电磁波第七章讲解
电磁场理论-导行电磁波

第7章 导行电磁波
上式给出了 g、 和 c 之间的关系。 c 由导波系统的截 面形状、尺寸和模式决定,可以根据具体导波结构求出。 对于 TEM 模, c ,所以 g
可见,TEM 模的波导波长等于填充相同介质的无界空 间中的波长。
(3) 相速
由vp
,可得
TE
和
TM
波相速:
vp
v
v
1 ( c )2
第七章 导行电磁波
第7章 导行电磁波
电磁波除了在无限空间传播外,还可以在某种特定 结构的内部或周围传输,这些结构起着引导电磁波传输 的作用,这种电磁波称为导行电磁波(简称导波),引导 电磁波传输的结构称为导波结构。导波结构可以由金属 材料构成,也可以由介质材料构成,还可以由金属和介 质共同构成。这里主要讨论在其轴线方向上截面形状、 面积以及所填充媒质均不变的均匀导波结构。无限长的 平行双导线、同轴线、金属波导、介质波导以及微带传 输线等等都是常用的导波结构。
0
,可得:
对 TM 模
Ez 0
对 TE 模,由
(k 2
2
)Et
j
ez
t Hz
t Ez
可得
(k
2
2
)n
Et
j
n ez t H z
n t Ez
j
n ez t H z
0
j n ez t H z
j (n t Hz )ez j
(n ez )t H z
j
H z n
ez
H z 0 n
第7章 导行电磁波
第7章 导行电磁波
1、纵向分量与横向分量的关系
导波结构中电磁场满足无源区域的麦克斯韦方程组:
H
第七章 时变电磁场

在电导率较低的介质中 Jd Jc
在良导体中
Jd Jc
麦克斯韦认为位移电流也可产生磁场,因此前述安 培环路定律变为
l H dlS(JJd)dS
现在学习的是第8页,共66页
即 l HdlS(JD t)dS
HJD t
上两式称为全电流定律。它表明时变磁场是由传导电
流、运流电流以及位移电流共同产生的。
位移电流是由时变电场形成的,由此可见,时变电场可以 产生时变磁场。
例 已知内截面为a b 的矩形金属波导中的时变电
磁场的各分量为
y
b a
z
EyEy0sin a πxcost (kzz) HxHx0sin a πxcost (kzz) HzHz0coa πsxsi nt(kzz)
x
其坐标如图所示。试求波导中的位移电流分布和波导内
壁上的电荷及电流分布。波导内部为真空。
③ 电通密度的法向分量边界条件与介质特性有关。
在一般情况下,由高斯定律求得 D2nD1n S
或写成矢量形式 en(D 2D S
式中, S 为边界表面上自由电荷的面密度。
现在学习的是第18页,共66页
两种理想介质的边界上不可能存在表面自由电
荷,因此
D1nD2n
对于各向同性的线性介质,得
1E1n2E2n
2E 2 tE 2 J t1
2H2H J
t2
在三维空间中需要求解 6 个坐标分量。
位函数方程为一个矢量方程和一个标量方程
2A2AJ
t2
2Φ2Φ t2
在三维空间中仅需求解 4 个坐标分量。
在直角坐标系中,实际上等于求解 1 个标量方程。
现在学习的是第31页,共66页
5. 位函数方程的求解 根据静态场结果,采用类比方法推出其解。
第7章电磁波的辐射

④ 取向: E 在与赤道面平行的平面内,而 H 在子午面。 这点与电基本阵子电磁场取向正好相反。
第七章 电磁波的辐射
例 7-2 计算长度 dl=0.1λ0的电基本振子当电流振幅值 为2 mA时的辐射功率和辐射电阻。 解:辐射功率:
Pr 40
2
Idl
2
o
2
15.791W
2
辐射电阻:
dl Rr 80 7.8957 0
第七章 电磁波的辐射
例7-3.将周长为0.1λ0的细导线绕成圆环,以构造磁基
本振子,求此磁基本振子的辐射电阻。
解: 此电基本振子的辐射电阻为
a 6 1 Rr 320 320 2 0.01 0 1.9739 10 2
Pr Pr r Pin Pr PL
PL表示天线的总损耗功率。通常,发射天线的损耗功率 包括:天线导体中的热损耗、介质材料的损耗、天线附 近物体的感应损耗等。
第七章 电磁波的辐射
4、增益系数:方向性系数表示天线辐射能量的集中程 度,辐射效率表征在转换能量上的效能。将两者结合起 来 ——天线在其最大辐射方向上远点某点的功率密度与 输入功率相同的无方向性天线在同一点产生的功率密度 之比为增益系数,是表现天线总效能的一个指标。
E ( , ) E max
式中|Emax|是|E(θ,φ)|的最大值。 电(磁)基本振子的方向性函数为:F ( , ) sin
第七章 电磁波的辐射
2、方向性系数:当辐射功率相同时,天线在最大辐 射方向上远区某一点的功率密度与理想无方向性天线在 同一位置处辐射功率密度之比,为此天线的方向性系数。
第七章 电磁波的辐射
第七章 电磁波的辐射
第七章导行电磁波

ez
ET
(7-2-15)
第七章 导行电磁波
21
对于TEM波,有
Z WTEM
0
r 120 r
r r
(7-2-16)
4.传输功率
导行波的复坡印廷矢量为
S
1
E
H*
,利用式(7-2-15)
2
可得,沿导行系统 + z 方向传输的平均功率为
P
1 2
Re
Σ
(E
H*
)
dΣ
1 2
Re
Σ
(ET
而在其内部不存在传导电流。因此,横向磁场必然要由纵向电场
所产生的位移电流 j Ez 来维系。而TEM波的纵向场为零,
所以不可能存在TEM波。 2.TE波和TM波 若电场在电磁波传播方向上的分量 Ez 0 ,即电场仅在横截
面内,则此种波型称为横电波,简称TE波或H波。 若磁场在电磁波传播方向上的分量 H z 0 ,即磁场仅在横截
2 c
, c
称为截止波长。
因此,随着工作波长的不同, 2 的取值有三种可能,即
2 0 、 2 0 和 2 0 。
第七章 导行电磁波
16
1) 2
0,即
c
,则
为实数,导波场表示为
E(u1,u2 , z) E(u1,u2 )e- z
H (u1,u2 , z) H (u1,u2 )e-j z
第七章 导行电磁波
8
矢量方程(7-1-7a)和(7-1-7c)的求解比较困难,因此 通常并不直接求解 ET 和 H T ,而是结合导行系统的边界条
件求解标量波动方程(7-1-7b)和(7-1-7d),得到纵向场分 量后,再利用场的横向分量与纵向分量之间的关系求得所有横 向分量。场的横向分量与纵向分量之间的关系式可由麦克斯韦 方程组导出。
第七章 原子发射光谱分析 (Atomic Emission Spectrometry知识分享

Ei—激发电位(J或eV)。
Iij
gi g0
AijhijN0ekEiT
原子发射光谱 法定量的依据
基态原子密度(N0):Iij正比于N0,N0正比于浓度。
激发电位(Excitation potential)
谱线强度与激发电位成负指数关系。在温度一定时,激发 电位越高,处于该能量状态的原子数越少,谱线强度越小。 激发电位最低的共振线通常是强度最大的线。
目前常用的光源有直流电弧(DC arc)、交流电 弧(AC arc)、高压火花(electric spark)及电感耦合等离 子体(ICP)。
1. 直流电弧
优点:电极头温度相对比较高(4000至7000K,与 其它光源比),蒸发能力强、绝对灵敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严重,故 不适宜用于高含量定量分析,但可很好地应用于矿石 等的定性、半定量及痕量元素的定量分析。
微波光谱法
4×10-7~4×10-10 核磁共振波谱法
高能辐射区
γ射线 能量最高,核能级跃迁 X射线 内层电子能级的跃迁
光学光谱区
(10nm-1000 μm)
紫外光 可见光
原子和分子外层电子能级的跃迁
红外光 分子振动能级和转动能级的跃迁
波谱区
微波 分子转动能级及电子自旋能级跃迁 无线电波 原子核自旋能级的跃迁
2.电磁波谱:电磁辐射按波长顺序排列就称光谱。
光谱区域 γ射线 X射线 远紫外光 近紫外光
光 可见光 学 近红外光 区 中红外光
远红外光
微波
无线电波
波长 5~140pm 10-3~10nm 10~200nm 200~380nm 380~780nm 0.78~2.5μm 2.5~50μm
第七章 均匀平面电磁波

4 107 120 1 109 36
第七章 均匀平面电磁波
四.传播特性 5.波印廷矢量
E0 cos(t kz ) S E H a x E0 cos(t kz ) a y 2 E0 az cos2 (t kz )
②等相位面:任一固定时刻,相位相同的点组成的面.
③等相位面方程:
t kz x 常数
④显然随t增加,等相位面必向Z增加方向移动,也即某 一定的E x 值向Z增加的方向移动,也即整个波形向Z增 加方向移动,即向+Z方向传播的简谐波.
第七章 均匀平面电磁波
二.所以波动方程及解:
⑤等相位面上各点相位相等,随时间推移和位置变化始终=常数 等相位面垂直于传播方向(+Z). 小结:
大小上是波阻抗的倍数关系。
(3)瞬时值形式: 将此式乘 e jt取实部可得时域关系式(略)
第七章 均匀平面电磁波
四.传播特性
根据波动方程的解及电磁场关系式不妨设: E a x E 0 cos(t kz ) E0 H a y cos(t kz ) a y H 0 cos(t kz )
2 2 1 T T f
第七章 均匀平面电磁波
四.传播特性
4.波阻抗 电场与磁场复振幅之比,称平面波的波阻抗
E0 k k H0
一般为复数,在理想媒质中,η为实数,即此时 E和H 的相位相同,
如果是真空/空气,则为
0
0 0
第七章 均匀平面电磁波
三.电磁场的关系
E x E x0 cos(t kz x ) Re[Ex e ] 其中 E E e jkz
电磁场与电磁波(第7章)1

ez Ex H x H y H z e y z (ex t e y t ez t ) z 0
由此可得
H x H z t t 0
H
x
H y Ex z t 和 H 均与时间无关,因此它们不是波动的部分,故可取
定义
无损耗介质是一种理想情况,在这里指电导率
0
平面波中的电场复数表示形式
E ex Ex ex E0 exp[i(t kz)]=ex E0 exp[i(t kz / )]
理解
电场矢量的方向是 x 方向,电磁波则是沿 z 方向传播
波速为
v / k 1/ k / v
0
及
Jc 0
H E B t t B 0或 H 0 H E t
一般媒质中的麦克斯韦方程组变为: D 0
( H ) ( D) ( E ) t t
7.3 平面电磁波在有损耗介质中的传播
定义
实际的介质都是有损耗的,因此,研究波在有损耗介质中的传 播具有实际意义。有损耗介质也称为耗散介质,在这里是指电 导率 0 ,但仍然保持均匀、线性及各向同性等特性。 有损耗介质中出现的传导 电流会使在其中传播的电 磁波发生能量损耗,从而 导致波的幅值随着传播距 离的增大而下降。研究表 明,传播过程中幅值下降 的同时,波的相位也会发 生变化,致使整个传输波 的形状发生畸变,如图所 示 平面波在有耗介质中的传播
1. 等效介电系数
对于随时间按照正弦规规律变化的电磁场,其复数形式的麦克斯韦方程中有
E i H H Jc i E E i E
电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ez (x, y, z)、Hz (x, y, z) —— 纵向分量
电磁场与电磁波
第7章 导行电磁波
8
横向场分量与纵向场分量的关系
直角坐标系中展开
Ez y
Ey
j H x
E
j H
Ez x
Ex
j H y
Ey x
Ex y
j H z
k 1 ( fcmn / f )2 k 1 ( / cmn )2
vpmn mn k
1 ( fcmn / f )2 k
波导波长
gmn
2π
k
2π
2π
1 ( fcmn / f )2 k
电磁场与电磁波
第7章 导行电磁波
20
波阻抗
ZTMmn
mn j
★ 波导内的电磁场为时谐场。波沿 + z 方向传播。
电磁场与电磁波
第7章 导行电磁波
7
1、场矢量 对于均匀波导,导波的电磁场矢量为
E(x, y, z) E(x, y)e z H (x, y, z) H (x, y)e z
场分量:
Ex (x, y, z) Ex (x, y)e z Ey (x, y, z) Ey (x, y)e z
电磁场与电磁波
第7章 导行电磁波
21
例7.2.1 在尺寸为 ab 22.86mm10.16mm的矩形波导中,
传输TE10 模,工作频率10GHz。
(1)求截止波长、波导波长和波阻抗;
(2)若波导的宽边尺寸增大一倍,上述参数如何变化?还能
传输什么模式?
(3)若波导的窄边尺寸增大一倍,上述参数如何变化?还能
其中:
mn
k2 cmn
k2
k2 cmn
2
矩形波导中的TEmn 波和TMmn 波的传播特性与电磁波的波数 k 和截止波数kcmn 有关。
当 kcmn > k 时,γmn为实数, emn为z 衰减因子
—— 相应模式的波不能在矩形波导中传播。
波阻抗
ZTMmn
mn j
电磁场与电磁波
第7章 导行电磁波
15
所以TE波的场分布
Hz
(x,
y,
z)
Hm
cos(
mπ a
x)
cos( nπ b
y)e
z
Hx (x,
y,
z)
kc2
mπ a
Hm
sin( mπ a
x) cos( nπ b
y)e z
H y (x,
y, z)
kc2
nπ b
Hm
cos( mπ a
x) sin( nπ b
kc2 )Hz (x,
y)
0
y
z
边界条件
H z x
|x0
0
H z x
|xa 0
xa
b
O
H z y
|y0
0
H z y
|yb 0
其解为
Hz
(x,
y)
Hm
cos( mπ a
x) cos(nπ b
y)
kcmn
( mπ)2 ( nπ)2
a
b
m 0,1,2,3, n 0,1,2,3,
传输什么模式?
解:(1)截止波长 c10 2a 2 22.86 45.72 mm
fc10 2a
1
0 0
3108 2 22.26103
6.56109 Hz
g10
0
1 ( fc10
f )2
电磁场与电磁波
第7章 导行电磁波
16
3. 矩形波导中的TM 波和TE波的特点
m 和n 有不同的取值,对于m 和n 的每一种组合都有相应的截 止波数kcmn 和场分布,即一种可能的模式,称为TMmn 模或 TEmn 模;
不同的模式有不同的截止波数kcmn ;
由于对相同的m 和n,TMmn 模和TEmn 模的截止波数kcmn 相 同, 这种情况称为模式的简并;
j
kc2
mπ a
mπ Em cos( a
x) sin( nπ b
y)e z
Hz (x, y, z) 0
m 1,2,3,
n 1,2,3,
电磁场与电磁波
第7章 导行电磁波
14
2. 矩形波导中的TE波的场分布
对于TE波,Ez= 0,波导内的电磁场由Hz 确定
方程
(
2 x2
2 y2
mn
k
1 ( fcmn f )2
结论:
j
Z TEmn mn
mn k
1 ( fcmn
f )2
当工作频率 f 大于截止频率fcmn 时,矩形波导中可以传 播相 应的TEmn 模式和TMmn 模式的电磁波;
当工作频率 f 小 于或等于截止频率fcmn时,矩形波导中不能 传播相 应的TEmn 模式和TMmn 模式的电磁波。
1 kc2
(
Ez x
j
H z y
)
Ey
1 kc2
(
Ez y
j
H z x
)
kc2 2 k 2
电磁场与电磁波
第7章 导行电磁波
9
导波的分类
如果 Ez= 0, Hz= 0,E、H 完全在横截面内,这种波被称为 横电磁波,简记为 TEM 波,这种波型不能用纵向场法求解;
Hx (x, y, z) H x (x, y)e z H y (x, y, z) H y (x, y)e z
Ez (x, y, z) Ez (x, y)e z
Hz (x, y, z) H z (x, y)e z
其中:
Ex (x, y, z)、Ey (x, y, z)、H x (x, y, z)、H y (x, y, z) —— 横向分量
a
k y
nπ b
g( y)
C sin( nπ
y)
b
m 1,2,3, n 1,2,3,
故
Ez (x,
y)
f
( x) g ( y)
Em
sin(
mπ a
x)sin( nπ b
y)
k2 cmn
kx2m
k
2 yn
( mπ )2 a
( nπ )2 b
截止波数只与波导 的结构尺寸有关。
直角坐标系中展开
H z y
Hy
j Ex
H
j E
H z
x
Hx
j Ey
H y x
H x y
j Ez
Hx
1 kc2
( j
Ez y
H z x
)
Hy
1 kc2
(
j
Ez x
H z y
)
Ex
问题,即
f
(x)
k x2
f
(x)
0
f (0) 0, f (a) 0
g
(
y)
k
2 y
g
(
y)
0
g(0) 0, g(b) 0
kx2
k
2 y
kc2
两个固有值问题的解为一系列分离的固有值和固有函数:
kx
mπ a
f
(x)
Asin( mπ
x)
第7章 导行电磁波
6
7.1 导行电磁波概论
分析均匀波导系统时,
做如下假定:
★ 波导是无限长的规则直波 导,其横截面形状可以任 意,但沿轴向处处相同, 沿z 轴方向放置。
★ 波导内壁是理想导体,即 = 。
★ 波导内填充均匀、线性、各向同性无耗媒质,其参数 、 和 均为实常数。
★ 波导内无源,即 =0,J =0。
2 y2
kc2 )Ez (x,
y)
0
边界条件 Ez |x0 0 Ez |xa 0
y
b
z
Ez |y0 0 Ez |yb 0
xa
O
利用分离变量法可求解此偏微分方程的边值问题。
电磁场与电磁波
第7章 导行电磁波
12
设 Ez 具有分离变量形式,即 Ez (x, y) f (x)g( y) 代入到偏微分方程和边界条件中,得到两个常微分方程的固有值
k
j
1 (kcmn k)2
j
j
Z TEmn mn
k
1 (kcmn
k)2
纯虚数
电磁场与电磁波
第7章 导行电磁波
18
当 kcmn = k 时,γmn= 0,
—— 相应模式的波也不能在矩形波导中传播。
由 kcmn k 定义
截止角频率:cmn
kcmn
电磁场与电磁波
第7章 导行电磁波
1
电磁场与电磁波
第7章 导行电磁波
2
导行电磁波 —— 被限制在某一特定区域内传播的电磁波
导波系统 —— 引导电磁波从一处定向传输到另一处的装置