材料力学性能拉伸试验报告
材料力学实验拉伸实验报告

材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。
拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。
本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。
实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。
实验装置主要由拉伸试验机、测力计和长度计组成。
首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。
在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。
实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。
首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。
随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。
当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。
在过屈服点后,材料进入了塑性变形阶段。
我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。
这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。
在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。
然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。
这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。
我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。
一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。
结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。
根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。
材料力学性能拉伸试验报告

材料力学性能拉伸试验报告材化08李文迪40860044. . .[试验目的]1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2. 测定低碳钢的应变硬化指数和应变硬化系数。
[试验材料]通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法:1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。
1.2热处理状态及组织性能特点简述:1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀的冷却称为退火。
特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。
1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正火。
特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。
1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。
特点:硬度大,适合对硬度有特殊要求的部件。
1.3试样规格尺寸:采用R4试样。
参数如下:1.4公差要求[试验原理].. ..1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。
当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况。
当屈服到一定下,试样继续伸长,材料处在屈服阶段。
此时可记录下屈服强度ReL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。
此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。
但是断裂后的残余变形比原来降低了。
这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。
拉伸试验报告范文

拉伸试验报告范文一、引言拉伸试验是一种常用的力学试验方法,旨在评估材料的拉伸性能和力学特性。
拉伸试验通过施加力来延长和收缩材料,以确定其强度、延伸和断裂能力等指标,通常用于金属、塑料、橡胶等材料的品质检验和设计工作。
本报告对其中一种金属材料进行了拉伸试验,并对试验结果进行了分析和总结,以评估材料的力学性能和适用范围。
二、试验目的通过拉伸试验,目的是获取该金属材料的力学性能数据,包括抗拉强度、屈服强度、断裂伸长率和弹性模量等参数,以确定其质量标准和应用领域。
三、试验装置及步骤试验装置包括拉伸试验机、夹具和测量仪器等。
试验步骤如下:1.将试样装入夹具,并调整夹具以确保试样处于拉伸状态。
2.启动拉伸试验机,并逐渐增加加载力直至试样断裂。
3.记录试验过程中的加载力和试样的变形情况。
4.测量试样的断面尺寸,以计算抗拉强度和断裂伸长率等力学性能参数。
四、试验结果及分析根据试验得到的数据,计算得到的力学性能参数如下:1.抗拉强度:根据试验最大加载力和试样的断面积计算得出,单位为MPa。
2.屈服强度:根据试验中试样开始塑性变形时的加载力和试样的断面积计算得出,单位为MPa。
3.断裂伸长率:根据试样断裂前后标距长度的差值和初始标距长度计算得出,以百分比表示。
4.弹性模量:根据试验初期的加载力和变形量计算得出,单位为GPa。
通过对这些参数进行分析,可以评估材料的力学性能和可用性,并与标准数值进行对比,以确定材料是否符合要求。
五、结论根据本次拉伸试验的结果和分析1.该金属材料的抗拉强度为XXXMPa,屈服强度为XXXMPa,断裂伸长率为XXX%,弹性模量为XXXGPa。
2.根据国家标准或行业标准,该材料的力学性能符合/不符合相关要求。
3.根据试验结果,可以评估该金属材料的应用范围和使用限制,并建议在特定工程领域或环境中使用,以确保安全和可靠性。
六、改进建议根据本次试验的经验和结果,可以提出以下改进建议:1.进一步研究该材料的力学性能,例如疲劳寿命、应力应变曲线等,以更全面地评估其可用性。
材料力学拉伸实验报告(1)

材料力学拉伸实验报告(1)材料力学拉伸实验报告一、实验目的研究材料在拉伸力的作用下的断裂性质和机械性能,了解材料的力学行为,检验材料的质量。
二、实验原理拉伸实验是用拉伸试验机将试样沿轴向逐渐拉伸,测量试样拉伸变形量和负荷之间的关系,得到在拉伸状态下材料的力学性质和变形破坏的特征,即应力-应变曲线。
应力-应变曲线是材料拉伸性致塑性行为、弹性行为和断裂行为的表现。
三、实验步骤1.选择平均直径为10mm、长度为50mm的试验铜棒,并通过光栅仪测量试验铜棒的横截面积。
2.将试验铜棒固定在拉伸试验机上,调整夹持架,使试验铜棒不能侧向移动,确定试样的初始长度L0。
3.开始拉伸试验,逐渐增加拉力,记录铜棒的拉伸长度L和拉力F,得到应力-应变曲线。
在试验过程中,每隔一定的时间将试样停止拉伸,记录拉力和长度,检测背景温度和湿度等相关因素。
4.持续拉伸到铜棒断裂,记录材料的极限断裂力和最大断裂拉伸率。
5.将数据记录到实验记录表中。
四、实验数据处理根据实验数据计算出拉伸试验的机械性能参数,如极限强度、屈服强度、断裂拉伸率等等。
1.极限强度:σmax = Fma x / S其中,Fmax为材料拉伸到断裂的最大力;S为试验铜棒的横截面积。
2.屈服强度:σs = Fs / S其中,Fs为材料开始塑性变形前的单位应力;S为试验铜棒的横截面积。
3.断裂拉伸率:A = (Lmax - L0)/ L0 × 100%其中,Lmax为材料拉伸到断裂时的长度;L0为材料载荷前的长度。
五、实验结果分析根据实验数据计算得到的拉伸试验机械性能参数可以反映出材料的力学行为。
在拉伸实验过程中,材料首先呈现弹性变形,后进入塑性变形阶段,这个过程体现在应力-应变曲线上就是曲线急速上升然后平缓变化,然后在拉伸到达一定程度后,材料会出现颈缩现象,最终断裂。
通过拉伸实验,我们可以得到应力-应变曲线,可以直观的看到材料的力学行为并计算出其力学性能参数。
拉伸实验报告总结

拉伸实验报告总结引言:拉伸实验是材料力学性能研究中常用的一种实验方法,通过对材料进行拉伸,了解其受力性能和变形行为。
拉伸实验报告总结了实验的目的、方法、数据处理以及得出的结论,为进一步研究提供了有价值的参考。
目的:本次拉伸实验的目的是研究所用材料的拉伸性能,包括抗拉强度、屈服强度、延伸率等指标,以及材料的变形行为,从而评估其可行性和适用性。
方法:1. 实验材料准备:选取相应材料的试样,按照相关标准制备成指定尺寸的样品。
2. 实验设备准备:根据拉伸实验要求,配置拉伸试验机,确保设备的准确性和稳定性。
3. 样品加载:将试样放置在拉伸试验机上,并根据要求调整试样的夹具,保证试样受力均匀、稳定。
4. 实验过程:根据预设拉伸速度开始实验,并记录下拉伸力和伸长量的实时数据。
5. 数据处理:计算拉伸强度、屈服强度和延伸率,并绘制应力-应变曲线。
结果与分析:根据实验数据,我们可以得到应力-应变曲线,从而分析材料的力学性能表现。
1. 拉伸强度:拉伸强度是材料在断裂之前所能承受的最大拉伸应力。
通过拉伸实验,我们可以得到材料的拉伸强度,并将其与其他同类材料进行对比,评估材料的强度性能。
2. 屈服强度:屈服强度是指材料在拉伸过程中出现塑性变形开始的应力。
通过应力-应变曲线的分析,可以准确得到材料的屈服强度,并评估其塑性变形能力。
3. 延伸率:延伸率反映了材料在拉伸过程中的延展性能。
它是指材料在断裂之前伸长的长度与原始长度之比。
通过延伸率的测量,我们可以了解材料的延展性,并判断其适用性。
结论:通过本次拉伸实验,我们得出了以下结论:1. 根据应力-应变曲线分析,所用材料的拉伸强度较高,具备较好的强度性能。
2. 材料的屈服强度属于常见范围内,具备一定的塑性变形能力。
3. 材料的延伸率较高,具备较好的延展性能。
我们的实验结果表明所用材料在拉伸方面具备良好的性能,在相关领域有广泛的应用前景。
但是,在实际应用中,还需考虑材料的其他性能指标,例如耐磨性、耐腐蚀性等,以全面评估其可行性和适用性。
力学拉伸实验报告实验

一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。
二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。
在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。
2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。
通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。
三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。
2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。
四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。
b. 设置合适的加载速率和采样频率,开始施加拉力。
c. 记录载荷和位移数据,绘制应力-应变曲线。
d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。
2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。
b. 设置合适的加载速率和采样频率,开始施加压力。
c. 记录载荷和位移数据,得到应力-应变关系曲线。
d. 观察试样的变形情况,记录压缩过程中的各阶段特征。
五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。
2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。
六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。
实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。
这些结果为材料的工程应用提供了重要参考。
拉伸实验报告结论

拉伸实验报告结论拉伸实验报告结论引言:拉伸实验是材料力学中常用的一种实验方法,通过施加外力对材料进行拉伸,以研究材料的力学性能和变形行为。
本文旨在总结拉伸实验的结果,并得出结论,以便更好地理解材料的力学特性。
实验方法:本次实验选取了不同材料的标准试样进行拉伸实验,通过在试样上施加均匀的拉力,并记录下拉力与试样伸长量之间的关系。
实验过程中,我们使用了万能试验机,通过控制试样的伸长速度和记录拉力数据,得出实验结果。
实验结果:通过对各种材料进行拉伸实验,我们得到了以下结果:1. 材料的强度:拉伸实验可以反映材料的强度,即材料在受力下的抗拉能力。
实验结果显示,不同材料的强度存在明显的差异。
例如,金属材料通常具有较高的强度,而塑料材料则具有较低的强度。
这是由于金属材料内部的结晶结构和金属键的特性决定的。
因此,在工程设计中,需要根据材料的强度选择合适的材料。
2. 材料的延展性:拉伸实验还可以反映材料的延展性,即材料在受力下的变形能力。
实验结果显示,不同材料的延展性也存在明显的差异。
金属材料通常具有较好的延展性,可以在受力下发生塑性变形,而塑料材料则具有较差的延展性,容易发生断裂。
这是由于金属材料内部的晶粒滑移机制和塑料材料的分子结构决定的。
因此,在工程设计中,需要根据材料的延展性选择合适的材料。
3. 材料的断裂模式:拉伸实验还可以观察材料的断裂模式。
实验结果显示,不同材料在拉伸过程中会出现不同的断裂形态。
金属材料通常呈现出韧性断裂,即在拉伸过程中会出现颈缩现象,并最终发生断裂。
而塑料材料则通常呈现出脆性断裂,即在拉伸过程中会突然发生断裂,没有明显的颈缩现象。
这是由于金属材料内部的位错运动和塑料材料的分子排列方式决定的。
结论:通过拉伸实验,我们可以得出以下结论:1. 不同材料具有不同的强度和延展性,需要根据具体应用选择合适的材料。
2. 金属材料通常具有较高的强度和较好的延展性,适用于要求高强度和耐磨性的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学性能拉伸试验报告材化08李文迪40860044[试验目的]1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2. 测定低碳钢的应变硬化指数和应变硬化系数。
[试验材料]通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法:1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。
1.2热处理状态及组织性能特点简述:1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀的冷却称为退火。
特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。
1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正火。
特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。
1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。
特点:硬度大,适合对硬度有特殊要求的部件。
1.3试样规格尺寸:采用R4试样。
参数如下:1.4公差要求[试验原理]1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。
当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。
此时可记录下屈服强度R。
当屈服到一定eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。
此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。
但是断裂后的残余变形比原来降低了。
这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。
当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。
[试验设备与仪器]1.1试验中需要测得:(1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。
(有万能材料试验机给出应力-应变曲线)(2)两个个直接测量量:试样标距的长度 L o;直径 d。
1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为0.02mm。
1.3检测工具:万能材料试验机 WDW-200D。
载荷传感器,0.5级。
引伸计,0.5级。
注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。
注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。
1.4设备介绍:万能材料试验机 WDW-200D。
主要性能指标: 最大试验力:200kN试验力准确度:优于示值的±1% (精密级为±0.5%)力值测量范围:最大试验力的0.4%~100%变形测量准确度:在引伸计满量程的2%~100%范围内优于示值的±1% (精密级为±0.5%)[试验步骤](1)用游标卡尺测量试样的初始直径d(在相互垂直的两个方向上测量后取平均值)。
(2)测量试样的标距的初始值L,并标识试样标距(划线)。
o(3)装卡引伸计至试样的标距内。
(4)将试样安装在试验机的上下头之间。
(5)由计算机控制。
输入必要参数,完成程序调试。
(6)启动测试过程,由计算机记录载荷-伸长数据。
(7)在载荷达到最大值时(出现颈缩)取下引伸计。
(8)加载直至试样断裂,取下试样,继续测量。
(9)用游标卡尺测量试样断后最小直径d u和标距长度L u 。
注意:1.用细墨线分别标记原始标距,标记应准确到士0.5mm。
2.引伸计夹头分离速率尽量保持恒定,且速率保持在6 /min,保持直至拉断。
3.断后测量时应尽可能对准断口,使试样保持完整。
4.应测量颈缩最小处相互垂直的两个方向的直径取其平均值。
5.L u的测量需要至少3组数据,用来计算误差是否在国标范围内。
[试验结果及讨论]一.原始数据表1:试验前各项测量量二.试验后数据:表2:试验后断口处直径测量表3:试验后断后标距测量注1:断口处在端口,无法测得Lu。
表4:均匀塑性变形阶段试样载荷与形变数据表5:试样1的应力应变曲线及测试数据序号原始标距规格最大力非比例伸长率最大试验力抗拉强度规定非比例延伸强度mm mm%kN MPa MPa250ф107.28452645.182575.2737Rp0.2: 378.3168表6:试样2的应力应变曲线及测试数据序号原始标距规格最大力非比例伸长率最大试验力抗拉强度下屈服强度mm mm%kN MPa MPa 350ф9.9823.2848930.394388.5402227.0213表7:试样3的应力应变曲线及测试数据三.数据处理1. 拉伸前试样初始横截面积:2014o S d π= 可以计算得2. 断后颈缩处最小面积:214u u S d π=对断面收缩率的计算:22100%1o u u o oS S d Z S d -=⨯=-得出试样断面收缩率:试样1:65.54% 试样2:69.64% 试样3:71.91%3.断后标距测量的方差:()()221n 1x x x x n 1⎡⎤-+⋯+-⎢⎥⎣⎦-由于max 0.18L ∆=小于0.25,根据国标可知 Lu 可用,故求出不确定度UcLu :cLu2U 100%0.015%LuuS L =±⨯=± 4. 抗拉强度R m,如表5,6,7所示,由抗拉强度公式:max m oP R S =Rp 由0.2%法可得:5. 屈服强度(规定非比例延伸强度R P ):用0.2%法作出平行线,可得:6. H OOLOMON 公式的拟合:用于在达到最大载荷即颈缩处发生前的均匀塑性变形阶段,工程应力σ,工程应变ε ,真应力S ,真应变 l 之间满足:(1)ln(1)ll S dle l σεε=+==+⎰由此导出了H OOLOMON 公式:nS Ke=K 为应变硬化系数,n 为应变硬化指数。
现在根据表4的数据进行拟合,先根据公式oFS σ=,ol l ε∆=求出工程应力应变,然后根据上述公式,将工程应力应变根据公式转变为真应力应变后,式子两边同取L N ,进行拟合后,结果如下:19.97951-2.096720.12227-3.2694419.91564-1.87847 19.95318-2.2172520.06993-3.5030219.87985-2.03801 19.92183-2.3532620.0536-3.5747119.85735-2.13481 19.83952-2.6763120.02028-3.719619.83158-2.24199 19.78126-2.8818219.97785-3.9064219.80185-2.36025 19.70455-3.1330619.91691-4.1867319.76679-2.4919619.59798-3.4636119.80201-4.780419.72562-2.6391320.00129-1.9934520.16332-3.076119.61117-3.01245 19.97951-2.096720.12227-3.2694419.53005-3.26007图1:第一组拟合图图2:第二组拟合图图3:第三组拟合图由上述三个图可知:对于1:ln K=20.53,K=824.262MP A,n=0.263小于1,R2=0.994,有效对于2:ln K=20.81,K=1090.606MP A,n=0.213小于1,R2=0.999,有效对于3:ln K=20.43,K=745.823MP A,n=0.270小于1,R2=0.993,有效所以拟合成功。
7.对于修约的验证:根据精度要求:由于maxmax2m um uR P dR P d∆∆∆=+(推导详情见附录)试样1:0.025%20.01185.81mmRR∆=+=所以R m=0.0118*429.5518=5.069MPa大于5MPa,不符合修约要求试样2:0.025%20.01245.41mmRR∆=+=所以R m=0.0124*575.2737=7.133MPa大于5MPa,不符合修约要求试样3:0.025%20.01255.30mmRR∆=+=所以R m=0.0124*388.5402=4.857MPa小于5MPa,符合修约要求所以综上所述,只有试样3的R m结果符合规定。
8.结果分析:试样1,试样2,试样3通过以上7项计算可知:总体强度试样2〉试样1〉试样3,从断口也可以看出,试样2的强度大。
并且,根据LN S-LNE拟合图的数据可知,应变硬化系数也是试样2〉试样1〉试样3。
故根据报告开头叙述的热处理特点,我们可以肯定的得出结论:试样1为正火处理的低碳钢;试样2为淬火处理的低碳钢;试样3为退火处理的低碳钢。
四.综合报告开头叙述的热处理特点以及上述计算结果,我们可以肯定的得出结论:试样1为正火处理的低碳钢;试样2为淬火处理的低碳钢;试样3为退火处理的低碳钢。
[参考文献]1.材料力学试验讲义,2007年1月.2.中华人民共和国国家标准,关于金属力学性能测试方法的标准,GB/T 228-2002.3.材料力学行为,杨王玥,强文江编,化学工业出版社.4.金属材料拉伸试验的不确定度评定,凌霄,理化检验-2004年6月第6期[附录]精度详细计算推导1.22100%1o u uo o S S d ZS d-=⨯=-2.0.20.200.20.202R P d R P d ∆∆∆=+3.maxmax2m um u R P d R P d ∆∆∆=+。