2019—2020年最新华东师大版八年级数学上册《数的开方》单元同步测试题及答案解析.docx

合集下载

华东师大版八年级数学上册《第十一章数的开方》单元检测卷及答案

华东师大版八年级数学上册《第十一章数的开方》单元检测卷及答案

华东师大版八年级数学上册《第十一章数的开方》单元检测卷及答案一、单选题(共10小题,满分40分)122,3.1415926237中,无理数是( ) A 2B .2 C .3.1415926 D .237240 )A .点 AB .点BC .点CD .点D3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论错误的是( )A .0a b c ++>B .b a c b ->-C .ab ac >D .a a b c> 4.下列说法不正确的是( )A .0.4的算术平方根是0.2B .−9是81的一个平方根C .−27的立方根是−3D .22 5.如图,在数轴上表示1、的点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的( ).A .2-B .-2C .1-D .-1 6.下列四个实数中,是无理数的是( )A .0B 3C 121D .27- 7.下列说法正确的是( )A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .无理数与数轴上的点是一一对应的 833(4)4a a -=-成立,则a 的取值范围是( )A .a≤4B .a≤-4C .a≥4D .一切实数9.下列各数中,是无理数的是( )A .1.32322B .23C 4D 3910.下列计算正确的是( )A .()660--=B .()224-=-C .33-=D 93=±二、填空题(共8小题,满分32分)11.先阅读,再解答:对于三个数a 、b 、c 中,我们用符号来表示其中最大的数和最小的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,1,31-=- {}max 1,1,33-=;若{}{}min 1,3,1max 23,12,2x x x x ---=+-+,则x 的值为 .12.计算:3612516--= .13.一个四位数n ,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n 为“等和数”,将这个“等和数”反序排列(即千位与个位对调,百位与十位对调)得到一个新的四位数m ,记2()33n m D n -=,则()4521D = ;若某个“等和数”n 的千位与十位上的数字之和为8,()D n 为正数且能表示为两个连续偶数的平方差,则满足条件的最大“等和数”n 是 .14.计算:()()303221--⨯+-= .15.在实数10122-、、、中,最小的数为 . 16172的小数部分是 .17.-π,-333的大小顺序是 .18.如图是一个数值转换器,当输入x 为64-时,输出y 的值是 .三、解答题(共6小题,每题8分,满分48分)19.已知,在平面直角坐标系中,O 为坐标原点,点A 的坐标为()0,a ,点B 的坐标为(),0b ,其中a 、b ()2310a b -+=.(1)求点A 、点B 的坐标;(2)将A 点向右平移m 个单位(0m >)到C ,连接BC .①如图1,若BC 交y 轴于点H ,且3ABC ABH S S >△△,求满足条件的m 的取值范围(说明:ABC S 表示三角形ABC 的面积,后面类似);①如图2,若1m >,AG 平分BAC ∠交BC 于点G ,已知点D 为x 轴负半轴上一动点(不与B 点重合),射线CD 交直线AB 交于点E ,交直线AG 于点F ,试探究D 点在运动过程中CDB ∠、CEB ∠和 AFD ∠之间是否有某种确定的数量关系?直接写出你的结论.20.求下列各式中x 的值.(1)()21100x -= (2)()31293x +=- 21.已知52a +的立方根是3,1b +的算术平方根是3,c 11(1)求,,a b c 的值;(2)求a b c ++的平方根.22.将下列各数按从小到大的顺序排列,并用“<”号连接起来:32 2π- 0 5 1.8-. 23.计算(1)(32698(2)已知关于x ,y 的方程组()43113x y mx m y -=⎧⎨+-=⎩的解满足43x y +=,求m 的值. 24.(1)已知21a -的平方根是3±,31a b +-的平方根是4±,求2+a b 的平方根; (2)已知a ,b 都是有理数,且(31)233a b +=,求a b +的平方根.参考答案1.A2.C3.D4.A5.A6.B7.A8.D9.D10.C11.3-12.513. 3 8404 14.015.216174/-1717.−π<−3331834-19.(1)()0,3A ;()1,0B -(2)①2m >;①1118022AFD CEB CDB ∠+∠+∠=︒ 20.(1)111x = 29x =-(2)5x =-21.(1)5a = 8b = 3c =(2)4± 22.053221.8π--<<<23.(1)1 (2)289m =24.(1)3±;(2)3。

2019—2020年最新华东师大版八年级数学上册《数的开方》同步检测题及答案.docx

2019—2020年最新华东师大版八年级数学上册《数的开方》同步检测题及答案.docx

第11章数的开方同步检测题一、选择题1.下列说法中正确的是().(A) 4是8的算术平方根(B)16的平方根是4(C) 是6的平方根(D)-a没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若x2=(-0.7)2,则x =()(A) -0.7 (B) ±0.7 (C) 0.7 (D) 0.494.的平方根是()(A)6 (B)±6 (C)(D)5.下列语句正确的是()(A)如果一个数的立方根是这个数本身,那么这个数一定是零;(B)一个数的立方根不是正数就是负数;(C)负数没有立方根;(D)一个数的立方根与这个数同号,零的立方根是零。

6、下列说法中,正确的是:()(A)无限小数都是无理数(B)带根号的数都是无理数(C)循环小数是无理数(D)无限不循环小数是无理数7、是无理数,则a一定是一个:()(A)非负实数(B)正实数(C)非完全平方数(D)正有理数8、下列说法中,错误的是:()(A)是无限不循环小数(B)是无理数(C)是实数(D)等于1.4149、与数轴上的点具有一一对应关系的是:()(A)无理数(B)实数(C)整数(D)有理数10、下列说法中,不正确的是:()(A)绝对值最小的实数是0 (B)平方最小的实数是0(C)算术平方根最小的实数是0 (D)立方根最小的实数是0二、填空题1.和统称为实数.2.绝对值是,相反数是,倒数是 .3.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无66.036.0±=±6.36.0=.21-44.1-=.2144.1±=3666±a2222 12-理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数。

其中错误的有 ______个。

三、非负数性质的应用1、若x 、y 都是实数,且,求x+3y 的平方根 2、已知3、四、定义的应用4、已知x-2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根5、如果 是a+b+3的算术平方根, 是a+2b的立方根,求M -N 的立方根。

2019-2020学年数学华师大版八年级上册 第11章 数的开方 单元检测b卷D卷

2019-2020学年数学华师大版八年级上册 第11章 数的开方 单元检测b卷D卷

2019-2020学年数学华师大版八年级上册第11章数的开方单元检测b卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法不正确的是()A . ±0.3是0.09的平方根,即±=±0.3B . 存在立方根和平方根相等的数C . 正数的两个平方根的积为负数D . 的平方根是±82. (2分)下列说法正确的是()A . 非负数包括零和整数B . 正整数包括自然数和零C . 零是最小的整数D . 整数和分数统称为有理数3. (2分)下列说法不正确的是()A . 的平方根是B . ﹣2是4的一个平方根C . 0.2的算术平方根是0.04D . ﹣27的立方根是﹣34. (2分)﹣2,0,0.5,﹣这四个数中,属于无理数的是()A . ﹣2B . 0C . 0.5D . -5. (2分)下列判断中,你认为正确的是()A . 0的倒数是0B . 的值是±3C . 是分数D . 大于16. (2分)下列关于的说法中,错误的是()A . 是无理数B . 是15的算术平方根C . 15的平方根是D .7. (2分)已知:(b+3)2+|a﹣2|=0,则ba的值为()A . ﹣9B . 9C . ﹣6D . 68. (2分)下列判断:①1的立方根是±1;②只有正数才有平方根;③﹣4是﹣16的平方根;④()2的平方根是±正确的是()A . ①B . ②C . ③D . ④9. (2分)下列说法正确的是()A . 25的平方根是5B . ﹣22的算术平方根是2C . 0.8的立方根是0.2D . 是的一个平方根10. (2分)下列各数:(两个3之间0的个数依次增加1个),其中无理数的个数有()A . 1个B . 2个C . 3个D . 4个11. (2分)下列等式正确的是()A . =±B .C .D .12. (2分)若m=-3,则m的范围是()A . 1<m<2B . 2<m<3C . 3<m<4D . 4<m<5二、填空题 (共6题;共8分)13. (2分)8的算术平方根是________;8的立方根是________.14. (1分)若一个数的立方根就是它本身,则这个数是________.15. (1分)若m分别表示3﹣的小数部分,则m2的值为________.(结果可以带根号)16. (2分)若3a3b5n﹣2与10b3m+nam﹣1是同类项,则m=________,n=________.17. (1分)已知x,y满足,当时,y的取值范围是________.18. (1分)36的平方根________三、解答题 (共8题;共57分)19. (5分)计算:|﹣ |+(2016﹣π)0﹣2sin45°+()﹣2 .20. (5分)将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合②无理数集合③负实数集合21. (5分)长方形内有两个相邻的正方形,面积分别为4、2,求阴影部分的面积.22. (10分)计算与解方程(1)计算:× ﹣|﹣ |(2)若(x﹣2)2=9,求x.23. (5分)已知一个正方体的体积是1000cm3 ,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3 ,问截得的每个小正方体的棱长是多少?24. (5分)在数轴上表示下列各数,π,|﹣4|,0,﹣,并把这些数按从小到大的顺序进行排列.25. (12分)如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.(3)把正方形放到数轴上,如图,使得与重合,点与重合,点与点关于点对称,那么在数轴上表示的数为________;点在数轴上表示的数为________.26. (10分)综合题。

2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx

2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx

《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算:+= .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时,= .21.若|a|=,=2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算:+= 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:+=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵=4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时,= ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=,=2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵=2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为:+.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S= 告诉我们一种求三角形面积的方法,其中p 表示三角形周长的一半,a 、b 、c 分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm ,b=4cm ,c=5cm ,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC 、AC 、AB 的长求出P ,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm ,b=4cm ,c=5cm ,∴p===6,∴S===6(cm 2), ∴△ABC 的面积6cm 2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。

2019-2020学年数学华师大版八年级上册 第11章 数的开方 单元检测a卷(II )卷

2019-2020学年数学华师大版八年级上册 第11章 数的开方 单元检测a卷(II )卷

2019-2020学年数学华师大版八年级上册第11章数的开方单元检测a卷(II )卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)在实数π,﹣,0,﹣3.14,6.1010010001…中无理数有()A . 1 个B . 2个C . 3个D . 4个2. (2分)下列运算正确的是()A . =2B . =﹣2C . =±2D . =±23. (2分)下列叙述正确的个数有:(3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和负实数两类。

()A . 1个B . 2个C . 3个D . 4个4. (2分)下列说法中:①±3都是27的立方根,② =y,③ 的立方根是2,④ =±4.其中正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分)的平方根是()A . 4B . -4C . ±4D . ±26. (2分)在实数﹣3、0,π、3中,最大的实数是()A . ﹣3B . 0C . πD . 37. (2分)在下列各数0、0. 、π、、6.1010010001…、、中,无理数的个数是()A . 1B . 2C . 3D . 48. (2分)下列各数:(两个3之间0的个数依次增加1个),其中无理数的个数有()A . 1个B . 2个C . 3个D . 4个9. (2分)下列说法正确的是()A . 一个有理数的平方根有两个,它们互为相反数B . 负数没有立方根C . 无理数都是开不尽的方根数D . 无理数都是无限小数10. (2分)给出四个数0,,,﹣1,其中最小的是()A . 0B .C .D . -111. (2分)的算术平方根是()A . ±7B . 7C .D . -7二、填空题 (共5题;共10分)12. (4分)± =________; =________;|﹣ |=________;π﹣3.14的相反数是________.13. (3分)4的算术平方根是________,9的平方根是________,﹣27的立方根是________.14. (1分)已知一个立方体魔方的体积是64cm3 ,则它的棱长是________cm.15. (1分)实数﹣8的立方根是________.16. (1分)x是9的平方根,y是64的立方根,则x+y的值为________.三、解答题 (共7题;共62分)17. (5分)已知:实数a,b在数轴上的位置如图所示,化简: +2﹣|a﹣b|18. (10分)计算或化简:(1)×sin45°+()﹣1﹣(﹣1)0(2)(﹣)(x2﹣1).19. (5分)已知2a-1的平方根是±3,的算术平方根是b,求a+b的平方根20. (20分)求下列x的值(1)x2﹣81=0;(2)(x﹣2)2=16;(3)x3﹣0.125=0;(4)(x﹣3)3+8=0.21. (10分)计算.(1).(2)22. (5分)国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?23. (7分)数学活动课上,王老师说:“ 是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:的整数部分是________;小数部分是________.(2)已知8+ =x+y,其中x是一个整数,且0<y<1,求出2x+(y- )2012的值.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共5题;共10分)12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共62分) 17-1、18-1、18-2、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、23-2、。

2019-2020学年八年级数学上册《数的开方》单元综合测试题2华东师大版.docx

2019-2020学年八年级数学上册《数的开方》单元综合测试题2华东师大版.docx

2019-2020 学年八年级数学上册 《数的开方》单元综合测试题 2 华东师大版班级姓名学号成绩一、填空题1.若一个实数的算术平方根等于它的立方根,则这个数是 _________;2.数轴上表示 5 的点与原点的距离是 ________;3.2 的相反数是, 3 的倒数是, 3 1 的相反数是;4. 81 的平方根是 _______,4 的算术平方根是 _________, 10 2 的 算术平方根是;5.计算: 361 1 _________,310 6 _______ , 1452242;1256.若一个数的平方根是8 ,则这个数的立方根是;7.当 m ______ 时,3 m 有意义;当 m ______ 时, 3 m 3 有意义;8.若一个正数的平方根是 2a 1 和 a 2 ,则 a____ ,这个正数是;9.a 2 ( a ) 2 成立的条件是 ___________;10.若a 1 a1,则 a 满足条件 ________;a 2a 211.已知2 a 1(b3)2 0 ,则 3 2ab;3.若最简二次根式x yxyxy与是同类根式, 则, y;121与325 x________二、选择题13 14151617 18 19 2013.下列运算正确的是( )A 、 2 727B 、 23 2 3C 、 8 2 4D 、82214.在实数0、 3、 6 、 2.236 、π、23 、 3.14 中无理数的个数是()7A、 1B、 2C、 3D、 415.下列二次根式中与 2 6 是同类二次根式的是()A、18B、30C、48D、5416.下列说法错误的是()A、( 1)21 B 、3 1 31C、 2 的平方根是2D、( 3)23217.下列说法中正确的有()①带根号的数都是无理数;②无理数一定是无限不循环小数;③不带根号的数都是有理数;④无限小数不一定是无理数;A、 1 个B、 2 个C、 3 个D、 4 个18.一个等腰三角形的两边长分别为5 2 和 2 3 ,则这个三角形的周长是()A、1022 3 B 、5243C、 10 22 3 或 52 4 3 D 、无法确定19.如果a23, b1,则有()23A、a bB、 a bC、 a bD、a 1 b20.设x、y为实数,且y45x x 5 ,则 x y 的值是()A、 1B、 9C、4D、5三、计算题1.(23)(23)2.287126 783.2 3 122 264. (23 3 2) 2( 2 3 3 2 ) 265.2 4 3 216 4216.2 4 ( 73)1 363723四、解方程1.9x32642.(2x 1)38五、解答题2.已知 x6 2 ,试求 x 3 4x 22 x 2008 的值.32 3 2 x 2 3xy 2 y23y3 3.已知 x, y3,求下列各式的值。

2019—2020年华东师大版八年级上学期数学《数的开方》单元测试及答案解析(基础提分试卷).docx

2019—2020年华东师大版八年级上学期数学《数的开方》单元测试及答案解析(基础提分试卷).docx

《第11章数的开方》一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根2.下列各式中错误的是()A. B.C. D.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.494.的平方根是()A.6 B.±6 C.D.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.4149.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零二、填空题11.和统称实数.12.1﹣绝对值是,相反数是,倒数是.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有个.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.15.若|a﹣3|+(5+b)2+=0,求代数式的值.16.已知=0,求3x+6y的立方根.四、定义的应用17.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为.20.数a、b在数轴上的位置如图所示,化简:.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.《第11章数的开方》参考答案与试题解析一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根【考点】平方根;算术平方根.【分析】如果一个数x2=a(a≥0),那么x就是a的一个平方根.根据定义知道一个非负数的平方根有两个,它们互为相反数.【解答】解:A、∵4是16的算术平方根,故选项A错误;B、∵16的平方根是±4,故选项B错误;C、∵是6的一个平方根,故选项C正确;D、当a≤0时,﹣a也有平方根,故选项D错误.故选C.【点评】本题主要考查平方根和算术平方根的知识点,比较简单.2.下列各式中错误的是()A. B.C. D.【考点】算术平方根.【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据算术平方根的定义即可判定.【解答】解:A、=±0.6,故选项A正确;B、,故B选项正确;C、,故选项C正确,D、,故选项D错误.故选D.【点评】本题主要考查算术平方根的知识点,不是很难.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】平方根.【分析】先根据乘方的运算法则计算出(﹣0.7)2=0.49,再根据平方根的意义即可求出0.49的平方根.【解答】解:∵x2=(﹣0.7)2,∴x2=0.49,∴x=±0.7.故选B.【点评】本题考查了平方根及乘方的知识,熟练掌握这些基础概念是解题的关键.4.的平方根是()A.6 B.±6 C.D.【考点】平方根.【专题】计算题.【分析】先计算出的值,再求其平方根.【解答】解:∵=6,∴6的平方根为,故选D.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一定先计算出的值,比较容易出错.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零【考点】立方根.【分析】A、根据立方根的性质即可判定;B、根据立方根的性质即可判定;C、根据立方根的定义即可判定;D、根据立方根的性质即可判定.【解答】解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.故选D.【点评】本题考查了平方根、立方根定义和性质等知识,注意负数没有平方根,任何实数都有立方根.6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数【考点】无理数.【分析】根据无理数的定义,开方开不尽的数,与π有关的数,没有循环规律的无限小数都是无理数.【解答】解:由无理数的定义可知,无限不循环小数是无理数.故选D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数【考点】实数.【分析】根据实数,即可解答.【解答】解:∵开方开不尽的数是无理数,是无理数,∴a是非完全平方数,故选:C.【点评】本题考查了实数,解决本题的关键是熟记开方开不尽的数是无理数.8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.414【考点】实数.【分析】根据实数,即可解答.【解答】解:A、是无限不循环小数,正确;B、是无理数,正确;C、是实数,正确;D、 1.414,故本选项错误;故选:D.【点评】本题考查了实数,解决本题的关键是熟记是无理数.9.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数【考点】实数与数轴.【分析】根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.【解答】解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选B.【点评】此题考查了数轴上的点和实数之间的一一对应关系.10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零【考点】立方根.【分析】根据绝对值,算术平方根,平方,立方根的求法判断所给选项的正误即可.【解答】解:A、一个数的绝对值是非负数,其中,0最小,所以绝对值最小的实数是零是正确的,不符合题意;B、非负数的算术平方根是非负数,在非负数里,0最小,所以算术平方根最小的实数是零是正确的,不符合题意;C、任何数的平方都是非负数,非负数里,0最小,所以平方最小的实数是零是正确的,不符合题意;D、没有立方根最小的数,故错误,符合题意,故选D.【点评】综合考查了绝对值,算术平方根,平方,立方根与0的关系;没有立方根最小的数这个知识点是易错点.二、填空题11.有理数和无理数统称实数.【考点】实数.【分析】实数的定义:有理数和无理数统称实数.【解答】解:有理数和无理数统称实数.故答案是:有理数;无理数.【点评】本题考查了实数的定义.熟记概念是解题的关键.12.1﹣绝对值是﹣1 ,相反数是﹣1 ,倒数是﹣1﹣.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:1﹣绝对值是﹣1,相反数是﹣1,倒数是﹣1﹣,故答案为:﹣1,﹣1,﹣﹣1.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键,求倒数时要分母有理化.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有 3 个.【考点】实数.【分析】根据有理数和无理数的概念进行判断即可.【解答】解:=2,故带根号的数是无理数错误;0.3333…是有理数,故无限小数都是无理数错误;无理数都是无限小数正确;0既不是正数,也不是负数,故在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数错误,故答案为:3.【点评】本题考查的是实数的概念,正确区分有理数和无理数是解题的关键.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得,解不等式可得x=3,然后可得y的值,进而可得x+3y的值,然后计算平方根即可.【解答】解:由题意得:,解得:x=3,则y=2,x+3y=3+3×2=9,平方根为±=±3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.若|a﹣3|+(5+b)2+=0,求代数式的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值、平方和二次根式的非负性和已知条件即可得到关于a、b、c的方程组,解方程组即可求得a、b、c的值,然后代入所求代数式中计算即可.【解答】解:∵|a﹣3|≥0,(5+b)2≥0,≥0,且|a﹣3|+(5+b)2+=0,∴a﹣3=0,5+b=0,c+1=0∴a=3,b=﹣5,c=﹣1∴=﹣.【点评】此题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键.16.已知=0,求3x+6y的立方根.【考点】非负数的性质:算术平方根;立方根;二次根式有意义的条件.【分析】根据分式的值为零,可得方程组,根据解方程组,可得x、y的值,根据代数式求值,可得被开方数,根据开立方运算,可得答案.【解答】解:由=0,得.解得.3x+6y=﹣9+36=27.==3.【点评】本题考查了非负数的性质,利用了算术平方根的和为零得出方程组是解题关键,注意分母不能为零.四、定义的应用17.(2015春•桃园县校级期末)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【考点】立方根;平方根.【分析】先运用立方根和平方根的定义求出x与y的值,再求出x2+y2的平方根.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=22,2x+y+7=27,解得x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根是±10.【点评】本题主要考查了立方根和平方根,解题的关键是正确求出x与y的值.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.【考点】立方根;算术平方根.【分析】根据“M=是a+b+3的算术平方根,N=是a+2b的立方根”即可列出关于a、b的二元一次方程组,解方程组即可得出a、b的值,将其代入M、N中求出M、N的值,再求出的值即可.【解答】解:由已知得:,解得:,∴M==3,N==2,∴==1.【点评】本题考查了立方根以及算术平方根,根据算术平方根以及立方根的定义列出关于a、b的二元一次方程组是解题的关键.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为4.【考点】实数与数轴.【分析】根据数轴上两点间的距离是较大的数减较小的数,可得答案.【解答】解:由题意,得AB=|3﹣(﹣)|=4,故答案为:4.【点评】本题考查了实数与数轴,利用数轴上两点间的距离是较大的数减较小的数是解题关键.20.(2012秋•杞县校级期末)数a、b在数轴上的位置如图所示,化简:.【考点】二次根式的性质与化简;实数与数轴.【专题】常规题型.【分析】根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.【解答】解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.【点评】本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.【考点】立方根;实数与数轴.【分析】首先根据数轴上的各点的位置,可以知道a<0,b<0,c>0,且|a|>|b|>c,接着有a﹣b <0,c﹣a>0,b﹣c<0,由此即可化简绝对值,最后合并同类项即可求解.【解答】解:有数轴可知,a<0,b<0,c>0,∴|a|>|b|>c,a﹣b<0,c﹣a>0,b﹣c<0,∴=﹣a﹣(b﹣a)+(c﹣a)+(c﹣b)=﹣a﹣b+a+c﹣a+c﹣b=2c﹣2b﹣a.【点评】本题考查实数与数轴上的点的对应关系,在原点O左边的数小于0,右边的数大于0,同时也考查了对带有绝对值和根号的代数式的化简.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.【考点】实数的性质.【分析】根据绝对值的性质解答.【解答】解:(1)|﹣1.4|=1.42﹣;(2)|π﹣3.14|=π﹣3.14;(3)|﹣|=﹣;(4)∵x≤3,∴|x﹣|x﹣3||=|x﹣3+x|=|2x﹣3|(5)|x2+1|=x2+1.【点评】本题考查的是绝对值的性质,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?【考点】算术平方根.【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:由题意可得:两个正方形的面积和为:112+13×8=225(cm2),则正方形边长应为:=15(cm).【点评】此题主要考查了算术平方根的定义,正确开平方求出是解题关键.八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.【考点】估算无理数的大小;平方差公式.【分析】根据5<<6,可得a、b的值,再代入(a+b)(a﹣b)即可求值.【解答】解:∵25<29<36,∴5<<6,∴a=5,b=﹣5,∴(a+b)(a﹣b)=(5+﹣5)(5﹣+5)=(10﹣)=10﹣29.【点评】本题考查了估算无理数的大小和二次根式的混合运算的应用,主要考查了学生的计算能力.。

华东师大版八年级数学上册第11章数的开方单元检测卷(含答案)

华东师大版八年级数学上册第11章数的开方单元检测卷(含答案)

华东师大版八年级数学上册第11章数的开方单元检测卷(含答案)第11章数的开方单元检测姓名:__________班级:__________考号:__________一、单选题1.在-1.414,,,3.14,2 ,3.212212221…这些数中,无理数的个数为()A. 2B. 3C. 4D. 52.16的算术平方根等于()A. ±4B. 一4C. 4D. 3.下列命题中,正确的是()A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数4x 的取值范围是( )A .x <2B .x ≤2C .x >2D .x ≥25.的平方根是()A. 2B. ﹣2C. ±2D. 46.下列四个实数中最小的是()A. B. 2 C. D. 1.47.下列各数是无理数的是()A. 0.37B. 3.14C. 2π D. 0 8.面积为2的正方形的边长是()A. 整数B. 分数C. 有理数D. 无理数9.在实数0,310,1- )A .0B .310C .1-D 10.比较22,3,7的大小,正确的是()A .7<3<22B .22<7<3C .22<3<7D .7<22<311 )A. 3±B. 3C. 3-D. 81二、填空题12.的算术平方根是__,的立方根是___,绝对值是______.13.面积为3的正方形边长是______.14﹣35,则x=_____,则x=_____. 15.-8的立方根是_________,81的算术平方根是__________.16.-64______.三、解答题17.在数轴上表示下列各数:2 的相反数,绝对值是的数,-1 的倒数.18.(1(2. 19.如果2a-1和5-a 是一个正数m 的平方根,3a+b-1的立方根是-2, 求a+2b 的平方根.20.解方程:(1)x 2=16;(2)(x ﹣4)2=4;(3)x 3=-125;(4)()313903x +-=.21.观察下列各式及验证过程:= ====== ===(1 (2)针对上述各式反映的规律,写出用n (n ≥2的自然数)表示的等式,并进行验证.22.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.23.阅读下面的文字,解答问题:大家知道11,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即2322.请解答:(1的整数部分是,小数部分是.(2a,的整数部分为b,求(3)已知:x是y是其小数部分,请直接写出x﹣y的值的相反数.参考答案1.C【解析】分析:根据无理数的定义及无理数常见的三种形式解答即可.详解: -1.414,3.14是有理数;,,2,3.212212221…是无理数;故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如,等;②圆周率π;③构造的无限不循环小数,如(0的个数一次多一个).2.C【解析】试题分析:∵42=16,,"故选C.考点:算术平方根.3.D【解析】试题分析:两个实数相加的和为有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第11章数的开方》一、选择题.1.下列各数:3.141592,﹣,0.16,,﹣π,0.1010010001…,,,0.2,中无理数的个数是()A.2个B.3个C.4个D.5个2.25的平方根是()A.±5 B.﹣5 C.5 D.253.﹣8的立方根是()A.±2 B.2 C.﹣2 D.不存在4.设a=,则实数a在数轴上对应的点的大致位置是()A.B. C.D.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是()A.a2+2 B.± C.D.6.下列说法正确的是()A.27的立方根是3,记作=3 B.﹣25的算术平方根是5C.a的立方根是±D.正数a的算术平方根是7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A.0个B.1个C.2个D.3个二、填空题.8.9的算术平方根是.9.比较大小:3(用“<”或“>”填空).10.若|x|=3,则x= .11.﹣27的立方根是.12.的相反数是.13.平方根等于本身的数是.14.写出所有比小且比大的整数.15.的算术平方根是.16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为米(精确到0.01).17.观察思考下列计算过程:因为112=121,所以=11;同样,因为1112=12321,所以=111,则= ,可猜想= .三、解答下列各题18.把下列各数填入相应的集合内|﹣|,,﹣,,0.6,﹣,,﹣3(1)无理数集合{ }(2)负有理数集合{ }(3)正数集合{ }.19.若一个正数的平方根是a+2和2a﹣11,求a及这个正数.20.计算:|2﹣5|+|4﹣3|(结果精确到0.01).21.如果把棱长分别为3.14cm,5.24cm的两个正方体铁块熔化,制成一个大的正方形铁块,那么这个大正方体的棱长有多大?(用一个式子表示,并用计算器计算,结果保留一位小数)22.利用计算器计算:= ;(2)利用计算器计算:= ;(3)利用计算器计算:= ;(4)利用计算器计算:= .23.已知:+|2y+6|=0,求(1)x、y的值;(2)求(x+y)2的值.24.俗话说,登高望远.从理论上说,当人站在距地面h千米的高处时,能看到的最远距离约为d=112×千米.(1)金茂大厦观光厅距离地面340米,人在观光厅里最多能看多远?(精确到0.1千米)(2)某人在距地面h千米高处可看到的最远距离为33.6千米,求h的值.25.在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,并用一量筒量得被铁块排开的水的体积为50.65cm3,小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.62cm.(1)求铁块的棱长.(用计算器计算,结果精确到0.1cm)(2)求烧杯内部的底面半径.(用计算器计算,结果精确到0.1cm)26.探究发散:(1)完成下列填空①= ,②= ,③= ,④= ,⑤= ,⑥= ,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来:(3)利用你总结的规律,计算:①若x<2,则= ;②= .《第11章数的开方》参考答案与试题解析一、选择题.1.下列各数:3.141592,﹣,0.16,,﹣π,0.1010010001…,,,0.2,中无理数的个数是()A.2个B.3个C.4个D.5个【考点】无理数;立方根.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,﹣,﹣π,0.1010010001…,,是无理数,故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.25的平方根是()A.±5 B.﹣5 C.5 D.25【考点】平方根.【分析】如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.【解答】解:∵(±5)2=25∴25的平方根±5.故选A.【点评】本题主要考查了平方根定义的运用,关键是一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根,比较简单.3.﹣8的立方根是()A.±2 B.2 C.﹣2 D.不存在【考点】立方根.【分析】根据立方根的定义进行解答.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故选:C.【点评】本题主要考查了立方根,解决本题的关键是数积立方根的定义.4.设a=,则实数a在数轴上对应的点的大致位置是()A.B. C.D.【考点】估算无理数的大小;实数与数轴.【分析】本题利用实数与数轴的关系解答,首先估计的大小,进而找到其在数轴的位置,即可得答案.【解答】解:a=,有3<a<4,可得其在点3与4之间,并且靠近4;分析选项可得B符合.故为B.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是()A.a2+2 B.± C.D.【考点】算术平方根.【分析】根据算术平方根的定义表示出这个数以及比这个数大2的数,再根据算术平方根的定义解答.【解答】解:∵一个正数的算术平方根是a,∴这个数是a2,∴比这个正数大2的数是a2+2,∴比这个正数大2的数的算术平方根是.故选C.【点评】本题考查了算术平方根,熟记概念是解题的关键.6.下列说法正确的是()A.27的立方根是3,记作=3 B.﹣25的算术平方根是5C.a的立方根是±D.正数a的算术平方根是【考点】立方根;算术平方根.【专题】计算题.【分析】利用立方根,算术平方根,以及平方根定义判断即可.【解答】解:A、27的立方根是3,记作=3,错误;B、﹣25没有算术平方根,错误;C、a的立方根为,错误;D、正数a的算术平方根是,正确.故选D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有()A.0个B.1个C.2个D.3个【考点】实数.【分析】①根据有理数与数轴上的点的对应关系即可判定;②根据无理数的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可解答.【解答】解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵17的平方根±,∴是17的一个平方根.故④说法正确.故选:B.【点评】此题主要考查了实数的定义和计算.有理数和无理数统称为实数,要求掌握这些基本概念并迅速做出判断.二、填空题.8.9的算术平方根是 3 .【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.9.比较大小:3>(用“<”或“>”填空).【考点】实数大小比较.【分析】首先根据无理数的估算方法,估算出3和的大小,再比较大小即可.【解答】解:∵1<<2,∴3<3<6,∵1<<2,∴3>.故答案为:>.【点评】本题主要考查实数的比较大小,解决此题时,能根据夹逼法估算出3和的大小是解题的关键.10.若|x|=3,则x= ±3 .【考点】绝对值.【分析】根据绝对值的性质解答即可.【解答】解:∵|x|=3,∴x=±3.故答案为:±3.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.﹣27的立方根是﹣3 .【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.的相反数是﹣.【考点】实数的性质.【分析】根据相反数的性质,互为相反数的两个数和为0,由此求解即可.【解答】解:根据概念(的相反数)+()=0,则的相反数是﹣.故的相反数﹣.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.13.平方根等于本身的数是0 .【考点】有理数的乘方.【分析】根据平方的特性从三个特殊数0,±1中找.【解答】解:∵02=0,∴平方根等于本身的是0;故答案是:0【点评】这类问题要记准三个特殊的数:0,±1.14.写出所有比小且比大的整数2和3 .【考点】估算无理数的大小.【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案.【解答】解:∵3<<4,1<<2,∴所有比小且比大的整数2,3,故答案为:2,3.【点评】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键.15.的算术平方根是 3 .【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.【解答】解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.【点评】此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为9.8 米(精确到0.01).【考点】算术平方根;近似数和有效数字.【分析】先求出正方形的边长,进而可得出结论.【解答】解:∵焊制一个面积为6平方米的正方形铁框,∴铁框的边长=,∴他需要的钢材总长至少=4≈9.8(米).故答案为:9.8.【点评】本题考查的是算术平方根,熟知算术平方根的定义是解答此题的关键.17.观察思考下列计算过程:因为112=121,所以=11;同样,因为1112=12321,所以=111,则= 1111 ,可猜想= 11111111 .【考点】算术平方根.【专题】规律型.【分析】根据给出的算式可以发现最中间是几,其算术平方根是几个1的平方进行解答即可.【解答】解:∵11112=1234321,∴=1111,∵111111112=123456787654321,∴=11111111,故答案为:1111;11111111.【点评】本题考查的是算术平方根的概念和数字的变化规律,根据给出的算式找出规律、根据规律正确解答是解题的关键.三、解答下列各题18.把下列各数填入相应的集合内|﹣|,,﹣,,0.6,﹣,,﹣3(1)无理数集合{ ,,…}(2)负有理数集合{ ﹣,﹣3,﹣…}(3)正数集合{ |﹣|,0.6…}.【考点】实数.【分析】根据实数的分类进行解答即可;实数.【解答】解:(1)无理数集合{,,…}(2)负有理数集合{﹣,﹣3,﹣…}(3)正数集合{|﹣|,0.6 …};故答案为:,,…;﹣,﹣3,﹣…;|﹣|,0.6 ….【点评】此题主要考查了实数的分类,用到的知识点为:有理数和无理数统称实数;整数和分数统称有理数;无限不循环小数叫做无理数,透彻理解定义是解题的关键.19.若一个正数的平方根是a+2和2a﹣11,求a及这个正数.【考点】平方根.【分析】根据一个正数的算术平方根的和为零,可得关于a的一元一次方程,根据解一元一次方程,可得a,根据平方运算,可得被开方数.【解答】解:一个正数的平方根是a+2和2a﹣11,得a+2+2a﹣11=0.解得a=3,(a+2)2=(3+2)2=52=25,这个正数为25.【点评】本题考查了平方根,利用一个正数的平方根互为相反数得出关于a的一元一次方程是解题关键.20.计算:|2﹣5|+|4﹣3|(结果精确到0.01).【考点】实数的运算;近似数和有效数字.【专题】计算题;实数.【分析】原式利用绝对值的代数意义化简,取值近似值即可.【解答】解:原式=﹣2+5+4﹣3=﹣2+9﹣3≈3.06.【点评】此题考查了实数的运算,以及近似值与有效数字,熟练掌握运算法则是解本题的关键.21.如果把棱长分别为3.14cm,5.24cm的两个正方体铁块熔化,制成一个大的正方形铁块,那么这个大正方体的棱长有多大?(用一个式子表示,并用计算器计算,结果保留一位小数)【考点】立方根.【专题】计算题.【分析】根据两个小正方体的体积之和表示出大正方体的体积,开立方即可求出棱长.【解答】解:根据题意得:≈5.6(cm),则这个大正方体的棱长为5.6cm.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.22.利用计算器计算:= 10 ;(2)利用计算器计算:= 100 ;(3)利用计算器计算:= 1000 ;(4)利用计算器计算:= 1000000…(后面n个0).【考点】计算器—数的开方.【分析】(1)(2))(3)利用计算器计算出结果,再开方即可得出答案;(4)根据(1)(2)(3)的结果总结出规律,再把结果表示出来即可.【解答】解:(1)==10;(2)===100;(3)===1000;(4)=1000000…(后面n个0);故答案为:10;100;1000;1000000…(后面n个0).【点评】此题考查了数的开方,掌握被开方数的变化规律是本题的关键,是一道基础题.23.已知:+|2y+6|=0,求(1)x、y的值;(2)求(x+y)2的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】(1)根据非负数的性质列式求解即可得到x、y的值;(2)把x、y的值代入代数式进行计算即可得解.【解答】解:(1)由题意得,x﹣2=0,2y+6=0,解得x=2,y=﹣3;(2)(x+y)2=(2﹣3)2=1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.俗话说,登高望远.从理论上说,当人站在距地面h千米的高处时,能看到的最远距离约为d=112×千米.(1)金茂大厦观光厅距离地面340米,人在观光厅里最多能看多远?(精确到0.1千米)(2)某人在距地面h千米高处可看到的最远距离为33.6千米,求h的值.【考点】算术平方根.【专题】应用题.【分析】(1)根据能看到的最远距离约为d=112×千米,可得答案;(2)根据能看到的最远距离约为d=112×千米,可得答案.【解答】解:(1)当h=340m=0.34km时,d=112×≈65.3(km),答:人在观光厅里最多能看65.3km;(2)当d=33.6km时,h=()2=0.09(km),答:h是0.09km.【点评】本题考查了算术平方根,利用了开方运算.25.在做浮力实验时,小华用一根细线将一正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,并用一量筒量得被铁块排开的水的体积为50.65cm3,小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.62cm.(1)求铁块的棱长.(用计算器计算,结果精确到0.1cm)(2)求烧杯内部的底面半径.(用计算器计算,结果精确到0.1cm)【考点】立方根;近似数和有效数字.【分析】(1)被铁块排开水的体积即为铁块的体积,利用立方根定义求出铁块的棱长即可;(2)由圆柱的体积公式求出底面半径即可.【解答】解:(1)根据题意得:铁块的棱长为≈3.7(cm),答:铁块的棱长为3.7cm;(2)设烧杯内部的底面半径为xcm,根据题意得:πx2•0.62=50.65,解得:x≈5.1或x≈﹣5.1(舍),答:烧杯内部的底面半径约为5.1cm.【点评】此题考查了算术平方根,弄清题意是解本题的关键.26.探究发散:(1)完成下列填空①= 3 ,②= 0.5 ,③= 6 ,④= 0 ,⑤= ,⑥= ,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来:若a≥0,=a;若a<0,=﹣a.(3)利用你总结的规律,计算:①若x<2,则= 2﹣x ;②= π﹣3.14 .【考点】二次根式的性质与化简;二次根式的定义.【专题】计算题.【分析】(1)运用二次根式的性质:=a(a≥0),可以直接写出结果.(2)根据(1)题的结果进行分析发现规律,然后写出规律.(3)运用(2)中的规律进行计算.【解答】解:(1)①=3,②=0.5,③==6,④=0,⑤==,⑥==;(2)不一定等于a,当a≥0时,=a;当a<0时,=﹣a;(3)①∵x<2,∴x﹣2<0,∴=2﹣x;②∵3.14﹣π<0,∴=π﹣3.14.【点评】本题考查的是二次根式的性质,(1)题根据二次根式的性质进行计算.(2)题由(1)题计算的结果找出规律,并把规律写出来.(3)题运用(2)的规律化简求值.。

相关文档
最新文档