【免费下载】第一学期数理统计与随机过程研试题答案
《概率论与数理统计》习题及答案__第一章解析

《概率论与数理统计》习题及答案__第一章解析-1 ?《概率论与数理统计》习题及答案第一章1 .写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数 ? A 二’出现奇数点’;(2)将一颗骰子掷两次,记录出现点数? A ='两次点数之和为10', B 二’第一次的点数,比第二次的点数大2(3)一个口袋中有5只外形完全相同的球,编号分别为 123,4,5 ;从中同时取出3只球,观察其结果, A='球的最小号码为1';(4)将a,b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, A='甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A ='通过汽车不足 5台’,B 二’通过的汽车不少于 3台’。
解(1)S ={0,62,03?, €56}其中e = ‘出现 i 点’i =1211 丨,6,A ={e 1 ,e 3,65}。
S 二{(1,1), (1,2), (1,3),( :1,5),( 1,6) (2,1), (2,2), (2,3), (2, 4), (2,5), (2,6)(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)(4,1),(4, 2), (4,3), (4, 4), (4,5), (4,6)(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)(6,1), (6, 2), (6,3), (6, 4), (6,5), (6,6) };A = {(4,6), (5,5), (6, 4)} ;B 二{(3,1), (4, 2), (5,3), (6, 4)}。
(3) S ={(1,2,3), (2,3,4), (3,4,5), (1,3,4), (1,4,5), (1,2,4), (1,2,5)(2,3,5), (2,4,5), (1,3,5)}A 二{(1,2,3), (1,2,4), (1,2,5), (1,3,4), (1,3,5), (1,4,5)}(4) S ={(ab,-,-),(-, ab,-),(-,-,ab), (a,b,-), (a,-,b), (b, a,-),(b, -a), (-a, b,), (-,b,a)},其中’-’表示空盒; A 二{(ab,-,-),(a,b,-),(a, -, b), (b,a,-),(b,-, a)}。
概率论与随机过程习题答案

概率论与随机过程习题答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
解: ⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
解:{}18,,4,3 =S 。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
解: {}10,,4,3 =S 。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
解: {} ,11,10=S 。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。
(6) 甲乙二人下棋一局,观察棋赛的结果。
解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
随机过程考试试题及答案详解1

随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tC x C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s C st t X s X E t s R X +++==;协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
概率论与数理统计考研题库及答案

概率论与数理统计考研题库及答案概率论与数理统计考研题库及答案概率论与数理统计是数学的一个重要分支,它研究的是随机现象的定量描述和分析方法。
在考研中,概率论与数理统计是一个必考科目,掌握好这门学科的知识对于考研的成功至关重要。
为了帮助考生更好地备考,让我们来了解一下概率论与数理统计的考研题库及答案。
首先,我们来看一下概率论的考研题库。
概率论是研究随机现象的数量规律的数学分支,它包括了基本概念、随机变量、概率分布、数学期望、方差、协方差等内容。
在考研中,常见的概率论考题有:计算概率、条件概率、随机变量的分布函数、随机变量的数学期望和方差等。
接下来,我们来看一下数理统计的考研题库。
数理统计是研究统计规律的数学分支,它包括了统计数据的描述、统计推断、参数估计、假设检验等内容。
在考研中,常见的数理统计考题有:样本的描述统计量、参数估计、假设检验、方差分析、回归分析等。
为了更好地备考概率论与数理统计,我们需要掌握解题的方法和技巧。
首先,我们要熟悉概率论与数理统计的基本概念和公式,理解其含义和应用场景。
其次,我们要多做题,通过做题来巩固知识,提高解题能力。
同时,我们还可以参考一些考研辅导书籍和资料,里面通常会有一些经典的考题及其解析,可以帮助我们更好地理解和掌握知识点。
下面,我们来看一些概率论与数理统计的典型考研题及其答案。
1. 计算概率题:设A、B是两个事件,且P(A)=0.4,P(B)=0.6,P(A∪B)=0.7,求P(A∩B)。
解答:根据概率的加法公式,我们有P(A∪B)=P(A)+P(B)-P(A∩B),代入已知条件,得到0.7=0.4+0.6-P(A∩B),解得P(A∩B)=0.3。
2. 随机变量的分布函数题:设随机变量X的概率密度函数为f(x)={ 2x, 0<x<1{ 0, 其他求P(0.5<X<0.8)。
解答:由于概率密度函数是连续的,我们可以通过计算其积分来求解。
P(0.5<X<0.8)=∫[0.5,0.8]2xdx=[x^2]0.5^0.8=0.64-0.25=0.39。
2009-2010第一学期数理统计与随机过程(研)试题(答案)

北京工业大学2009-20010学年第一学期期末数理统计与随机过程(研) 课程试卷学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。
考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛骤等编第三版(或第二版)高等教育出版社。
可以看笔记、作业,但不允许看其它任何打印或复印的资料。
考试时允许使用计算器。
考试时间120分钟。
考试日期:2009年12月31日一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)?解:这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.解 85:0=μH ,85:1≠μH选统计量n s x T /0μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语成绩为85分.解:由极大似然估计得.2ˆ==x λ在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。
则}{k X P =有估计=i p ˆ ,7,0,!2}{ˆ2===-k k e k X P k=0ˆp三、某公司在为期10年内的年利润表如下:(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11年利润的预测区间(取050.=α)。
四、用三种不同材料的小球测定引力常数,实验结果如下:在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取显著性水平05.0=α, 计算结果保留三位小数。
北京工业大学2007-2008第一学期数理统计与随机过程(研)试题(答案)

北京工业大学2007-2008学年第一学期期末数理统计与随机过程(研) 课程试题标准答案(仅供参考) 一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布),(254σN ,在某日生产的零件中抽取10 件,测得重量如下:54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 问:该日生产的零件的平均重量是否正常(取显著性水平050.=α)?解:按题意,要检验的假设是54:0=μH ,因2σ未知,故用-t 检验法,由05.0=α,查t 分布表得临界值2622290250.)(.=t ,由样本值算得382514654.,.==t x因为26222.<t ,故接受假设0H ,即在05.0=α时,即可以认为该日生产的零件的平均重量与正常生产时无显著差异。
二、 (15分)在数 14159263.=π的前800位小数中, 数字93210,,,,, 各出现的次数记录如下检验这10个数字的出现是否是等概率的?(取显著性水平050.=α) 解 :检验假设)()(:x F x F H 00= )()(:x F x F H 01≠其中)(x F 0为等概率分布, 其分布律为.,,,,/}{9210101 ===k k X P由观测数据得.,,,,,921080800 ===i np n i 计算得1255804101145701312680122222222922.)()(==++++++++=-=∑=i ii i np np f χ查表得9191605029.).(=χ 因为9191612552..<=χ, 所以接受0H ,认为X 服从等概率分布. 三、(15分)下表给出了在悬挂不同重量(单位:克)时弹簧的长度(单位:厘米)求y 关于x 的一元线性回归方程,并进行显著性检验. 取显著性水平050.=α, 计算结果保留三位小数.根据计算结果可得:(1) 回归方程:X Y 1845023566..+=∧(2)检验回归方程:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=⨯⨯-⨯=-=====⨯⨯-==⨯-=235661845011871426571184508574549068390683426511871711868574541187124442...ˆˆ...ˆ....x by a S S b S S xxxy xy xx 于是得检验假设 0H :b=0, 1H : b ≠0 当 0H 为真时, 计算得:0791018450..=t 857454.=49.74查表得5706250250.)(.=t ,由于570627449..||>=t 。
浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A 所包含的样本点为(0,a ),(1,a ),(2,a )。
(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B 所包含的样本点为(0,a ),(0,b ),(0,c )。
2、解 (4)(1)ABBC AC 或ABC ABC ABC ABC ; (5)(2)ABBC AC (6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。
依题得,但,故A 、B 可能相容。
(2)错。
举反例 (3)错。
举反例 (4)对。
证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。
4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-= ;(3)A 不发生同时B 发生可表示为:AB ,又因为A B ,不相容,于是()()0.6P A B P B == ;5解:由题知,. 因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京工业大学2009-20010学年第一学期期末数理统计与随机过程(研) 课程试卷一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平)?050.=α解:这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值.052.2)27(025.0=t 由于,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语
052.2>T 2622.2>成绩为85分.二、某图书馆每分钟借出的图书数有如下记录:借出图书数 k 0 1 2 3 4 5 6≥7频数 f 8 16 17 10 6 2 1 0试检验每分钟内借出的图书数是否服从泊松分布? (取显著性水平)
050.=α解:由极大似然估计得.2ˆ==x λ在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。
则有估计
}{k X P ==i p ˆ ,7,0,!2}{ˆ2===-k k e k X P k =0ˆp 三、某公司在为期10年内的年利润表如下:
年份 1 2 3 4 5 6 7 8910利润 1.89 2.19 2.06 2.31 2.26 2.39 2.61 2.58 2.82 2.9
(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:(取);05.0=α(3)解释回归系数的意义;(4)求第11年利润的预测区间(取)。
050.=α四、用三种不同材料的小球测定引力常数,实验结果如下: 玻璃金铂6.678 6.683 6.6616.671 6.681 6.6616.675 6.676 6.6676.672 6.678 6.6676.674 6.679 6.664在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取显著性水平, 计算结果保留三位小数。
05.0=α五、某大型设备在任何长度为的时间区间内发生故障的次数是强度的t {}+∞<≤t t N 0),(λPoisson 过程,记设备无故障运行时间为。
T (1)求; (2)求自相关函数,写出推导过程;})(|)({4365==N N P ),(t s R N (3)求的概率分布函数; (4)已知设备已经无故障运行了10小时,求再无故障运行8T 小时的概率。
六、(15分)设是一个齐次马尔可夫链,其状态空间,一步转移概{,}n X n T ∈}4,3,2,1{,=I 率矩阵为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2/12/1004/12/14/1004/14/12/1002/12/1P (1)求;}4,2,1,3,2{54321=====X X X X X P (2)求;}1|3{2==+n n X X P (3)讨论此链是否具有遍历性,若是遍历的求其极限分布。
七、设X(t)是平稳随机过程,若,其中是在上服从均匀分)2cos()()(Θ+=t t X t Y πΘ)2,0(π布的随机变量且与X(t)独立,问是否是平稳随机过程?)(t Y 标准答案一.这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法.
解 85:0=μH ,85
:1≠μH 选统计量
n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得
n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值.052.2)27(025.0=t 由于,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语
052.2>T 2622.2>成绩为85分.七.解:设,
)(,)(τμx x R c t =)]2[cos()()]([)(Φ+∏==t E t t Y E t X Y μμ0)2cos(2120=+∏=⎰∏θθd t ττττ∏=-=-∏⋅=Θ++∏+-∏==2cos )()(2cos 21)(]}2)(2cos[21)(2cos 21{),()]()([),(X X X Y R t s s t R s t s t E s t R s Y t Y E s t R 其中所以,是平稳随机过程五 解: (=1/8。
}1|3{2==+n n X X P 。
中无零元,所以遍历3)3(P ⎩⎨⎧=+++=1),,,(),,,(.432143214321ππππππππππππP 的解,具体求解略平稳分布为以下方程组解得平稳分布为7/1,7/24321====ππππ。