金属材料 拉伸试验 速度选择
铝合金拉伸试样表面质量及拉伸速度对拉伸性能的影响分析

铝合金拉伸试样表面质量及拉伸速度对拉伸性能的影响分析摘要:本次实验对铝合金拉伸试样表面进行破坏,从而对铝合金拉伸试样表面的拉伸性能进行分析。
文章采用具体实验分析的方法进行研究,主要研究不同表面质量以及不同拉伸速度的铝合金拉伸试样的拉伸性能。
通过实验数据分析,合理的指出了铝合金拉伸性能的质量影响和拉伸速度影响因素。
关键字;铝合金;试样检测;拉伸速度;表面质量在金属材料设计实验中,材料拉伸实验非常关键,拉伸性能也是金属材料的重要性能之一,关系到金属材料的高效应用。
而在现代金属领域当中,铝合金材料的应用非常广泛、包括电力电气行业以及航空航天领域,铝合金材料都有应用,而在铝合金材料应用的过程中,铝合金材料的拉伸性能对其自身的应用效率有十分重要的影响。
所以,当前对于铝合金材料拉伸性能的研究十分重要。
1. 铝合金拉伸试样表面质量及拉伸速度对拉伸性能影响实验为了研究铝合金表面质量和拉伸速度对铝合金拉伸性的主要影响,本文进行了实验检测,其主要实验内容具体包括以下内容;(1)实验目的设计本次实验的目的主要有两个,其中一个目的就是为了研究铝合金表面质量对铝合金材料的拉伸材料造成的影响。
而另外一个目的就是研究铝合金材料的拉伸速度对铝合金材料的拉伸造成的影响。
所以,实验设计了不同拉伸速度和不同表面质量进行拉伸性能对比。
(2)实验材料的准备以及实验方法设计实验材料和实验方法是实验检测中的重要影响因素,所以在实际的检测实验中应该对实验材料和实验方法进行设计。
本次实验中使用到的实验材料主要是铝合金材料,其型号分别为7055-T7751、5A06-H112、7055- H112。
其主要是为了研究不同表面质量的铝合金性能。
并且为了保证检测更加精准实际的性能实验中选择7055-T7751、5A06-H112、7055- H112三种铝合金板材都是30mm厚度。
并且7055-T7751、5A06-H112、7055- H112三种板材都是经过420℃温度进行退火处理的O状态试样。
金属材料拉伸标准

金属材料拉伸标准一、试验样品1.1 样品选择:选择金属材料样品时,应选用具有代表性的均匀材料,如板材、棒材、线材等。
样品应无缺陷、无氧化皮、无机械损伤等。
1.2 样品制备:样品应按照相关标准进行制备,如厚度、宽度、长度等参数应符合要求。
制备过程中应避免产生应力集中和机械损伤。
二、试验温度2.1 试验温度范围:金属材料拉伸试验应在规定的温度范围内进行,通常为室温至300℃之间。
具体温度范围应根据材料种类和试验要求确定。
2.2 温度稳定性:在试验过程中,温度应保持稳定,以避免因温度变化而影响试验结果。
可使用恒温装置来保持温度稳定。
三、试验速度3.1 试验速度范围:金属材料拉伸试验的速度应在规定范围内,通常为0.00025-10mm/min。
具体速度范围应根据材料种类和试验要求确定。
3.2 速度控制:在试验过程中,速度应保持稳定,以避免因速度变化而影响试验结果。
可使用拉伸试验机来控制速度。
四、试验仪器4.1 拉伸试验机:应使用符合相关标准的拉伸试验机,能够测量材料的拉伸强度、延伸率等参数。
4.2 引伸计:引伸计是用于测量材料变形量的装置,应按照相关标准进行选择和使用。
4.3 夹具:夹具是用于固定试样的装置,应能够保证试样在试验过程中不发生移动或变形。
五、数据处理5.1 数据记录:在试验过程中,应记录试样的原始尺寸、弹性模量、屈服强度、抗拉强度等参数。
5.2 数据处理方法:数据处理应采用合适的统计方法,如平均值、标准差等,以获得更准确的结果。
六、结果比较6.1 不同材料比较:将不同材料的试验结果进行比较,可分析材料的优缺点和适用范围。
6.2 同一材料不同处理方式比较:将同一材料经过不同处理方式的试验结果进行比较,可研究处理工艺对材料性能的影响。
七、结果应用7.1 材料性能评估:根据试验结果,可以对金属材料的性能进行评估,如强度、韧性、硬度等参数。
这些参数对于材料的选择和使用具有重要意义。
7.2 工艺优化:根据试验结果,可以对加工工艺进行优化,以提高材料的性能和生产效率。
金属材料 拉伸试验 速度选择

金属材料拉伸试验速度选择
【原创版】
目录
一、金属材料拉伸试验的重要性
二、拉伸试验中的加载速度选择
三、加载速度对试验结果的影响
四、结论
正文
一、金属材料拉伸试验的重要性
金属材料在我国的工业发展中具有举足轻重的地位,其广泛的应用领域使得金属材料的性能成为各行业关注的重点。
拉伸试验是测试金属材料性能的重要手段之一,通过对金属材料进行拉伸试验,可以获取其强度、韧性、塑性等关键性能参数,为材料选型和使用提供重要的依据。
二、拉伸试验中的加载速度选择
在金属材料的拉伸试验中,加载速度的选择十分重要。
合适的加载速度可以得到准确的试验结果,而错误的加载速度可能导致试验结果的失真,影响材料性能的判断。
选择加载速度时,需要考虑以下几个因素:
1.试验机的最大量程:根据试验机的最大量程选择合适的加载速度,使需测量力值介于所选量程范围的 20%~80% 之间,以保证试验的准确性。
2.材料的抗拉极限载荷:在拉伸试验中,应使材料的抗拉极限载荷在试验机量程的 20%~80% 之间,以确保试验过程中材料不会断裂。
3.试验的目的:不同的试验目的对加载速度的要求也不同。
例如,对于硬度试验,加载速度要相对较快;而对于拉伸试验,加载速度则要相对较慢。
三、加载速度对试验结果的影响
加载速度对金属材料拉伸试验结果具有重要影响。
通常情况下,加载速度过快可能导致试验结果偏低,而加载速度过慢则可能导致试验结果偏高。
因此,在进行拉伸试验时,应根据实际情况选择合适的加载速度。
四、结论
金属材料的拉伸试验是评估其性能的重要方法,在试验过程中,选择合适的加载速度是获取准确试验结果的关键。
金属材料表面裂纹拉伸试样断裂韧度试验方法

金属材料是工程领域中广泛应用的材料之一,其性能对于工程结构的安全性和稳定性有着重要的影响。
而金属材料的表面裂纹拉伸试样断裂韧度试验方法是评定金属材料韧性能的重要手段之一。
本文将介绍金属材料表面裂纹拉伸试样断裂韧度试验方法的具体步骤和注意事项。
一、试验目的金属材料的表面裂纹拉伸试样断裂韧度试验旨在评定金属材料在受力状态下的抗拉性能和韧性能,为工程结构设计和材料选用提供参考依据。
二、试验样品的准备1. 样品的选择:一般选用金属材料的板材作为试验样品,尺寸一般为200mm*50mm*10mm。
2. 表面处理:样品的表面应保持平整,无凹凸不平或者明显的划痕。
三、试验步骤1. 样品标记:在样品上标注好试验样品的编号和方向。
2. 制作缺口:在样品上制作缺口,缺口长度为10mm,宽度为0.5mm。
3. 夹具安装:将样品安装在试验机的夹具上,夹具的张合长度为100mm。
4. 载荷施加:在试验机上施加加载,载荷速度控制在1mm/min。
5. 记录数据:在试验过程中,记录载荷和位移的数据,以便后续分析。
四、试验注意事项1. 缺口制作:缺口的制作应该尽量避免产生裂纹,可以使用慢速切割或者加工。
2. 夹具安装:夹具的安装要稳固,保证试验过程中的样品不会出现偏移或者松动。
3. 载荷施加:载荷的施加速度要均匀,避免过快或者过慢导致试验结果的偏差。
4. 安全防护:在试验过程中,要保证操作人员的安全,并严格遵守安全操作规程。
五、试验结果分析根据试验数据,可以得到金属材料在受拉状态下的应力-应变曲线,并据此分析金属材料的屈服强度、最大应力、断裂韧性等性能指标。
通过以上试验方法,我们可以准确评定金属材料在受拉状态下的韧性能,并为工程设计和材料选用提供科学依据。
试验过程中需要特别注意安全事项,确保工作人员的安全。
希望本文对金属材料表面裂纹拉伸试样断裂韧度试验方法有所帮助。
六、试验结果分析通过表面裂纹拉伸试样断裂韧度试验得到的金属材料在受拉状态下的应力-应变曲线,可以为工程设计和材料选择提供重要参考信息。
ASTME8-13测定拉伸试验的标准试验-培训讲稿

屈服特性的试验速度
屈服特性可包括屈服强度和屈服点伸长。
除非另有规定,任何常规试验速度可使用 至规定屈服强度一半或规定抗拉强度四分 之一,以其中最小者为准。在这一点以上 的速度应在规定的范围内。
如果用来确定屈服强度、屈服点伸长、抗 拉强度和断面收缩率时要求不同速度范围, 应在产品标准中说明。
控制方法
对于脆性材料,标距两端应使用半径大的过渡圆弧
试样表面光洁度应按适用的产品标准规定
六、试样类型
1、平板试样
试样适用于板材、型材和 平板材料公称厚度5mm以 上的金属材料试验。
平板试样图
平板试样尺寸要求
试样类型
2、薄板试样
试样用于薄板、板材、扁 平线材、带材、条、环、 矩形和型材的公称厚度在 0.13~19mm范围内的金属 材料试验。
符合E8M端部尺寸要求
E8和E8M试样图
E8和E8M试样尺寸的要求
试样类型
4、线材、条材和棒材试样 对于圆形钢丝、盘条和棒
材,应使用全截面试样。
对于测量直径小于4mm的 线材伸长率的标距应符合 产品标准的规定。
5、矩形截面棒材试样
全截面试样----允许减小试 验部分宽度,以使断裂发 生在标记之内,但减少宽 度不应小于原始宽度90%。
薄板夹具
丝材夹具
设备
尺寸测量装置:用于测量直线尺寸的千分尺或其它 装置,至少应有每个要求测量尺寸最小单位一半的 精度。
引伸计:应符合标准E83对本试验步骤中规定级别 的引伸计。
标距等于或小于试样名义标距的引伸计可以用来测 定屈服强度。
对于全截面的试样(丝材、线材和棒材),测定屈 服性能的引伸计标距不应超过夹具间距离的80%。
三、意义及用途
GB与ASTM金属材料拉伸试验方法对比

GB与ASTM金属材料拉伸试验方法对比1.1 拉伸试样的制作对于拉伸试样的尺寸以及试样的取样位置,国标与ASTM E8/E8M还是存在较多差别的。
GB228金属材料拉伸试验试件制作通常根据产品的特点,将平行长度段试件按截面形状分为矩形、圆形和异形(例如:多边形及管形)三类。
表1 GB228拉伸试样取样标准厚度为0.1mm~3 mm的薄板和薄带的拉伸试样采用全截面矩形试样,可采用比例试样和非比例试样,比例试样又可分为短比例试样(k=5.65)和长比例试样(K=11.3),二者都可使用的条件下应优先使用短比例试样。
对于宽度等于或小于20mm的金属制品,试样宽度可以相同于产品宽度。
对于宽度大于20mm的金属制品,其拉伸试样的宽度应机加工宽度为10mm、12.5mm、15mm、20mm(非比例试样为12.5mm、20mm)等6种不同的尺寸规格。
厚度大于或等于3mm的板材和扁材及直径和厚度大于或等于4mm的线材、棒材和型材的拉伸试样可采用矩形和圆形截面,可采用比例试样和非比例试样,比例试样又可分为短比例试样(k=5.65)和长比例试样(K=11.3),二者都可使用的条件下应,优先使用短比例试样(见GB/T 228附录B)。
通常情况下金属材料拉伸试样采用全截面试样,当直径或厚度大于25mm而试验设备能力不足时,可进行机加工减薄成比例试样,矩形截面试样推荐宽厚比不超过8:1;圆形截面试样其平行长度的直径不应小于3 mm。
直径和厚度小于4mm的线材、棒材和型材的拉伸试样采用不经机加工全截面矩形非比例试样。
ASTM E8/E8M和A370标准中均要求尽可能的采用全厚度或全截面试样,规定了3种矩形截面试样和5种圆形截面试样供选择使用。
矩形截面试样均为板材拉伸试样,适用于薄板、带材、扁线材和板材。
其与GB/228中的矩形试样相比zui大的特点是尺寸规格较少,只有3种且是定标距试样,无比例和非比例试样之说。
其宽度为40 mm的试样适应于厚度≥5 mm的板材,宽度为12.5 mm的试样适应于厚度≤19 mm的板材,宽带为6 mm的试样适应于厚度≤6 mm的板材。
金属材料的拉伸与压缩试验.

试验一金属材料的拉伸与压缩试验1.1概述拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式:图1.11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L0=5.650S = π045S d 0——试验前试件计算部分的直径;S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
1.2拉伸实验一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。
JIS Z 2241-1998 金属材料拉伸试验方法(中文版)

日本工业标准JISJIS Z 2241-1998导言本日本工业标准是基于ISO 6892:1984金属材料――拉伸试验,通过翻译国际标准的相应部分制定而成,对国际标准的技术内容未作修改。
在这次修订中,把应力速率的上限规定为50%/min,为的是和国际标准保持一致。
本标准也规定了应力速率为>50%/min~80%/min内容,为的是和日本工业标准的材料和产品标准保持一致。
1 适用范围此日本工业标准规定了金属材料拉伸试验方法。
注:以下标准为相应的国际标准:ISO 6892:1984金属材料――拉伸试验2 引用标准本标准在条文中适当处引用了下列标准中的条款。
应该引用下列标准的最新版本。
JIS B 7721 拉力试验机应力测量系统的校验JIS B 7741 单轴试验用引伸计的标定JIS G 0202 铁和钢术语(试验)JIS Z 2201 金属材料的拉伸试验试样JIS Z 8401 数字修约规则3 定义JIS G 0202中规定相关定义和以下定义适用于本标准:a)标距【gauge length】测量伸长用的试样圆柱或棱柱部分的长度。
1)原始标距【original gauge length(L o)】施力前的试样标距。
2)断后标距【final gauge length(L u)】试样断裂后的标距。
b)引伸计标距【extensometer gauge length(L e)】用引伸计测量试样伸长时所用试样的平行长度部分长度(这个长度不同于L o,应该比b、d或管状试样的外径大,但是要比试样平行长度部分短。
这里,b:板状试样平行部分的宽度,或从管材轴向上截取的试样的平均宽度,或棒状试样的宽度。
d:圆形截面试样的直径。
c)伸长【elongation】试验期间任一时刻原始标距的增量。
d)伸长率(%)【percentage elongation】原始标距的伸长与原始标距(L o)之比的百分率。
1)残余延伸率(%)【percentage permanent elongation】卸载后原始标距的伸长与原始标距(L o)之比的百分率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料拉伸试验速度选择
怎样选择金属材料拉伸试验的速度
在材料工程领域,了解金属材料的力学性能对于材料的设计和使用至
关重要。
而拉伸试验是评价金属材料力学性能中最为常见的一种方法。
通过在金属材料上施加拉伸载荷,并观察材料的变形和断裂行为,可
以得到金属材料的一系列力学性能参数。
而在进行拉伸试验时,速度
选择是十分重要的,因为它会直接影响到试验结果的精度和可靠性。
在进行金属材料拉伸试验时,速度选择需要考虑以下几个方面:
1. 材料的性质和应用
不同的金属材料在应力应变曲线上表现出不同的特点,有些材料具有
良好的塑性延展性,而有些材料则更具有脆性。
不同的金属材料在高
速和低速下的应变硬化行为也会有所不同。
在选择拉伸试验速度时,
需要考虑被测试材料的性质和应用环境,以确保试验结果的可靠性和
实用性。
2. 试验目的
进行拉伸试验时,可能有不同的试验目的,比如确定金属材料的屈服
强度、抗拉强度、断裂伸长率等力学性能参数。
针对不同的试验目的,
选择合适的拉伸试验速度也会有所不同。
比如在确定金属材料的屈服
强度时,较慢的速度有助于观察材料产生塑性变形的过程;而在进行
断裂韧性评价时,较快的速度可以更好地模拟实际工程中的应力速率。
3. 数据分析需求
在拉伸试验中得到的应力应变曲线通常用于分析金属材料的力学性能。
而在进行试验速度选择时,也需要考虑后续的数据分析需求。
比如在
评估金属材料的应变硬化指数时,通常需要在不同速度下进行拉伸试验,以绘制应变硬化曲线进行分析。
试验速度的选择需要根据对试验
数据的后续分析需求进行综合考虑。
4. 设备条件
拉伸试验设备的性能和条件也会影响试验速度的选择。
一些设备可能
有速度范围的限制,或者在不同速度下的控制精度有所不同。
在选择
拉伸试验速度时,也需要考虑设备本身的条件和限制。
选择金属材料拉伸试验的速度需要综合考虑材料的性质、试验目的、
数据分析需求和设备条件。
在实际操作中,可以根据具体情况进行试
验速度的选择,并注意在试验报告中详细记录试验速度和相应的试验
条件,以保证试验结果的可靠性和实用性。
对于工程实践中的金属材
料应力应变性能评价,合理选择试验速度是至关重要的。
在个人观点上,我认为金属材料的拉伸试验速度选择是一项非常细致
且需要考虑多方面因素的工作。
在日常实践中,需要对所测试的金属
材料进行深入的了解,结合实际应用需求,灵活选择试验速度,以获
得更精准的力学性能参数。
合理的试验速度选择也需要在试验数据分
析和结果解读上进行谨慎考虑,以准确评价金属材料的应力应变性能,为材料设计和工程应用提供可靠的数据支持。
金属材料拉伸试验的速度选择是一项综合性的工作,合理选择试验速
度对于获取准确的力学性能参数至关重要。
在实际工作中,需要根据
材料性质、试验目的、数据分析需求和设备条件进行综合考虑,以确
保试验结果的可靠性和实用性。
在选择金属材料拉伸试验的速度时,
需要综合考虑多个因素,确保试验结果的可靠性和实用性。
需要考虑
被测试金属材料的性质和应用环境。
不同金属材料具有不同的塑性和
脆性特点,在高速和低速下的应变硬化行为也会有所不同。
选择合适
的试验速度有助于准确评价金属材料的力学性能。
试验目的也是影响速度选择的重要因素。
比如在评定屈服强度时,较
慢的试验速度有助于观察材料产生塑性变形的过程;而在评价断裂韧
性时,较快的速度可以更好地模拟实际工程中的应力速率。
在选择试
验速度时,需要根据具体的试验目的进行综合考虑。
另外,对试验数据的后续分析需求也需要考虑进去。
拉伸试验得到的
应力应变曲线通常用于分析力学性能参数。
在评估金属材料的应变硬
化指数时,通常需要在不同速度下进行拉伸试验,以绘制应变硬化曲
线进行分析。
试验速度的选择需要考虑对试验数据的后续分析需求。
也需要考虑试验设备的性能和条件。
一些设备可能有速度范围的限制,或者在不同速度下的控制精度有所不同。
在选择试验速度时,也需要
考虑设备本身的条件和限制。
在实际操作中,可以根据具体情况进行试验速度的选择,并注意在试
验报告中详细记录试验速度和相应的试验条件,以保证试验结果的可
靠性和实用性。
对于工程实践中的金属材料应力应变性能评价,合理
选择试验速度是至关重要的。
在个人观点上,我认为金属材料的拉伸试验速度选择是一项非常细致
且需要考虑多方面因素的工作。
在日常实践中,需要对所测试的金属
材料进行深入的了解,结合实际应用需求,灵活选择试验速度,以获
得更精准的力学性能参数。
合理的试验速度选择也需要在试验数据分
析和结果解读上进行谨慎考虑,以准确评价金属材料的应力应变性能,为材料设计和工程应用提供可靠的数据支持。
金属材料拉伸试验的速度选择是一项综合性的工作,合理选择试验速
度对于获取准确的力学性能参数至关重要。
在实际工作中,需要根据
材料性质、试验目的、数据分析需求和设备条件进行综合考虑,以确
保试验结果的可靠性和实用性。