力学性能实验报告
力学性能实验报告

力学性能试验报告LZ GR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
试验标准号:GB/T232 力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告
力学性能试验报告GR06-99-2008。
材料力学性能测试实验报告

材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。
应变定义为其中△l是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图2所示。
图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。
直线部分的斜率E就是杨氏模量、σs点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图4所示。
图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。
然后利用式(4)计算弯曲弹性模量。
二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。
实验报告材料力学性能测试

实验报告材料力学性能测试实验目的:通过对不同材料的力学性能进行测试,评估其机械强度以及抗压、抗拉等能力,为材料选择和应用提供依据。
实验方法:1. 准备样本:选取不同材料的标准样本(例如金属、塑料、玻璃等),保证样本尺寸一致。
2. 强度测试:使用万能材料试验机对样本进行拉伸和压缩测试,记录其最大拉力和最大压力值。
3. 杨氏模数测试:利用杨氏模量试验机对样本进行弯曲试验,测得样本的弯曲刚度和屈服强度。
4. 硬度测试:使用洛氏硬度计等硬度测试仪器对样本进行硬度测试,得到相应硬度值。
实验结果:根据实验方法进行测试,得到以下结果:1. 强度测试结果:金属样本的最大拉力为100N,最大压力为200N;塑料样本的最大拉力为80N,最大压力为150N;玻璃样本的最大拉力为90N,最大压力为180N。
2. 杨氏模数测试结果:金属样本的弯曲刚度为500N/mm,屈服强度为400N/mm;塑料样本的弯曲刚度为300N/mm,屈服强度为200N/mm;玻璃样本的弯曲刚度为400N/mm,屈服强度为300N/mm。
3. 硬度测试结果:金属样本的洛氏硬度为80;塑料样本的洛氏硬度为60;玻璃样本的洛氏硬度为70。
实验讨论:从实验结果可以看出,金属样本在强度、刚度和硬度方面表现出较高的数值,具有较好的机械性能。
塑料样本在各项测试指标中表现适中,而玻璃样本在拉伸和硬度方面较弱。
这些结果与我们对材料性质的常识相符。
实验结论:根据实验结果,我们可以得出以下结论:1. 对于需要具备高机械强度和刚度的应用场景,金属材料是一个较好的选择。
2. 对于一些耐腐蚀性、电绝缘性等特殊要求的应用,塑料材料是一个适宜的选择。
3. 玻璃材料在某些特定场景下可以作为透明、坚固的材料选用,但其机械性能相对较弱,需谨慎选择使用。
实验改进:1. 增加样本数量:为了提高实验的可靠性和准确性,可以增加样本数量以扩大样本数据集。
2. 引入其他测试方法:除了上述提及的测试方法,可以引入其他力学性能测试方法,如拉伸变形率、材料疲劳寿命等指标,以更全面地评估材料性能。
材料力学性能实验

实验一、金属光滑试样静拉伸试验
过D作弹性直线段的平行线DB,交曲线于B点,B点所对应的 力值即Fp0.2。
F
Fp0.2
0.2%Le.n
图1-2 Fp0.2的确定
实验一、金属光滑试样静拉伸试验
3.抗拉强度Rm 将试样加载至断裂,由测力度盘或拉伸曲线上读出试样拉 断前的最大载荷Fm,Fm所对应的应力即为抗拉强度Rm。 Rm=Fm/S0 (N/mm2) 4.断后伸长率A 试样拉断后,标距的伸长与原始标距的百分比,即 A=(Lu-L0)/L0 *100% 式中,L0为试样原始标距,Lu为试样拉断后的标距。 由于试样断裂位置对A有影响,其中以断在正中的试样伸 长率最大。因此,测量断后标距部分长度Lu时,规定以断在正 中试样的L1为标准,若不是断在正中者,则应换算到相当于在 正中的Lu。 为此,试样在拉伸前应将标距部分划为10等分,划上标记。 测量Lu时分为两种情况:
强度,用以表征材料在试验力作用下抵抗微量塑性变形的抗力。
图解法:在拉伸过程中绘制具有足够大倍数的力-伸长曲线(见
图1-2)。曲线高度应使规定非比例伸长的力值Fp0.2处于力轴的
1/2以上。伸长放大倍数n的选择应使图中OD段长度不小于5mm。
自弹性直线段与横座标轴的交点O起,截取一段相应于规定非
比例伸长的OD(OD=0.2%Len,Le为引伸计计算距)。
实验二、系列冲击试验
JBD-30夏氏冲击试验机的使用方法如下: 实验前对试验机进行检查并进行空击试验,较正指针零点。 安放试样时采用专用样规,以保证试样缺口与支座跨距中心相重 合。 试验时,首先将摆锤用支撑铁支托,使其偏离中心位置,在 支座上放好试样。然后按取摆按钮将摆锤举起。然后,按冲击按 钮,使摆锤落下冲断试样。当摆锤冲断试样后运动到最高点并向 回摆动时,按刹车按钮,使摆锤停止摆动。记录试验机指针在表 盘上所指的数值,即为冲断试样所消耗的冲击功Aku(或Akv)以 此计计算试样的冲击韧性aku(或akv)。整个操作过程都应特别注意 安全,防止摆锤和击断的试样飞出伤人。 2. 加热及冷却介质与装置 (1)介质:室温~90℃用水浴。80℃~200℃可用油浴,室温 以下用干冰或液氮和低凝固点液体的混合物作为冷却剂。本实验
材料力学性能实验报告

大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。
2、掌握金属材料屈服强度σ0.2的测定方法。
3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。
4、简单了解万能实验拉伸机的构造及使用方法。
二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。
此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。
通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。
在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。
用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。
三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。
液压式万能实验机是最常用的一种实验机。
它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。
(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。
其加载方式是液压式的。
在机座上装有两根立柱,其上端有大横梁和工作油缸。
物理实验报告基本力学(3篇)

第1篇一、实验目的1. 掌握力学实验的基本操作方法和实验技巧。
2. 学习使用力学实验仪器,如天平、弹簧测力计、刻度尺等。
3. 通过实验验证力学基本定律,如牛顿运动定律、胡克定律等。
4. 培养实验数据分析、处理和总结的能力。
二、实验原理1. 牛顿运动定律:物体受到的合外力等于物体的质量乘以加速度,即 F=ma。
2. 胡克定律:弹簧的弹力与弹簧的伸长量成正比,即 F=kx,其中 k 为弹簧的劲度系数,x 为弹簧的伸长量。
3. 阿基米德原理:浸在液体中的物体受到的浮力等于物体排开的液体的重力,即F浮 = G排= ρ液体gV排,其中ρ液体为液体的密度,g 为重力加速度,V 排为物体排开液体的体积。
三、实验仪器1. 天平:用于测量物体的质量。
2. 弹簧测力计:用于测量力的大小。
3. 刻度尺:用于测量物体的长度。
4. 金属小球:用于验证牛顿运动定律。
5. 弹簧:用于验证胡克定律。
6. 烧杯:用于验证阿基米德原理。
7. 水和盐:用于验证阿基米德原理。
四、实验步骤1. 验证牛顿运动定律(1)将金属小球放在水平面上,使用天平测量小球的质量。
(2)用弹簧测力计测量小球所受的重力。
(3)改变小球的质量,重复步骤(2),记录数据。
(4)根据 F=ma,计算小球的加速度。
2. 验证胡克定律(1)将弹簧一端固定在支架上,另一端连接弹簧测力计。
(2)逐渐增加弹簧的伸长量,记录弹簧测力计的示数。
(3)计算弹簧的劲度系数 k。
3. 验证阿基米德原理(1)在烧杯中装入适量的水,将金属小球浸入水中,使用天平和刻度尺测量小球的质量和体积。
(2)将金属小球浸入盐水中,重复步骤(1),记录数据。
(3)根据阿基米德原理,计算小球在水和盐水中所受的浮力。
五、实验数据及处理1. 验证牛顿运动定律物体质量:m = 0.2 kg重力:F = 1.96 N加速度:a = F/m = 9.8 m/s²2. 验证胡克定律弹簧伸长量:x = 0.1 m弹簧测力计示数:F = 0.98 N劲度系数:k = F/x = 9.8 N/m3. 验证阿基米德原理水中浮力:F水 = G排= ρ水gV排 = 0.98 N盐中浮力:F盐 = G排= ρ盐水gV排 = 1.02 N1. 实验验证了牛顿运动定律,物体受到的合外力与其质量成正比,与加速度成正比。
西安交通大学材料力学性能试验报告——电子拉力机橡胶拉伸试验

西安交通⼤学材料⼒学性能试验报告——电⼦拉⼒机橡胶拉伸试验西安交通⼤学实验报告成绩第页(共页)课程:⾼分⼦物理实验⽇期:年⽉⽇专业班号材料94 组别交报告⽇期:年⽉⽇姓名李尧学号09021089 报告退发:(订正、重做)同组者教师审批签字:实验名称:电⼦拉⼒机测定聚合物的应⼒-应变曲线⼀.实验⽬的1.掌握拉伸强度的测试原理和测试⽅法,掌握电⼦拉⼒机的使⽤⽅法及共⼯作原理;2.了解橡胶在拉伸应⼒作⽤下的形变⾏为,测试橡胶的应⼒-应变曲线;3.通过应⼒-应变曲线评价材料的⼒学性能(初始模量、拉伸强度、断裂伸长率);4.了解测试条件对测试结果的影响;5.熟悉⾼分⼦材料拉伸性能测试标准条件。
⼆.实验原理随着⾼分⼦材料的⼤量使⽤,⼈们迫切需要了解它的性能。
⽽拉伸性能是⾼分⼦聚合物材料的⼀种基本的⼒学性能指标。
拉伸试验是⼒学性能中⼀种常⽤的测试⽅法,它是在规定的试验温度、湿度和拉伸速度下,试样上沿纵向施加拉伸载荷⾄断裂。
在材料试验机上可以测定材料的屈服强度、断裂强度、拉伸强度、断裂伸长率。
影响⾼聚物实际强度的因素有:1)化学结构。
链刚性增加的因素都有助于增加强度,极性基团过密或取代基过⼤,阻碍链段运动,不能实现强迫⾼弹形变,使材料变脆。
2)相对分⼦质量。
在临界相对分⼦质量之前,相对分⼦质量增加,强度增加,越过后拉伸强度变化不⼤,冲击强度随相对分⼦质量增加⽽增加,没有临界值。
3)⽀化和交联。
交联可以有效增强分⼦链间的联系,使强度提⾼。
分⼦链⽀化程度增加,分⼦间作⽤⼒⼩,拉伸强度降低,⽽冲击强度增加。
4)应⼒集中。
应⼒集中处会成为材料破坏的薄弱环节,断裂⾸先在此发⽣,严重降低材料的强度。
5)添加剂。
增塑剂、填料。
增强剂和增韧剂都可能改变材料的强度。
增塑剂使⼤分⼦间作⽤⼒减少,降低了强度。
⼜由于链段运动能⼒增强,材料的冲击强度增加。
惰性填料只降低成本,强度也随之降低,⽽活性填料有增强作⽤。
6)结晶和取向。
结晶度增加,对提⾼拉伸强度、弯曲强度和弹性模量有好处。
金属材料力学性能实验报告

金属材料力学性能实验报告姓名:班级:学号:成绩:实验名称实验一金属材料静拉伸试验实验设备1)电子拉伸材料试验机一台,型号HY-100802)位移传感器一个;3)刻线机一台;4)游标卡尺一把;5)铝合金和20#钢。
试样示意图图1 圆柱形拉伸标准试样示意图试样宏观断口示意图图2 铝合金试样常温拉伸断裂图和断口图(和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)图3 正火态20#钢常温拉伸断裂图和断口图(可以明显看出,试样在拉断之后在断口附近产生颈缩。
断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.009.97 9.92 10.00 10.00 10.00 10.00 9.92左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm )两试样的初始标距为050 L mm 。
表3 铝合金拉断后标距测量数据记录(单位:mm )AB BC AB+2BC 平均 12.32 23.16 58.64 58.7924.0217.4658.94测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。
测量得到铝合金拉断后的断面直径平均值为7.96mm 。
数据处理:1.20#钢正火材料(具有明显物理屈服平台的材料)20#钢正火材料试样的载荷-位移曲线试验结果见图4。
(1)由图可得各特征力值及对应的位移值分别为: 比例伸长力20.6 kN p F =;下屈服力24.5 kN el F =;最大力37.2 kN m F =; 断裂载荷27.1 kN F F =; 断裂后塑性伸长21.4 mm F L ∆=; 断裂后弹性伸长 2.4 mm e L ∆=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学性能试验报告L Z G R06-99-2008
LZGR06-99-2008
LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告LZGR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008
力学性能试验报告GR06-99-2008。