材料力学_第八章截面核心汇总.
《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
材料力学截面的几何性质课件

目录
• 截面的基本性质 • 截面的二次矩 • 截面的抗弯截面系数 • 截面的抗扭截面系数 • 材料力学截面的应用
01 截面的基本性质
截面的面积
面积
截面面积是二维平面图形被截后,与 原图形相比增加的面积。对于矩形、 圆形、三角形等简单形状,截面面积 可以通过几何公式直接计算。
的刚度和稳定性。
截面惯性矩
截面惯性矩是衡量截面抗弯刚度 的指标,对于承受弯矩的构件, 选择具有较大惯性矩的截面可以
减少挠度和转角。
截面抵抗矩
截面抵抗矩是衡量截面抗剪切能 力的指标,对于承受剪力的构件 ,选择具有较大抵抗矩的截面可
以增加构件的承载能力。
工程设计中的应用
桥梁设计
在桥梁设计中,需要考虑梁的截面尺寸、材料类型和截面形式等 因素,以确保桥梁具有足够的强度和刚、单位等因素,以确保数 据处理结果的准确性和可靠性。
1.谢谢聆 听
根据微面积和其对应的主 轴方向余弦,计算出截面 二次矩。
主轴的确定
根据计算出的惯性矩,找 出三个主轴的方向余弦和 角度。
实例分析
圆截面
圆截面的二次矩为常数, 且各主轴与截面垂直,说 明圆截面在弯曲时没有翘 曲的趋势。
矩形截面
矩形截面的二次矩与宽度 的平方成正比,说明矩形 截面有较好的抗弯能力。
工字形截面
工字形截面的二次矩比同 样面积的矩形截面小,但 抗弯能力仍高于同样重量 的实心杆件。
03 截面的抗弯截面系数
定义与性质
01
抗弯截面系数是截面对其轴线的惯性矩除以截面的面积 得到的数值,用来度量截面在弯矩作用下抵抗变形的能 力。
02
不同形状的截面有不同的抗弯截面系数,如圆截面为1 ,矩形截面为1.13,工字形截面为1.44等。
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学 第八章 组合变形

度理论校核此杆的强度。 解:①外力分析
y ZC
Mx z P2z
P2y 400N YA 457N Z A 20.1N
P2Z 70.5N YC 257N Z C 90.6N
YA A 150
T M x 120Nm
B 200
C YC D 100
P2y
x
y
M Z (Nm) M (Nm)
建立图示杆件的强度条件
解:①外力向形心
x A 150 P1 T A 150 B 200 C T B 200 C 100 D 简化并分解
z
z P2z D P2y x 弯扭组合变形 y
100
M Z (Nm) M (Nm)
y
②每个外力分量对应 x 的内力方程和内力图 X
(Nm) My (Nm) Mz
x X
125 37.8 162.8MPa
孔移至板中间时
N 100 103 2 A 631.9mm 10(100 x) x 36.8mm 6 σ max 162.8 10
偏心拉伸或压缩:
CL11TU11
任意横截面上的内力: N P,M y Pa,M z Pb
第八章 组合变形
§8–1 组合变形和叠加原理
§8–2 拉(压)弯组合 §8–4 偏心压缩 截面核心 §8-4 弯曲与扭转
§8–1组合变形和叠加原理
一、组合变形 :在复杂外载作用下,构件的变形会包含几种简
单变形,当几种变形所对应的应力属同一量级时,不能忽略
之,这类构件的变形称为组合变形。 P P
弯曲与扭转
P1
80ºP2 z
x A 150 B 200 C 100 D
y
材料力学课件第8章组合变形zym

§8—4 扭转与弯曲的组合 一、圆截面杆弯扭组合 实例: (一)实例: 已知:塑性材料轴尺寸,传动力偶Me。 已知:塑性材料轴尺寸,传动力偶 。 试建立轴的强度条件。 试建立轴的强度条件。 解: 1、确定危险点: 、确定危险点: (1)外力分析 ) F 计算简图: ①计算简图: Fτ 由 ∑ M x = 0 得: FD = Me 2 可确定F 由F可确定 τ。 可确定 外力分解: ②外力分解: 变形判断: ③变形判断: AB段扭转变形,BE段弯扭组合变 段扭转变形, 段弯扭组合变 段扭转变形 形,EC段弯曲变形。 段弯曲变形。 段弯曲变形
解: 、确定各边为中性轴时的压力作用点: 1、确定各边为中性轴时的压力作用点: b2 h2 2 iy = , iz2 = 12 12 h az = ∞ AB截距: a y = − , 截距: 截距 2 h2 iz2 12 = h , zF = 0 F作用点 坐标: yF = − = − 作用点a坐标 作用点 坐标: h 6 ay − 2 同样确定b,c,d点。 同样确定 点 2、连线 确定截面核心。 、连线a,b,c,d确定截面核心。 确定截面核心 解:
3 由: W ≥ M max = 12 ×10 N ⋅ m 6
[σ ]
100 × 10 Pa
= 12 × 10−5 m3 = 120cm3
查表选定16号工字钢。 查表选定 号工字钢。 号工字钢 (2)组合变形校核计算: )组合变形校核计算: 16号工字钢:W=141cm3,A=26.1cm3 号工字钢: 号工字钢
2、应力状态分析 、 均为单向应力状态 单向应力状态。 均为单向应力状态。
'' σ A = σ ′ +σ A =
F (0.425m) F × (0.075m) + −3 2 15 ×10 m 5310 ×10−8 m 4
材料力学截面的几何性质课件

截面的对称性
截面可以是对称的或非对称的。
对称截面是指沿中心线对称的截面,如圆形、正 方形等。
非对称截面是指不沿中心线对称的截面,如椭圆 形、三角形等。
截面的重心
重心是物体质量的集中点,对于规则形状的物体,重心位置可以通过几何计算得 到。
对于截面,重心是截面质量的集中点,其位置可以通过计算截面的面积和质量得 到。
材料力学的发展历程
总结词
材料力学的发展经历了多个阶段,从最早的实验观察到现代的理论建模和计算机模拟。
详细描述
最初的材料力学研究主要基于实验观察和经验总结,随着数学和物理学的发展,人们开始建立更精确 的理论模型,并使用计算机进行模拟和分析。这些理论模型和方法在解决复杂工程问题方面发挥了重 要作用。
02
意义
主惯性矩是衡量截面抗弯和抗扭能力的一个重要参数,其 值越大,抗弯和抗扭能力越强。
04
材料力学截面的弯曲性质
弯曲的定义
弯曲是指物体在力的作用下发 生形变,其中物体的一部分相 对于另一部分发生转动。
弯曲变形通常发生在梁、柱等 细长结构中,其中截面上的应 力分布不均匀。
弯曲变形可以通过施加外力或 重力等作用力引起,也可以由 热膨胀、收缩等因素引起。
扭转的变形能
1 2
变形能
物体在受到外力作用时,由于发生变形而储存的 能量称为变形能。
扭转变形能
物体在扭转变形时,由于变形而储存的能量称为 扭转变形能。
3
扭转变形能的计算
扭转变形能可以通过计算截面上的剪切应变和剪 切胡克常数来计算。
扭转的稳定性
01
稳定性
在材料力学中,稳定性是指物体在外力作用下保持其平衡状态的能力。
剪切变形能
工程力学材料力学知识要点2

第八章组合变形8.1知识要点一、两相互垂直平面内的弯曲1、横截面上的正应力任一横截面上任一点C(y,z)处由和引起的正应力为(8-1)2、中性轴的位置中性轴方程为(8-2)其与y轴的夹角为(8?3)(d)若材料的许用拉应力与许用压应力相等,其强度条件可写成:(8?4)式中:,(8-5)二、横向力和轴向拉力共同作用下的组合变形在轴向拉力和横向力共同作用下(图8-2),横截面任一点处的正应力,可按下式计算:(8?6)正应力强度条件为:(8?7)三、偏心拉伸(压缩)当杆件所受的外力,其作用线与杆件的轴线平行而不重合时,引起的变形称为偏心拉伸(压缩)(图8-3)。
1、横截面上的正应力在杆端A(yF, zF)点处作用平行于杆轴线的拉力F,则杆上任一横截面上E (y,z)点处的正应力为(8?8)2、中性轴位置中性轴的方程为:(8-9)中性轴在两坐标轴上的截距为,(8-10)3、正应力强度条件危险截面上离中性轴最远的点D1和D2就是危险点(图8-4)。
这两点处的正应力分别是横截面上的最大拉应力和最大压应力:(8-11)若材料的许用拉应力和许用压应力相等,可以建立正应力强度条件(8-12)4、截面核心当外力作用点位于截面形心附近的一个区域内时,中性轴不与截面相交,这个区域称为截面核心(图8-5)。
由与截面周边相切的中性轴的截距,可以计算相应截面核心边界上一点的坐标(),,(8-13)四、扭转与弯曲变形若危险截面上的扭矩为,弯矩为,则该截面上的最大正应力和最大切应力分别为:,(8-14)危险点处为平面应力状态,其主应力为(8-15)对于工程中受弯扭共同作用的圆轴大多是由塑性材料制成的,所以应该用第三或第四强度理论来建立强度条件。
如果用第三强度理论,则强度条件为:(8-16)如果用第四强度理论,则强度条件为:(8?17)对于圆截面,有WP=2Wz,则用第三强度理论,其强度条件为:(8-18)用第四强度理论,其强度条件为:(8-19)六、连接件的实用计算法1、剪切的实用计算在工程中,剪切变形采用实用计算的方法,假定剪切面上切应力是均匀分布的。
完整版材料力学各章重点内容总结

完整版材料力学各章重点内容总结材料力学各章重点内容总结第一章绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章轴向拉压、轴力图:注意要标明轴力的大小、单位和正负号。
、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
、轴向拉压时横截面上正应力的计算公式: F N注意正应力有正负号,A拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:注意角度是指斜截面与横截面的夹角七、线应变一-没有量纲、泊松比一没有量纲且只与材料有关、l胡克定律的两种表达形式: E , I 出注意当杆件伸长时I 为正,EA缩短时I 为负。
八、低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p,弹性极限e )、屈服阶段(屈服极限s )、强化阶段(强度极限 b )和局部变形阶段会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线cos 2 ,sin2五、轴向拉压时横截面上正应力的强度条件F N,maxmaxA六、利用正应力强度条件可解决的三种问题: 1?强度校核maxF N ,maxA定要有结论 2.设计截面A F N,max3.确定许可荷载F^max A180八、圆轴在扭转时的刚度条件maxT maxGI p(注意单位:给出的许用单九、衡量材料塑性的两个指标:伸长率耳100 及断面收缩率 A-A 1100,工程上把 5 的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
对没有明显屈服极限的塑性材料,如何来确定其屈服指标?见课本第24页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
z
z (4a a)(2a 2a) (2a 4a)(a)
(4a a) (2a 4a)
4a 6a
* C
z
2a
4a
y1
(b)
a
2. 确定形心主惯性轴,并求形心主惯性矩 z
4a 6a
由于z轴为对称轴,且y、z轴的交 点过形心,故图c中y轴和z轴的为形 心主惯性轴。
A Iz
Iy
中性轴方程 az
ay 中性轴 z
F A
FyF y0 Aiz2
FzF z0
Ai
2 y
F (1 A
yF y0 iz2
z
F z0
i
2 y
)
0
y
F(zF , yF )
1
yF y0 izy
0
中性轴在形心主惯性轴y、z上的截距
ay
iz2 yF
az
i
2 y
zF
* C
y
形心主惯性矩Iy为
4a
Iy
a(4a)3 [
12
(a
4a) (2a)2]
4a(2a)3 [
12
(4a
(c)
2a) a2 ]
32a4
Iz
4a(a)3 12
2a(4a)3 12
11a4
3. 计算横截面上的内力
将F力向形心C简化,可得杆的内力分别为 FN=F,My=F·2a, Mz=F·2a
,
az
i
2 y
zF
yi
yF
iz2 ay
zi
zF
i
2 y
az
(1) 圆截面的截面核心 由对称性:截面核心也应该是圆
ay1 d / 2, az1
i
2 y
iz2
Iy A
Iz A
πd 4 / 64 πd 2 / 4
d2 16
y1
iz2 a y1
d2 d
a z
4a 6a
* C
y
4a
(c)
4. 确定最大拉应力和最大压应力作用点位置并计
算应力值
a z D2
t,max
FN A
M y 2a Iy
Mz 2a Iz
151 F 264 a2
-
4a 6a
c,max
FN A
M y 4a Iy
Mz (0.5a) Iz
17 66
F a2
* C
ry=-iz2/ay,rz=-iy2/az
中性轴编号
中性轴
ay
的截距
/m
az
对应的截面核
心边界上的点
截面核 心边界 上点的
y
iz2 ay
坐标值 /m
z
i
2 y
az
①
②③
④
⑤
⑥
0.45 ∞ -0.45 -0.45 ∞ 0.45
-∞ -0.40 ∞
1
2
3
1.08 0.60 1.08
4
5
6
i
2 y
az1
0
中性轴的方程
1
zF
i
2 y
z0
yF iz2
y0
0
B点的坐标yB、zB代入
1
zB
i
2 y
zF
yB iz2
yF
0
对应的F点的坐标满足直线方 程
例题 8-4
试确定图示T形截面
的截面核心边界。图中y、
z轴为形心主轴。已知:
截面积A=0.6 m2;惯性
矩Iy=48×10-3 m4, Iz=27.5×10-3 m4;惯性 半径的平方
/16 /2
d 8
z1
i
2 y
az1
0
(2) 矩形截面的截面核心
i
2 y
Iy A
b3h / 12 bh
b2 12
iz2
Iz A
bh3 / 12 bh
h2 12
截距
a y1
h, 2 y1
az1 iz2
a y1
h2 / 12 h/2
h 6
z1
D1 4a
y
+
Myz Iy
+
- Mzz
Iz
(d)
III、(偏心拉、压问题的)截面核心:
土建工程中的混凝土或砖、石偏心受压柱,往往不允许横 截面上出现拉应力。这就要求偏心压力只能作用在横截面 形心附近的某个范围内;这个范围称之为截面核心(core of section)。
ay
iz2 yF
i
2 y
8 102 m2
,
。iz2 4.58 102 m2
解: 1. 计算截面核心边界各点的坐标 图中的6条直线①,②,…,
⑥便是用以确定该T形截面核 心边界点1,2 …,6的中性轴; 其中①②③⑤分别与周边AB、 BC、CD、FG相切,④和⑥ 分别为 DF 和 GA。根据它们 各自在形心主惯性轴上的截 距计算所对应的偏心压力作 用点的位置ry、rz列表如下:
组合变形的分析方法:在小变形和线弹性情况下,可先 分别计算每一种基本变形情况下的应力和变形,然后采 用叠加原理计算所有载荷对弹性体系所引起的总应力和 总变形。
F
Ft
Ft
z
l/2 l/2
y
II、偏心拉(压) (拉:F 0 ; 压: F 0)
xF
xF
z
My
y
z y
Mz
F
My
MZ
' F
A
'' Myz Iy
''' Mzy Iz
z
(yF , zF)
F A
Myz Iy
M z y I z
y
max
F A
Mz Wz
My Wy
min
F A
Mz Wz
My Wy
中性轴任意点(y0,z0)满足:
F Mz y0 M yz0 0
横截面上危险点的位置
横截面有外棱角的杆件受偏心拉伸时,危险点必定在横截 面的外棱角处。
例题8-3
试求图示杆件横截面上的最大拉应力和最大压 应力。外力F与杆件的轴线平行。
(a)
解: 轴向外力F未通过横截面形心,故杆件为偏心拉伸。
1. 确定横截面形心的位置 横截面的形心C必位于对称轴z上,只需计算形心
-0.102 0 0.102 0.102 0 -0.102 0 0.20 0 -0.074 -0.133 -0.074
2. 确定截面核心边界
中性轴绕一点旋转时,相应 的外力作用点的移动的轨迹 为一直线的关系,将六个点 的相邻两点用直线连接,即 得截面核心的边界。
• 8-6 • 8-11(b)
作业