材料力学拉伸实验
金属材料拉伸实验

金属材料拉伸实验金属材料的力学性能是工程材料中非常重要的一部分,而拉伸实验是评价金属材料力学性能的重要手段之一。
本文将对金属材料拉伸实验的原理、方法和实验结果进行详细介绍。
1.原理。
金属材料的拉伸实验是通过施加拉伸力,使试样产生塑性变形,从而研究金属材料的力学性能。
在拉伸实验中,试样会逐渐发生颈缩,最终断裂。
通过实验中得到的应力-应变曲线,可以分析出金属材料的屈服强度、抗拉强度、延伸率等力学性能指标。
2.方法。
进行金属材料拉伸实验,首先需要准备好金属试样。
在实验过程中,需要使用拉伸试验机,将试样夹紧在拉伸试验机上。
然后,施加拉伸力,记录下试样的载荷和变形数据。
在实验过程中,需要注意保持试样的表面光洁,避免表面缺陷对实验结果的影响。
3.实验结果。
通过拉伸实验得到的应力-应变曲线可以反映出金属材料的力学性能。
曲线的起始部分为弹性阶段,此时金属材料受到的应力与应变呈线性关系。
当应力超过一定数值时,金属材料进入塑性阶段,此时应力与应变不再呈线性关系,试样开始产生颈缩。
最终,在应力达到最大值时,试样发生断裂。
4.分析与讨论。
通过实验结果,可以计算出金属材料的屈服强度、抗拉强度、延伸率等力学性能指标。
这些指标对于工程设计和材料选型具有重要的指导意义。
另外,通过对不同金属材料进行拉伸实验,可以比较它们的力学性能,为工程实践提供参考。
5.结论。
金属材料拉伸实验是研究金属材料力学性能的重要手段,通过实验可以得到金属材料的应力-应变曲线,分析出其力学性能指标。
这些指标对于工程设计和材料选型具有重要的指导意义。
综上所述,金属材料拉伸实验是评价金属材料力学性能的重要手段,通过实验可以得到金属材料的力学性能指标,为工程实践提供重要参考。
拉伸试验实验报告

拉伸试验实验报告
实验目的:了解和掌握拉伸试验的基本原理和方法,并研究不同材料在拉伸过程中的力学行为。
实验设备:拉伸试验机、标准试样、测力计、变形计、计算机等。
实验步骤:
1. 将标准试样夹在拉伸试验机的夹具上,确保试样夹紧并位于试验机的中心线位置。
2. 将测力计与试样上的载荷柱连接,使其垂直于试样表面。
3. 连接变形计,将其固定在试样上,并与计算机连接。
4. 设置试验机的拉伸速度和加载速率。
5. 启动试验机,开始拉伸试验。
6. 当试验机加载试样时,测力计会测量试样上的拉伸力,并将数据传输给计算机。
同时,变形计会测量试样的变形,并将数据传输给计算机。
7. 根据试验机的拉伸速度和加载速率,计算机会实时记录试样的力学行为,如应力、应变、变形等数据。
8. 试验过程中,可以通过计算机监测试样的应力-应变曲线,并分析试样的力学性能。
实验结果:
根据实验数据,可以计算出试样的应力-应变曲线,并得到一些力学参数,如屈服强度、抗拉强度、延伸率等。
同时,还可以观察试样在拉伸过程中的断裂形态,分析试样断口的特征,判断材料的韧性和脆性,以及可能存在的缺陷。
实验结论:
通过拉伸试验,可以获得材料在拉伸过程中的力学行为,如材料的强度、韧性、塑性等参数。
根据实验结果,可以评估材料的适用性,并为材料的设计和应用提供参考。
同时,拉伸试验也是评价材料力学性能的重要手段之一,对于材料研究和工程应用具有重要意义。
材料力学实验报告低碳钢拉伸

材料力学实验报告低碳钢拉伸引言在材料力学实验中,拉伸实验是一种常见且重要的方法。
通过对材料的拉伸试验,我们可以得到材料在受力下的应力-应变关系,从而了解材料的力学性能和变形行为。
本实验旨在通过对低碳钢的拉伸试验,研究其拉伸性能和断裂特征。
实验目的1.测量低碳钢的拉伸强度、屈服强度、延伸率和断裂伸长率。
2.分析低碳钢的应力-应变曲线,并探讨其力学性能。
3.观察低碳钢在拉伸过程中的断裂特征。
实验原理1. 拉伸强度拉伸强度是指材料在拉伸过程中最大的抗拉应力。
在拉伸试验中,拉伸强度可以通过断裂之前所承受的最大载荷除以原始横截面积来计算。
2. 屈服强度屈服强度是指材料开始出现塑性变形时所承受的应力。
在拉伸试验中,材料会先经历线弹性阶段,然后进入塑性阶段。
屈服强度可以通过应力-应变曲线的0.2%偏移法来确定。
3. 延伸率延伸率是指材料在断裂时的伸长程度。
它是通过初始标距和断裂标距的比值乘以100%来计算的,常用来评估材料的塑性。
4. 断裂伸长率断裂伸长率是指材料在断裂前的伸长程度。
它是通过初始标距和断裂标距的比值乘以100%来计算的,常用来评估材料的韧性。
实验步骤1.制备低碳钢试样,并对其尺寸进行测量。
2.将试样固定在拉伸试验机上,并设置好拉伸速度。
3.开始拉伸试验,记录加载过程中的载荷和试样伸长。
4.当试样断裂后,停止拉伸试验,并记录试样断裂前的标距。
5.根据实验数据计算低碳钢的拉伸强度、屈服强度、延伸率和断裂伸长率。
实验结果与分析1. 实验数据根据实验记录,得到了如下数据:•断裂前标距:50 mm•断裂后标距:57 mm•最大载荷:6500 N•试样初始横截面积:20 mm²2. 计算结果根据上述数据,我们可以得到以下结果:•拉伸强度 = 最大载荷 / 初始横截面积•屈服强度 = 0.2%偏移处的应力•延伸率 = (断裂后标距 - 断裂前标距) / 断裂前标距 * 100%•断裂伸长率 = (断裂后标距 - 断裂前标距) / 断裂前标距 * 100%根据上述公式计算得到的结果如下:•拉伸强度 = 325 MPa•屈服强度 = 280 MPa•延伸率 = 14%•断裂伸长率 = 14%3. 分析与讨论由于低碳钢具有良好的可塑性和强韧性,因此在拉伸过程中,材料会经历明显的塑性变形和延展。
拉伸试验曲线

拉伸试验曲线可以通过加载力与伸长量的关系曲线图形来表示。该曲线可用于评估材料的强度、刚度、延性等力学性能,并分析材料的变形和破坏行为。
拉伸试验曲线是材料力学实验中常用的一种曲线,用于描述材料在受力过程中的变形和破坏行为。拉伸试验通常是将材料锚定在一端,添加拉伸力施加在另一端,然后记录加载力和伸长量的关系。
拉伸试验曲线呈现出以下几个阶段:
1. 弹性阶段:在开始施加拉伸力时,材料会发生弹性变形,即应变随应力线性变化。该阶段内应力和应变成正比关系,而且应力解除后,材料能够完全恢复到初始状态。
2. 屈服阶段:当材料受到的拉伸力逐渐增大时,应力曲线不再是线性的,开始出现非线性变化。材料会逐渐进入塑性变形,应变随应力增加而增加。此时,应力解除后,材料只能部分恢复到初始状态。
3. 极限阶段:当拉伸力进一步增加时,材料逐渐接近其极限强。在极限阶段,应力和应变之间关系较为复杂,材料可能发生局部变形和颈缩。
材料力学拉伸试验

§1-1 轴向拉伸实验一、实验目的1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。
2、 测定铸铁的抗拉强度m R (b σ)。
3、 比较低碳钢Ø5(塑性材料)和铸铁Ø5(脆性材料)在拉伸时的力学性能和断口特征。
注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。
二、设备及试样1、 电液伺服万能试验机(自行改造)。
2、 0.02mm 游标卡尺。
3、 低碳钢圆形横截面比例长试样一根。
把原始标距段L 0十等分,并刻画出圆周等分线。
4、 铸铁圆形横截面非比例试样一根。
注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。
比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。
比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。
非比例试样0L 与0S 无关。
三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。
这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。
ΔL (标距段伸长量)低碳钢拉伸图(F —ΔL 曲线)以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。
低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。
F —ΔL 曲线与试样的尺寸有关。
为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。
同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。
σ—ε曲线与F —ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。
工程材料拉伸试验计算公式

工程材料拉伸试验计算公式引言。
工程材料的力学性能是评价其质量和可靠性的重要指标之一,而拉伸试验是最常用的一种力学性能测试方法之一。
通过拉伸试验可以得到材料的拉伸强度、屈服强度、延伸率等重要参数,为工程设计和材料选用提供重要依据。
在进行拉伸试验时,需要使用一定的计算公式来对实验数据进行处理,以得到准确的材料性能参数。
本文将介绍工程材料拉伸试验计算公式的相关知识,并对常用的计算公式进行详细说明。
拉伸试验基本原理。
拉伸试验是通过施加拉伸力使试样发生拉伸变形,从而测定材料的力学性能。
在拉伸试验中,通常使用标准的拉伸试验机,将试样置于试验机的夹持装置中,施加拉伸力使试样发生拉伸变形,同时测量施加的拉伸力和试样的变形量,从而得到拉伸应力-应变曲线。
通过分析拉伸应力-应变曲线,可以得到材料的拉伸强度、屈服强度、延伸率等重要参数。
拉伸试验计算公式。
1. 拉伸应力计算公式。
拉伸应力是指单位面积上的拉伸力,通常用σ表示,其计算公式为:σ = F/A。
其中,σ为拉伸应力,F为施加的拉伸力,A为试样的横截面积。
拉伸应力的单位为N/m²或Pa。
2. 拉伸应变计算公式。
拉伸应变是指单位长度上的拉伸变形量,通常用ε表示,其计算公式为:其中,ε为拉伸应变,ΔL为试样的变形量,L为试样的原始长度。
拉伸应变是一个无量纲的物理量。
3. 餐压强度计算公式。
屈服强度是材料在拉伸过程中发生屈服的应力值,通常用σy表示,其计算公式为:σy = Fy/A。
其中,σy为屈服强度,Fy为试样发生屈服时的拉伸力,A为试样的横截面积。
4. 拉伸强度计算公式。
拉伸强度是材料在拉伸过程中发生破坏的应力值,通常用σmax表示,其计算公式为:σmax = Fmax/A。
其中,σmax为拉伸强度,Fmax为试样发生破坏时的拉伸力,A为试样的横截面积。
5. 延伸率计算公式。
延伸率是指试样在拉伸过程中的变形量与原始长度的比值,通常用δ表示,其计算公式为:δ = (L Lo)/Lo × 100%。
拉伸试验的条件

拉伸试验的条件
拉伸试验是一种常见的材料力学试验,用于测定材料在拉伸过程中的性质。
要进行一次拉伸试验,需要满足以下条件:
1.试验样品制备:试验样品必须按照标准制备,包括样品的几何形状、尺寸和表面处理。
样品的长度应大于测试长度的五倍,以避免试验中央区域出现变形。
2.试验设备:拉伸试验需要特殊的设备来施加负载并测量应力和应变。
常见的拉伸试验机包括万能试验机和拉伸试验机。
3.试验环境:试验环境需要控制在一定的范围内,如温度、湿度、气压等。
这些环境因素可以影响材料的物理性质。
4.试验速度:试验速度是影响试验结果的重要因素之一。
根据不同的材料性质,试验速度需要按照标准规定来设定。
5.试验数据处理:拉伸试验完成后,需要对试验数据进行处理。
这包括计算应力和应变、绘制应力-应变曲线,并根据实验结果评估材料性能。
综上所述,进行拉伸试验需要严格遵守试验条件,以保证得到准确可靠的试验结果。
- 1 -。
材料力学拉伸实验报告

材料力学拉伸实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】材料的拉伸压缩实验徐浩 20 机械一班一、实验目的1.观察试件受力和变形之间的相互关系;2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象。
观察铸铁在压缩时的破坏现象。
3.测定拉伸时低碳钢的强度指标(s、b)和塑性指标(、)。
测定压缩时铸铁的强度极限b。
二、实验设备1.微机控制电子万能试验机;2.游标卡尺。
三、实验材料拉伸实验所用试件(材料:低碳钢)如图所示,四、实验原理低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。
对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于l,此阶段称为弹性阶段。
屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。
其中,B 点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。
下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。
测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。
图2 低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。
当载荷达到强度载荷F b后,在试件的某一局部发生显着变形,载荷逐渐减小,直至试件断裂。
应用公式b=F b/A0计算强度极限(A0为试件变形前的横截面积)。
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端面收缩率,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。
五、实验步骤及注意事项 1、拉伸实验步骤(1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学拉伸实验
材料力学是研究物质在外力作用下的力学性能和变形规律的学科,而拉伸实验
是材料力学中非常重要的一种实验方法。
通过拉伸实验,可以了解材料在拉伸过程中的力学性能,如抗拉强度、屈服强度、延伸率等指标,对于材料的选择和设计具有重要意义。
拉伸实验的基本原理是在外力作用下,材料会发生变形,通过施加拉伸力使材
料发生变形,然后测量拉伸前后的长度和直径,从而计算出拉伸应力和拉伸应变,最终得到材料的力学性能参数。
在进行拉伸实验时,首先需要准备好试样。
试样的准备对于实验结果的准确性
和可靠性至关重要。
通常情况下,试样的形状为圆柱形,长度大于直径,以保证在拉伸过程中的均匀变形。
在试样制备完成后,需要对试样进行表面处理,以确保试样的表面光洁度和平行度,避免表面缺陷对实验结果的影响。
接下来是拉伸实验的具体操作。
首先将试样夹紧在拉伸试验机上,然后施加拉
伸力,逐渐增加载荷直至试样发生断裂。
在拉伸过程中,需要记录载荷和试样的变形情况,以便后续的数据处理和分析。
通过拉伸实验得到的数据,可以绘制应力-应变曲线。
应力-应变曲线是描述材
料在拉伸过程中力学性能的重要曲线,通过该曲线可以直观地了解材料的抗拉强度、屈服强度、延伸率等指标。
在实验过程中,还可以观察试样的断裂形态,从而进一步了解材料的断裂机制和断裂特点。
拉伸实验不仅可以用于金属材料,也适用于塑料、橡胶等材料。
不同材料在拉
伸过程中表现出不同的力学性能,通过拉伸实验可以对不同材料的性能进行比较和分析,为材料的选择和设计提供参考依据。
在进行拉伸实验时,需要注意实验过程中的安全问题,确保操作人员的安全。
同时,也需要严格控制实验条件,避免外界因素对实验结果的影响。
总的来说,拉伸实验是了解材料力学性能的重要手段,通过实验可以得到材料的力学性能参数,为材料的选择和设计提供重要参考。
因此,掌握拉伸实验的基本原理和操作技巧,对于材料科学和工程技术人员来说,具有非常重要的意义。