五轴数控加工中心的控制原理
五轴加工中心数控编程技巧分析

五轴加工中心数控编程技巧分析摘要:五轴加工中心是机械工业生产中极为重要的设备,具有加工范围广、精度高、速度快的特点,可以对各类零部件进行高效加工。
五轴加工中心数控编程技巧的应用有利于提升加工效率,保证加工质量,程序员在进行五轴加工中心的数控编程时需要注意科学分析数控机床、明确坐标系确定方法、关注编程中刀具补偿、选用恰当的编程方法并优化编程中的工艺处理,进一步强化数控编程质量,提升五轴加工中心的工作效率。
关键词:五轴加工中心;数控编程;技巧五轴加工中心的五轴联动设计是工业生产中进行零件加工的重要技术,可以对大型三维立体曲面等零件进行加工,具有极高的应用价值。
而数控编程技术的应用能够对五轴联动加工系统进行多元化控制,调整加工速度、空走速度、落刀速度等数值,保证加工效率与质量。
在五轴加工中心的数控编程中,合理运用编程技巧可以减少程序编写的工作量,提升加工效率、优化工业生产过程,为此应该重视五轴加工中心数控原理分析,并对具体的编程技巧进行研究,合理的运用相应技巧完成程序编写。
一、五轴加工中心数控系统控制原理五轴加工是数控机床加工的一种模式,是在X、Y、Z三个移动轴基础上加任意两个旋转轴的五轴联动加工系统,可以让加工刀具在五个自由度上进行定位与连接,能够实现几何形状复杂的零件加工。
五轴加工中心是五轴加工所采用的机床,可进行各类复杂零部件加工,包括有自由曲面的机体零部件、涡轮机零部件等,能够提高零件加工效率。
五轴加工中心的五轴联动加工具有更广的适应性,可以对直纹面类零件进行加工,提高其工作效率[1]。
在立体型面加工时,五轴加工可以采用铣刀端面逼近立表面进行加工,减少走刀次数,降低残余高度,提高加工效率与表面质量。
此外,五轴数控加工可以一次装夹完成工件多表面、度工序加工,在提高工作效率的同时,确保相互位置的精度,具有极高的应用价值。
五轴加工中心数控系统是运用编程软件完成编程,进而实现数字化控制的过程,通常需要由编程人员与机床操作人员密切配合,保证其程序编写的科学性与准确性。
五轴机床里面的坐标变换原理

五轴机床里面的坐标变换原理五轴机床在现代制造业中扮演着重要的角色,它能够实现复杂零件的高效加工。
而要实现精确的加工,就需要对五轴机床中的坐标变换原理有深入的理解。
本文将从深度和广度两个标准出发,对五轴机床中的坐标变换原理进行评估和探讨,以帮助读者更全面、深刻地理解这一概念。
一、坐标系介绍在探讨坐标变换原理之前,首先需要介绍一下坐标系的概念。
在机床的加工过程中,我们需要确定三维空间中各个点的位置。
为了方便表示和计算,我们引入了坐标系的概念。
常用的坐标系有世界坐标系(或零点坐标系)、机床坐标系、工件坐标系和刀具坐标系等。
二、五轴机床的坐标变换原理5轴机床通过机械的旋转和移动,可以实现复杂零件的加工。
为了控制机器的运动,需要进行坐标变换。
五轴机床中的坐标变换原理主要包括以下几个方面:1. 机械结构5轴机床通常由三线性轴和两旋转轴组成,每个轴都涉及到坐标变换。
对于线性轴,可以通过平移运动改变刀具或工件的位置;而旋转轴则可以改变刀具或工件的方向。
机械结构的变化需要通过坐标变换来进行控制。
2. 世界坐标系和机床坐标系的转换五轴机床中,通常会存在世界坐标系和机床坐标系之间的转换。
世界坐标系是一个固定的全局坐标系,用于描述工件在机床上的位置和姿态。
而机床坐标系是相对于机床本身而言的坐标系,用于描述机床上各个部件的位置和运动。
3. 工件坐标系和刀具坐标系的变换为了更好地控制刀具相对于工件的位置和姿态,五轴机床中常常需要进行工件坐标系和刀具坐标系的变换。
工件坐标系是以工件为基准的坐标系,用于描述工件上各个点的位置和姿态;而刀具坐标系是以刀具为基准的坐标系,用于描述刀具上各个点的位置和姿态。
4. 坐标变换矩阵为了实现坐标变换,可以使用坐标变换矩阵来描述不同坐标系之间的转换关系。
坐标变换矩阵通常由旋转矩阵和平移矩阵组成,其中旋转矩阵用于描述旋转变换,平移矩阵用于描述平移变换。
通过将不同的坐标变换矩阵进行组合,可以实现复杂的坐标变换。
五轴加工工作流程及基本原理

五轴加工工作流程及基本原理摘要:简洁扼要说明五轴加工流程,并对关键节点工作原理展开详细说明。
应用齐次变换法,对五轴CAM刀位数据及后处理机床各轴运动进行数据建模求解,该方法简便易于理解。
关键词:五轴加工;CAM;程序后处理;齐次变换引言目前越来越多领域对其产品的设计要求日益提高,除了传统航天航空、汽车轮船等领域经常用到大曲率的曲线表面,以达到较高的空流体力学性能,日常用品因功能外观要求,也开始使用越来越多的自由形状。
传统3轴加工仅可加工一个单凸曲线特征的表面,对复杂曲线变化的表面(深凹或低切)无能为力,此时需要使用5轴加工。
另外对形状尺寸公差要求严格的产品,也可采用5轴一次装夹进行多面加工,避免多次装夹导致精度损失。
成功的5轴加工取决于4个不同程度互相依赖的因素:●机床(床身结构刚性、主轴稳定性、传动系统精度等)●控制硬件(电机、反馈部件、驱动器等)●控制软件(数控系统运动、插补算法等)●工艺编程软件(刀具轨迹的生成和后处理)综述所述,在5轴加工中,机床、控制系统、刀具夹具等纯技术性能并非影响最终结果的唯一因素,结果的质量在很大程度上取决于支持整个工艺的设计工具(特别是CAM软件)的正确使用。
本文就第4点展开详细说明,对5轴加工工作流程及基本原理进行简介。
1.五轴加工工作流程简介如图1所示,五轴加工工作流程大致如下[1]:1)产品3D设计根据产品的功能及外观要求,利用CAD设计软件进行3D设计,CAD设计软件提供多种自由曲面造型,主要有Coons曲面、Bezier曲面、B样条曲面等,另外3D设计软件一般可与有限元分析软件、CAM软件进行结合对接,为产品设计优化、后续加工制造提供好的支持。
常用的CAD设计软件有:UG、Pro/E、SolidWorks等。
2)刀具位置文件生成输入产品的3D造型文件,利用CAM软件对刀具类型及参数、工艺方案、刀轴控制方式、刀具路径规则等进行设置,并计算生成刀具位置文件(该计算处理称为CAM的主处理)。
五轴机床里面的坐标变换原理

五轴机床及其应用领域五轴机床是一种具有五个工作轴的数控机床,分别为X、Y、Z三个线性轴和A、C 两个旋转轴。
其中,X、Y、Z轴分别代表机床的三个线性方向,而A、C轴则分别代表机床绕X轴和Z轴旋转的方向。
五轴机床具有较高的加工精度和加工效率,广泛应用于航空航天、汽车、模具等领域。
五轴机床的坐标变换原理是指通过一系列的坐标变换,将加工物体在机床坐标系下的坐标转换为工件在机床工作空间内的坐标,以实现精确的切削加工。
坐标变换原理是五轴机床能够实现复杂曲面加工的基础,下面将详细介绍与坐标变换原理相关的基本原理。
坐标系及坐标变换在五轴机床中,通常使用三个坐标系来描述加工物体的位置和姿态。
分别为机床坐标系(MCS)、工件坐标系(WCS)和刀具坐标系(TCS)。
其中,MCS是机床的固定坐标系,WCS是工件的坐标系,而TCS是刀具的坐标系。
机床坐标系(MCS)是机床固定不动的坐标系,由机床制造商定义。
它通常以机床的主轴中心为原点,X轴指向机床的前方,Y轴指向机床的左侧,Z轴指向机床的上方。
工件坐标系(WCS)是以被加工工件为参考的坐标系,它的原点和轴向可以根据加工需要进行定义。
工件坐标系的选择应能够最大程度地简化加工过程,使得刀具的运动轨迹能够与工件的几何形状相匹配。
刀具坐标系(TCS)是以刀具为参考的坐标系,它的原点和轴向通常与机床坐标系相同。
刀具坐标系的选择应能够方便地描述刀具的位置和姿态,并且与工件坐标系之间的转换关系简单明了。
坐标变换是将工件坐标系(WCS)中的坐标转换为机床坐标系(MCS)中的坐标的过程。
坐标变换通常包括平移变换和旋转变换两个部分。
平移变换将工件坐标系的原点从工件的某一特定点移动到机床坐标系的原点,而旋转变换则是将工件坐标系沿着某一特定轴旋转到与机床坐标系重合。
平移变换平移变换是将工件坐标系(WCS)中的坐标转换为机床坐标系(MCS)中的坐标的一种基本变换方式。
平移变换通过将工件坐标系的原点从工件的某一特定点移动到机床坐标系的原点来实现。
五轴精密加工中心的详细讲解

五轴精密加工中心的详细讲解五轴加工中心分为两类:一类是立式的,另一类是卧式的。
深圳凯福精密制造的黄教授首先谈一下立式五轴加工中心是怎么实现精密铝合金零件加工的这类加工中心的回转轴有两种方式,一种是工作台回转轴。
设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。
工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。
这样通过A 轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。
A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。
A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。
这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。
但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。
另一种是依靠立式主轴头的回转。
主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。
这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。
这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。
这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。
为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。
五轴联动机床原理

五轴联动机床原理
五轴联动机床是一种具有高精度和灵活性的机械设备,其原理是通过同时控制五个坐标轴的运动来实现多维加工操作。
这五个坐标轴分别是X轴、Y轴、Z轴、A轴和C轴。
X轴控制机床在水平方向上的移动,Y轴控制机床在垂直方向
上的移动,Z轴则控制工件的上下运动。
A轴控制机床绕X轴旋转,而C轴则控制工件绕Z轴旋转。
通过对这五个坐标轴的联动控制,机床可以在多个方向上进行复杂加工和加工。
例如,在进行立体雕刻时,机床可以同时在X、Y、Z轴上进行线性运动,并在A、C轴上进行旋转。
这
种五轴联动的运动能够实现各种形状的立体雕刻,从而提高加工效率和精度。
五轴联动机床的工作原理是通过数控系统控制每个轴的运动,数控系统根据加工程序的指令,精确控制每个轴的位置和速度。
通过与高精度传感器配合,可实现微米级的加工精度和高速运动控制。
总之,五轴联动机床通过同时控制五个坐标轴的运动,实现多维加工操作。
这种机床可以广泛应用于航空航天、汽车、模具等行业,为复杂零件的加工提供了高效、精确的解决方案。
五轴加工中心的原理

五轴加工中心的原理
五轴加工中心是一种高精度的数控机床,其原理是通过同时对工件进行五个轴向的切削加工,实现复杂零件的高效加工。
这五个轴分别是X轴、Y轴、Z轴、A轴和C轴。
X轴、Y轴和Z轴分别对应着水平、垂直和纵向运动,用来控制工件在平面和立体空间内的位置。
A轴和C轴则是用来控制工件的旋转。
A轴是绕工件X轴旋转,可以实现水平面的多方位加工;C轴是绕Z轴旋转,可以实现立体空间内的任意角度加工。
五轴加工中心通过这五个轴的组合运动,可以同时进行多个加工动作,如铣削、钻孔、镗孔、螺纹攻丝等。
相比于传统的三轴加工中心,五轴加工中心具有更高的加工精度和加工效率,尤其适用于复杂曲面的加工。
五轴加工中心借助计算机控制系统,可以根据预先编程的加工路径和加工参数,实现自动化的加工过程。
操作人员只需通过操作界面输入指令,机床就能按照要求进行高精度的切削加工。
除了常见的金属材料,五轴加工中心还可以加工非金属材料,如塑料、复合材料等。
它广泛应用于航空航天、汽车制造、模具制造、电子电器等行业,满足高精度零件的生产需求。
五轴加工中心原理

五轴加工中心原理
五轴加工中心是一种先进的数控机床,它的原理是通过同时控制五个方向的运动,即X轴、Y轴、Z轴和两个旋转轴(A轴
和C轴),来实现对复杂工件的加工。
在加工过程中,工件被夹持在工作台上,并通过刀具来切削和加工。
通过控制X、Y、Z轴的运动,可以实现工件在平面内
的移动和上下移动。
同时,通过控制A轴和C轴的旋转,可
以使工件在不同方向上进行旋转。
通过这五个方向的联合运动,五轴加工中心可以灵活地切削工件的任意曲面。
五轴加工中心利用数控系统来控制各个轴的运动。
数控系统根据预先编好的加工程序,通过计算机控制各个轴的步进电机或伺服电机的运动,从而实现对工件加工的控制。
同时,数控系统还可以通过传感器对加工过程中的刀具位置进行实时监测,确保加工的精度和质量。
五轴加工中心的运动精度和稳定性对加工质量有着重要影响。
为了保证五轴加工中心的高精度加工,机床结构和传动系统需要具备足够的刚性和稳定性。
同时,对于数控系统的控制算法和参数调节也需要精心设计,以确保刀具的轨迹和工件表面的加工精度。
总之,五轴加工中心通过同时控制五个方向的运动,可以实现对复杂曲面工件的高精度加工。
这种机床在航空航天、汽车制造、模具制造等领域有着广泛的应用前景,对提高加工效率和产品质量具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•五轴数控加工中心数控系统的控制原理
•三轴三联动
•
•五轴数控加工中心数控系统的控制原理
• 以内循环滚珠螺母的回珠器为例。其滚 道母线SS为空间曲线,可用空间直线去逼近 。
•
•五轴数控加工中心数控系统的控制原理
•三轴联动
•视频 •(A、B、C轴)
•
•五轴数控加工中心数控系统的控制原理
•第二部分 理
•
•五轴数控加工中心数控系统的控制原理
Z坐标正方向规定:刀具远离工件的方 向
•+Z
•+X •+Z
•
•五轴数控加工中心数控系统的控制原理
•机床坐标系与工件坐标系 • 编程总是基于某一坐标系统的,因此,弄 清楚数控机床坐标系和工件坐标系的概念及相 互关系是至关重要的
•
•五轴数控加工中心数控系统的控制原理
•
•五轴数控加工中心数控系统的控制原理
•● 对一般立体型面特别是较为平坦的大型表面, 可用大直径端铣刀端面逼近表面进行加工,走刀 次数少,残余高度小, 可大大提高加工效率与 表面质量。如图(c)
•
•五轴数控加工中心数控系统的控制原理
•● 对工件上的多个空间表面可一次装夹进行多面 、多工序加工,加工效率高并有利于提高各表面 的相互位置精度。如图(d)
•四轴联动雕铣机 •视频
•
•五轴数控加工中心数控系统的控制原理
•第三部分 理 •五轴联动
五轴数控系统的控制原
•
•五轴数控加工中心数控系统的控制原理
•从结构上分为三种形式:
•双摆头式: •双转台式: •摆头转台式:
•
•五轴数控加工中心数控系统的控制原理
•五轴联动加工的特点:
•● 可避免刀具干涉,加工普通三坐标机床难以 • 加工的复杂零件,加工适应性广。如图(a) •● 对于直纹面类零件,可采用侧铣方式一刀成型 ,加工质量好、效率高。如图(b)
•机床原点与机床坐标系 • ●机床原点
• ★机床坐标系的零点。这个原点是在机床 调试完成后便确定了,是机床上固有的点。 •机床原点的建立:用回零方式建立。 • ★机床原点建立过程实质上是机床坐标系 建立过程。 •●机床坐标系 • ★以机床原点为坐标系原点的坐标系,是 机床固有的坐标系,它具有唯一性。 • ★机床坐标系是数控机床中所建立的工件 坐标系的参考坐标系。
•
•五轴数控加工中心数控系统的控制原理
•工件原点与工件坐标系
• ●工件原点:为编程方便在零件、工装夹具 上选定的某一点或与之相关的点。该点也可以 与对刀点重合。 • ●工件坐标系:以工件原点为零点建立的一 个坐标系,编程时,所有的尺寸都基于此坐标 系计算。 • ●工件原点偏置:工件随夹具在机床上安装 后,工件原点与机床原点间的距离。
•1. 三轴数控系统的控制原理 •2. 四轴数控系统的控制原理 •3. 五轴数控系统的控制原理
•
•五轴数控加工中心数控系统的控制原理
•数控机床的坐标系
•● 基本坐标系:直线进给运动 的坐标• 系(X.Y.Z)。坐标轴相 互关系:由右手定则决定。
•● 回转坐标:绕X.Y.Z轴转动
•Y
•+B •X、Y
•
•五轴数控加工中心数控系统的控制原理
•● 五轴加工时,刀具相对于工件表面可处于最 有效的切削状态。如图(e) •● 在某些加工场合, 可采用较大尺寸的刀具避 开干涉,刀具刚性好,有利于提高加工效率与精 度。如图(f)
•
•五轴数控加工中心数控系统的控制原理
•实例分析
•
•五轴数控加工中心数控系统的控制原理
•
•两轴同时运动
•五轴数控加工中心数控系统的控制原理
•三轴二联动
•△yi •△Li •J •I •△xi
•
•五轴数控加工中心数控系统的控制原理
•两轴半联动加工-----“行切法” • 以X、Y、Z轴中任意两轴作插补运动, 另一轴作周期性进给。例如:钻孔机
•
•五轴数控加工中心数控系统的控制原理
•
三轴数控系统的控制原理
•一. 三轴数控(CNC)加工中心的特点
• 1.可以加工任意形状的板式工件;
• 2.可将多种加工工艺(铣﹑钻﹑锯等)集中到 一台机床上完成加工;
• 3.能迅速变换加工其他的工件。•来自五轴数控加工中心数控系统的控制原理
•二. 三轴数控加工的分类及举例
•三轴加工:采用三个线性轴(X,Y,Z) 形成直角坐标系统 •●三轴二联动:对于平面加工,一般三 根轴中只采用两根进行加工,第三根作 为辅助 •●三轴三联动:对于空间曲面加工,三 根轴同时进行加工
•
•五轴数控加工中心数控系统的控制原理
•
•五轴数控加工中心数控系统的控制原理
•
•五轴数控加工中心数控系统的控制原理
•Z轴
•Y轴
•X轴
•Y轴偏置量
•Z •轴 偏 置 量 •X轴偏置量
•机床原点
•Z轴
•Y轴
•X轴
•Z轴偏置量
•Y 轴 偏 置 量
•X轴偏置量
•机床原点
•工件原 点
•工件原 点
•立式数控机床的坐标系
•卧式数控机床的坐标系
•
•五轴数控加工中心数控系统的控制原理
• 第一部分
•Y
•+A •X 、Z
•Z •+C
的圆进给坐标轴分别用A.B.C表
示,坐标轴相互关系由右手螺
旋法则而定。
•Z
•X •+A、+B、 +C
•
•五轴数控加工中心数控系统的控制原理
•数控机床坐标系确定方法
• 1、假设:工件固定,刀具相对工件运动 。 • 2、标准:右手笛卡儿直角坐标系——拇 指为 X 向, 食指为 Y 向,中指为 Z 向。 • 3、顺序:先 Z 轴,再 X 轴,最后 Y 轴 。 • Z 轴——机床主轴; • X 轴——装夹平面内的水平向; • Y 轴——由右手笛卡儿直角坐标系确定 。
五轴数控加工中心的控 制原理
2020年5月30日星期六
•五轴数控加工中心数控系统的控制原理
•加工中心:安装了刀库的 数控铣床 •特 点: •●具有自动交换刀具的功能 •●可在一次装夹中通过自动 换刀装置改变主轴上的加工 刀具,实现钻、镗、铰、攻 螺纹、切槽等多种加工功能
•
•五轴数控加工中心数控系统的控制原理
•四轴联动加工
四轴数控系统的控制原
•同时控制X、Y 、Z 三个直线坐标轴与某
一旋转坐标轴联动
•直纹扭曲面
•
•五轴数控加工中心数控系统的控制原理
• 在四坐标机床上加工,除了三个直角坐 标联动外,为了保证刀具与工件型面在全长 上始终贴合,刀具还应绕O1(或O2)作摆动 联动。
•飞机大梁
•
•五轴数控加工中心数控系统的控制原理