正弦函数性质的应用,以及利用换元法结合图象解决给定范围下的三角函数的范围问题,意在考查学生数学建模以及数学运算能力.30.(1)13; (233 【解析】【分析】(1)先由ABC ∆的面积为23sin AD B且D 为BC 的中点,得到ABD ∆的面积;再由三角形的面积公式和正弦定理即可求出结果;(2)根据(1)的结果和6BC AB =,可求出sin BDA ∠和sin BAD ∠;再由余弦定理,即可求出结果.【详解】(1)由ABC ∆的面积为23sin AD B 且D 为BC 的中点可知:ABD ∆的面积为26sin AD B, 由三角形的面积公式可知:21sin 26sin AD AB BD B B⋅⋅=, 由正弦定理可得:3sin sin 1BAD BDA ∠⋅∠=, 所以1sin sin 3BAD BDA ∠⋅∠=, (2)6BC AB = ,又因为D 为中点,所以BC 2BD 6AB ==,即BD 3AB =,在ABD ∆中由正弦定理可得sin sin BD AB BAD BDA=∠∠,所以sin 3sin BAD BDA ∠=∠ 由(1)可知1sin sin 3BAD BDA ∠⋅∠=所以1sin ,sin 13BDA BAD ∠=∠=, ()0,BAD π∠∈ ∴ ,2BAD π∠=在直角ABD ∆中13AD BDA =∠=,所以1,3AB BD ==. BC 2BD =,BC 6∴=在ABC ∆中用余弦定理,可得22212cos 13621633,3b ac ac B b =+-=+-⨯⨯⨯=∴= 【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理以及面积公式,即可求解,属于常考题型.。

新高考一轮复习特训-三角函数-(含答案)高中数学-高考专区-一轮复习

2025届新高考一轮复习特训 三角函数一、选择题1.函数()sin 2f x =到()g x 的图象,则()g x =( )A.cos 4xB.cos x- C.cos 4x- D.sin x-2.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=( )3.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭,若()f x 在2π0,3⎡⎤⎢⎥⎣⎦上有两个零点,则ω的取值范围是( )A.5,42⎡⎫⎪⎢⎣⎭B.5,2⎡⎫+∞⎪⎢⎣⎭C.511,22⎡⎫⎪⎢⎣⎭D.5,42⎡⎤⎢⎥⎣⎦4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P -,则cos 2α=( )355.与1990-︒终边相同的最小正角是( )A.80︒B.150︒C.170︒D.290︒6.已知tan α==( )7.下列区间中,函数π()7sin 6f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A.π0,2⎛⎫⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭8.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭πT <<,且()y f x =的图象关于点3π,22⎛⎫⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( )D.3二、多项选择题9.设x ∈R ,用[]x 表示不超过x 的最大整数,则函数[]y x =被称为高斯函数;例如[]2.13-=-,[]2.12=,已知()sin sin f x x =+()()x f x =⎡⎤⎣⎦,则下列说法正确的是( )A.函数()g x 是偶函数B.函数()g x 是周期函数C.函数()g x 的图像关于直线x =()g x x =只有1个实数根10.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.()()πf x f x += B.()f x 的图象关于直线x =C.()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D.()f x 在5ππ,1212⎛⎫-⎪⎝⎭单调递增11.已知函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =A.函数π12f x ⎛⎫+ ⎪⎝⎭为奇函数B.函数()f x 在ππ,123⎡⎤⎢⎥⎣⎦上单调递增)()12x f x -=-D.函数()f x 的图象关于5π,012⎛⎫ ⎪⎝⎭中心对称三、填空题12.若tan θ==____________.13.如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别是直角三角形ABC 的斜边AB ,直角边AC ,BC ,点E 在以AC 为直径的半圆上,延长AE ,BC 交于点D .若5AB =,sin CAB ∠=DCE ∠=ABE 的面积是______.14.如图所示,终边落在阴影部分(含边界)的角的集合是__________.四、解答题15.如图,弹簧挂着的小球做上下振动,它在t (单位:s )时相对于平衡位置(静止时的位置)的高度h (单位:cm )由关系式πsin 4h A t ω⎛⎫=+ ⎪⎝⎭确定,其中0A >,0ω>,[0,)t ∈+∞.在一次振动中,小球从最高点运动至最低点所用时间为1s ,且最高点与最低点间的距离为10cm .(1)求小球相对于平衡位置的高度h (单位:cm )和时间t (单位:s )之间的函数关系式;(2)小球在0t s 内经过最高点的次数恰为50次,求0t 的取值范围.16.已知α=(1)写出与角α终边相同的角的集合;(2)写出在()4π,2π-内与角α终边相同的角.17.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,||πϕ<)图象的最高点为π,16⎛⎫⎪⎝⎭,距离该最高点最近的一个对称中心为5π,012⎛⎫⎪⎝⎭.(1)求()f x 的解析式及单调递减区间;(2)若函数()(0)2a g x f x a ⎛⎫=>⎪⎝⎭,()g x 的图象关于直线x =()g x 在π0,15⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的值.18.已知函数(1)化简;(2)若的值.19.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.cos αβ的值.()f x =()f x ()0f x =00π2π2cos(2)63x x ⎛⎫-+- ⎪⎝⎭参考答案1.答案:A解析:()sin 2f x=ππsin 2sin 2cos 242y x x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭的图象,再把横坐标缩短为原来的一半,得到()cos 4g x x =的图象故选:A.2.答案:A解析:因为()sin sincos +cos sin αβαβαβ+===cos 5cos sin αβαβ=,所以11sin cos cos sin 6cos sin ,cos sin ,sin cos 212αβαβαβαβαβ+====所以()5141sin sin cos cos sin .1212123αβαβαβ-=-=-==故选:A.3.答案:A解析:因为2π0,3x ⎡⎤∈⎢⎥⎣⎦,0ω>,所以ππ2ππ,3333x ωω⎡+∈+⎢⎣π[2π,3π)3+∈,所以5,42ω⎡⎫∈⎪⎢⎣⎭.4.答案:D解析:因为角α的始边与x 轴非负半轴重合,终边过点()1,2P -,所以cos α==所以2cos 22cos 1αα=-=故选:D.5.答案:C解析:因为199********-=-⨯-︒︒︒,199********-=-⨯+︒︒︒,所以与1990-︒终边相同的最小正角是170︒.故选C.6.答案:B,故选:B.7.答案:A解析:方法一:令πππ2π2π262k x k -+-≤+≤,k ∈Z ,得π2π2π2π33k x k -+≤≤+,k ∈Z .取0k =,则π3x -≤≤ππ2π0,,233⎫⎡⎤-⎪⎢⎥⎭⎣⎦Ü,所以区间π0,2⎛⎫⎪⎝⎭是函数()f x 的单调递增区间.方法二:当π02x <<时,,所以在π0,2⎛⎫⎪⎝⎭上单调递增,故A 正πx <<π6x <-<()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故B 错误;当πx <<π6x <-<()f x 在3ππ,2⎛⎫ ⎪⎝⎭上单调递减,故C 错误;当3π2π2x <<π6x <-<()f x 在3π,2π2⎛⎫⎪⎝⎭上不单调,故D 错误.8.答案:A T <<2ππω<<,解得23ω<<.因为()y f x =的图象关于点3π,22⎛⎫ ⎪⎝⎭中心对称,所以2b =,且,即,所以,又π4π4+=,解得ω=5π()sin 224f x x ⎛⎫=++ ⎪⎝⎭,所以π5ππ3πsin 2sin 2122242f ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭.故选A.9.答案:AD解析:选项A ,函数()f x 的定义域为R ,2tan 313tan 2αα+==-πππ663x -<-<()f x 3ππsin 224b ω⎛⎫++= ⎪⎝⎭3ππsin 024ω⎛⎫+= ⎪⎝⎭3πππ()24k k ω+=∈Z 2ω<<3ππ24ω<+<因为()()()sin sin sin sin f x x x x x f x -=-+-=+=,所以()f x 为偶函数,当0πx <≤时,()sin sin 2sin f x x x x =+=,当π2πx <≤时,()sin sin 0f x x x =-=,当2π3πx <≤时,()sin sin 2sin f x x x x =+=,…因为()f x 为偶函数,所以函数()f x 的图象如下图所示由()()g x f x =⎡⎤⎣⎦可知,在0x ≥内,当2πx k =+∈Z 时,()2g x =,当π2π2π6k x k +≤≤+2πx k ≠+∈Z 时,()1g x =,当2π2πk x k ≤<5ππ2π2π6k x k +<≤+,k ∈Z 时,()0g x =,因为()()()()g x f x f x g x -=-==⎡⎤⎡⎤⎣⎦⎣⎦,所以()g x 为偶函数,则函数()g x 的图象如下图所示显然()g x 不是周期函数,故选项A 正确,B 错误,C 错误;()g x x =,当()0g x =时,0x =方程有一个实数根,当()1g x =时,x =π212⎛⎫=≠ ⎪⎝⎭,方程没有实数根,当()2g x =时,πx =,此时()π02g =≠,方程没有实数根,()g x x =只有1个实数根,故D 正确;故选:AD.10.答案:AD解析:对于A,函数()π23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==,()()πf x f x +=,A正确;对于B,由πππ2π3266332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线x =对于C,由πππ2π32066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 的图象不关于点π,06⎛⎫⎪⎝⎭对称,C 错误;对于D,当5ππ,1212x ⎛⎫∈- ⎪⎝⎭时,πππ2,322x ⎛⎫+∈- ⎪⎝⎭,而正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,因此函数()f x 在区间5ππ,1212⎛⎫- ⎪⎝⎭上单调递增,D 正确.故选:AD.11.答案:ACD解析: 函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =ππ3π42k ϕ∴⨯+=+,k ∈Z ,ππ4k ϕ∴=-+,k ∈Z因为ππ22ϕ-<<,所以ϕ=π()sin(3)4f x x =-.函数πππ()sin 3sin 312124f x x x ⎡⎤⎛⎫+=+-= ⎪⎢⎥⎝⎭⎣⎦为奇函数,故A 正确;当[,123ππx ∈,π3π0,434x ⎡-∈⎤⎢⎥⎣⎦,函数()f x 没有单调性,故B 错误;若12|()()|2f x f x -=,因为[]()1,1f x ∈-,所以()()1211f x f x =⎧⎪⎨=-⎪⎩或()()1211f x f x =-⎧⎪⎨=⎪⎩,则12|x x -2π3=5π5ππsin 3sin 012124f π⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 图象关于5π,012⎛⎫⎪⎝⎭中心对称,故D 正确故选:ACD ..解析:由题意得:DCE ACE ∠+∠=π2CAE ACE +∠=所以DCE CAE ∠=∠,故sin sin DCE CAE ∠=∠=cos CAE ∠==因为sin CAB ∠=45CAB ∠=故()sin sin sin cos cos sin EAB CAE CAB CAE CAB CAE CAB∠=∠+∠=∠∠+∠∠343455=⨯=因为5AB =,ACB ∠=CAB ∠=3BC =,4AC =又因为AEC ∠=CAE ∠=,所以cos 4AE AC CAE =∠==的cos 11cos sin cos tan 131cos cos θθθθθθθ====+++所以ABE △的面积是11sin 522S AB AE EAB =⋅⋅∠=⨯=14.答案:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z 解析:终边落在阴影部分第二象限最左边的角为360120k ⋅︒+︒,k ∈Z ,终边落在阴影部分第四象限最左边的角为,k ∈Z .所以终边落在阴影部分(含边界)的角的集合是.故答案为:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z .15.答案:(1)π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭(2)1198,10044⎡⎫⎪⎢⎣⎭解析:(1)由题意得1052A ==.因为在一次振动中,小球从最高点运动至最低点所用时间为1s ,所以最小正周期为2s ,即2T ==π=,所以π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭.(2)由(1)知,当t =最高点.因为小球在0s t 0149504T tT +≤<+.因为2T =,所以01984t ≤<所以0t 的取值范围为1198,10044⎡⎫⎪⎢⎣⎭.16.答案:(1)π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z (2)36045k ⋅︒-︒36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z解析:(1)与角α终边相同的角的集合为π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z .(2)令π4π2π2π3k -<+<,得136k -<<又k ∈Z ,2k ∴=-,-1,0,∴在()4π,2π-内与角α终边相同的角是17.答案:(1)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭;单调递减区间为π2π[π,π]()63k k k ++∈Z(2)a =5=解析:(1)由题意解题思路知A =5ππ126=-=所以πT =,2π2πω==,所以()sin(2)f x x ϕ=+.将π,16⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+,得πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2π2k ϕ+=+,k ∈Z ,即π2π6k ϕ=+,k ∈Z ,又||πϕ<,所以ϕ=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭.π3π2π22π62k x k +≤+≤+,k ∈Z 2πππ3k x k +≤≤+,k ∈Z ,即()f x 的单调递减区间为π2π[π,π]()63k k k ++∈Z .(2)由(1)可得π()sin (0)6g x ax a ⎛⎫=+> ⎪⎝⎭,由()g x 的图象关于直线x =πππ62k =+,k ∈Z ,即51544a k =+,k ∈Z ,当π0,15x ⎡⎤∈⎢⎥⎣⎦时,ππππ,66156a ax ⎡⎤+∈+⎢⎥⎣⎦,由()g x 在[π0,15ππ62+≤,即5a ≤.又0a >且51544a k =+,k ∈Z ,所以a =5=.18.答案:(1)π()cos 23f x x ⎛⎫=+ ⎪⎝⎭(2)35-解析:(1)ππππcos 2cos 2π2tan 22333()ππtan 2πsin π233x x x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎛⎫⎛⎫-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππsin 2cos 2tan 2π333cos 2ππ3tan 2sin 233x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭==+ ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.(2)因为()00πcos 23f x x ⎛⎫=+= ⎪⎝⎭所以000ππππsin 2sin 2cos(2)6323x x x ⎡⎤⎛⎫⎛⎫-=+-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦0002πππcos 2cos 2πcos 2333x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故00π2π33sin 2cos 2631010x x ⎛⎫⎛⎫-+-=--=⎪ ⎪⎝⎭⎝⎭19.答案:(1)1-(2)3225-解析:(1)由题意得π2βα=+sin sin cos cos αβαβ=πsin sin sin cos 21πcos sin cos cos 2αααααααα⎛⎫+⎪⎝⎭==-=-⎛⎫+ ⎪⎝⎭.35α=,sin α=则πcos cos sin 2βαα⎛⎫=+=-= ⎪⎝⎭所以442sin cos 255αβ⎛⎫=⨯⨯-= ⎪⎝⎭。

三角函数高中试题及答案

三角函数高中试题及答案1. 已知函数 \( f(x) = \sin(x) \),求 \( f(\frac{\pi}{6}) \) 的值。

答案:\( f(\frac{\pi}{6}) = \sin(\frac{\pi}{6}) = \frac{1}{2} \)2. 计算 \( \cos(\frac{2\pi}{3}) \) 的值。

答案:\( \cos(\frac{2\pi}{3}) = -\frac{1}{2} \)3. 若 \( \sin(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \cos(\theta) \) 的值。

答案:\( \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5} \)4. 已知 \( \tan(\alpha) = 2 \),求 \( \sin(\alpha) \) 和\( \cos(\alpha) \) 的值。

答案:\( \sin(\alpha) = \frac{2}{\sqrt{1 + \tan^2(\alpha)}} = \frac{2}{\sqrt{1 + 2^2}} = \frac{2}{\sqrt{5}} \),\( \cos(\alpha) = \frac{1}{\sqrt{1 + \tan^2(\alpha)}} =\frac{1}{\sqrt{1 + 2^2}} = \frac{1}{\sqrt{5}} \)5. 求 \( \sin(30^\circ) \) 和 \( \cos(60^\circ) \) 的值。

答案:\( \sin(30^\circ) = \frac{1}{2} \),\( \cos(60^\circ) =\frac{1}{2} \)6. 若 \( \sin(\beta) = \frac{1}{4} \),求 \( \sin(2\beta) \)的值。

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。

答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。

答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。

答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。

由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。

因此,AB =10×sin0°/sin30° = 0/0 = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数测试1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是 ( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( ) A .32-B .32C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、如图,曲线对应的函数是( ) A .y=|sin x | B .y=sin|x | C .y=-sin|x |D .y=-|sin x |8、化简1160-︒2sin 的结果是 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( )A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11、函数sin(),2y x x Rπ=+∈是( ) A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数12、函数y =的定义域是( )A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分)13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 .14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 .16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、已知3tan 2απαπ=<<,求sin cos αα-的值.19、已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20、(10分)求函数21()tan 2tan 5f t x a x =++在[,]42x ππ∈时的值域(其中a 为常数)21、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位;④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

请用上述变换将函数y = sinx 的图像变换到函数y = sin (2x +3π)的图像.三角函数章节测试题一、选择题1. 已知sinθ=53,sin2θ<0,则tanθ等于 ( ) A .-43 B .43 C .-43或43 D .542. 若20π<<x ,则2x 与3sinx 的大小关系是 ( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关3. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2π,则P 是q 的( ) A .充分而不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4. 函数y =sinx·|cotx |(0<x<π)的大致图象是 ( )A B C D5. 若f(sinx)=3-cos2x ,则f(cosx)=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x 6. 设a>0,对于函数)0(sin sin )(π<<+=x xax x f ,下列结论正确的是 ( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值又无最小值 7. 函数f(x)=x xcos 2cos 1-( )A .在[0,2π]、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 8. y =sin(x -12π)·cos(x-12π),正确的是 ( )A .T =2π,对称中心为(12π,0) B .T =π,对称中心为(12π,0)xxxxC .T =2π,对称中心为(6π,0) D .T =π,对称中心为(6π,0) 9. 把曲线y cosx +2y -1=0先沿x 轴向右平移2π,再沿y 轴向下平移1个单位,得到的曲线方程为 ( )A .(1-y)sinx +2y -3=0B .(y -1)sinx +2y -3=0C .(y +1)sinx +2y +1=0D .-(y +1)sinx +2y +1=010.已知,函数y =2sin(ωx+θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 ( ) A .ω=2,θ=2πB .ω=21,θ=2πC .ω=21,θ=4π D .ω=2,θ=4π二、填空题11.f (x)=A sin(ωx+ϕ)(A>0, ω>0)的部分如图,则f (1) +f (2)+…+f (11)= .12.已sin(4π-x)=53,则sin2x 的值为 。

13.]2,0[,sin 2sin )(π∈+=x x x x f 的图象与直线y =k 有且仅有两个不同交点,则k 的取值范围是 .14.已知θθsin 1cot 22++=1,则(1+sinθ)(2+cosθ)= 。

15.平移f (x)=sin(ωx+ϕ)(ω>0,-2π<ϕ<2π),给出下列4个论断: ⑴ 图象关于x =12π对称 ⑵图象关于点(3π,0)对称⑶ 周期是π ⑷ 在[-6π,0]上是增函数 以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题: (1) .(2) . 三、解答题16.已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα222cos 1cos sin +-的值.17.设函数)()(c b a x f +⋅=,其中a =(sinx,-cosx),b =(sinx,-3cosx),c =(-cosx,sinx),x ∈R;(1) 求函数f(x)的最大值和最小正周期;(2) 将函数y =f(x)的图象按向量d 平移,使平移后的图象关于坐标原点成中心对称,求|d |最小的d .18.在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.19.设f (x)=cos2x +23sinxcosx 的最大值为M ,最小正周期为T .⑴ 求M 、T .⑵ 若有10个互不相等的函数x i 满足f (x i )=M ,且0<x i <10π,求x 1+x 2+…+x 10的值.20.已知f (x)=2sin(x +2θ)cos(x +2θ)+23cos 2(x +2θ)-3。

⑴ 化简f (x)的解析式。

⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数。

⑶ 在⑵成立的条件下,求满足f (x)=1,x∈[-π,π]的x 的集合。

三角函数章节测试题参考答案1. A2. D3. B4. B5. C6. B7. A8. B9.C 10.A 11. 2+22 12.25713. 1<k <3 14. 4 15. (1) ②③⇒①④ (2) ①③⇒②④ 16.解:(1) tan(4π+α)=ααtan 1tan 1-+=21 解得tan α=-31(2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα=6521tan cos 2cos sin 2-=-=-αααα17. 解:(1)由题意得f(x)=)(c b a +⋅=(sinx ,-cosx)·(sinx-cosx ,sinx -3cosx) =sin 2x -2sinxcosx +3cos 2x =2+cos2x -sin2x =2+2sin(2x +43π) 故f(x)的最大值2+2,最小正周期为ππ=22 (2) 由sin(2x +43π)=0得2x +43π=k π 即x =2πk -83π,k∈z 于是d =(83π-2πk ,-2) |d |=48322+⎪⎭⎫⎝⎛-ππk (k∈z)因为k 为整数,要使| d |最小,则只有k =1,此时d =(-8π,-2)为所示. 18.∵ sinA(sinB+cosB)-sinC =0∴ sinA sinB+sinA cosB =sinA cosB +cosA sinB ∵ sinB > 0 sinA=cosA ,即tanA =1 又0 < A<π ∴ A=4π,从而C =43π-B 由sinB +cos2C =0,得sinB +cos2(43π-B)=0 即sinB(1-2cosB)=0 ∴cosB=21 B =3π C =125π 19.)(x f =2sin(2x +6π)(1) M =2 T =π(2) ∵)(i x f =2 ∴ sin(2x i +6π)=1 2x i +6π=2kπ+2πx i =2kπ+6π (k∈z) 又0 < x i <10π ∴ k=0, 1, 2,…9 ∴ x 1+x 2+…+x 10=(1+2+…+9)π+10×6π =3140π 20.解:(1) f (x)=sin(2x +θ)+3cos(2x +θ) =2sin(2x +θ+3π)(2) 要使f (x)为偶函数,则必有f (-x)=f (x) ∴ 2sin(-2x +θ+3π)=2sin(2x +θ+3π)∴ 2sin2x cos(θ+3π)=0对x∈R 恒成立∴ cos(θ+3π)=0又0≤θ≤π θ=6π(3) 当θ=6π时f (x)=2sin(2x +2π)=2cos2x =1∴cos2x=21 ∵x∈[-π,π] ∴x=-3π或3π21.)(x f =2sin(2x +6π)+2 由五点法作出y =)(x f 的图象(略) (1) 由图表知:0<a <4,且a≠3 当0<a <3时,x 1+x 2=34π 当3<a <4时,x 1+x 2=3π (2) 由对称性知,面积为21(67π-6π)×4=2π.安全员作业指导书适用范围本指导书适用于公司各在建工程项目专职安全管理人员,特别是施工现场安全管理人员。

相关文档
最新文档