青海师范大学附属中学数学轴对称填空选择达标检测(Word版 含解析)
数学八年级上册 轴对称填空选择达标检测(Word版 含解析)

数学八年级上册轴对称填空选择达标检测(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,ABC∆中,90ACB∠=︒,//AC BD,BC BD=,在AB上截取BE,使BE BD=,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,7,4BC BG==,则AB=____________.【答案】658【解析】【分析】过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.【详解】解:∵AC∥BD,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF⊥AB,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD,∴∠8=∠1,在△BHE和△BGD中,8143BE BD∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE≌△BGD(ASA),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD⊥BD∴∠BDM=90°,∴BC∥MD,∴∠5=∠MDG,∴∠7=∠MDG∴MG=MD,∵BC=7,BG=4,设MG=x,在△BDM中,BD2+MD2=BM2,即()2227=4x x++,解得x=338,在△ABC和△MBD中=8=1BC BACB MDBD∠∠∠∠⎧⎪=⎨⎪⎩,∴△ABC≌△MBD(ASA)AB=BM=BG+MG=4+338=658.故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.2.在ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.3.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)【答案】①②③⑤【解析】【分析】①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,ACP BCQCAP CBQ AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故答案是:①②③⑤.【点睛】此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.4.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC 边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.A.2 B.3 C.4 D.5【答案】B【解析】【分析】根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及∠CDM=∠CFE,再逐个判断222AD+BE=DE CEM CDM ADM CDM ACM ABCCDME1S=S+S=S+S=S=S2△△△△△△四边形即可得出结论.【详解】解:如图在Rt△ABC中,∠ACB=90°,M为AB中点,AB=BC∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°∵∠DME=90°.∴∠1+∠2=∠2+∠3=∠3+∠4=90°∴∠1=∠3,∠2=∠4在△AMC和△BMC中AM=BMMC MCAC BC⎧⎪=⎨⎪=⎩∴△AMC≌△BMC在△AMD和△CME中A=MCEAM=CM1=3∠∠⎧⎪⎨⎪∠∠⎩∴△AMD≌△CME在△CDM和△BEMDCM=BCM=BM2=4∠∠⎧⎪⎨⎪∠∠⎩∴△CMD≌△CME共有3对全等三角形,故(1)错误∵△AMD ≌△BME∴DM=ME∴△DEM 是等腰三角形,(2)正确∵∠DME=90°.∴∠EDM=∠DEM=45°,∴∠CDM=∠1+∠A=∠1+45°,∴∠EDM=∠3+∠DEM=∠3+45°,∴∠CDM=∠CFE,故(3)正确在Rt △CED 中,222CE CD DE +=∵CE=AD ,BE=CD∴222AD +BE =DE 故(4)正确(5)∵△ADM ≌△CEM∴ADM CEM S =S △△∴CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 不变,故(5)错误 故正确的有3个故选:B【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.5.如图,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD 之间的距离等于____.【答案】2【解析】过点O 作OF ⊥AB 于F ,作OG ⊥CD 于G ,∵O 为∠BAC 、∠DCA 的平分线的交点,OE ⊥AC ,∴OE =OF ,OE =OG ,∴OE =OF =OG =1,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠EOF +∠EOG =(180°﹣∠BAC )+(180°﹣∠ACD )=180°,∴E 、O 、G 三点共线,∴AB 与CD 之间的距离=OF +OG =1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E 、O 、G 三点共线.6.如图,ABC ∆中,090,,102ACB AC BC AB ∠===,点G 为AC 中点,连接BG ,CE BG ⊥于F ,交AB 于E ,连接GE ,点H 为AB 中点,连接FH ,以下结论:①ACE ABG ∠=∠;②5CF =;③AGE CGB ∠=∠;④FH 平分BFE ∠。
八年级数学上册轴对称填空选择达标检测(Word版 含解析)

八年级数学上册轴对称填空选择达标检测(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________①AD=EC;②BM=BN;③MN∥AC;④EM=MB.【答案】①②③【解析】∵△ABE,△BCD均为等边三角形,∴AB=BE,BC=BD,∠ABE=∠CBD=60°,∴∠ABD=∠EBC,在△ABD和△EBC中AB BEABD EBCBD BC=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△EBC(SAS),∴AD=EC,故①正确;∴∠DAB=∠BEC,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM和△EBN中MAB NEBAB BEABE EBN∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM≌△EBN(ASA),∴BM=BN,故②正确;∴△BMN为等边三角形,∴∠NMB=∠ABM=60°,∴MN∥AC,故③正确;若EM=MB,则AM平分∠EAB,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;综上可知正确的有①②③,故答案为①②③.点睛:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、AAS、ASA和HL)和性质(即全等三角形的对应边相等,对应角相等).2.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.【答案】(103,113).【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=113,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)故答案为P(103,113).3.已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.【答案】3<AD<7【解析】【分析】连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.【详解】如图,连接AD并延长到点E,使DE=DA,连接BE,∵在△ABC中,AD是BC边上的中线∴BD=CD在△BDE和△CDA中BD CDBDE CDADE DA=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CDA(SAS)∴BE=CA=4在△ABE中,AB+BE>AE,且AB﹣BE<AE∵AB=10,AC=4,∴6<AE<14∴3<AD<7故答案为3<AD<7【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.4.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;【答案】217【解析】【分析】首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得34在Rt△ABC中,根据勾股定理,得AC=22342217AB CB+=⨯=故答案为217【点睛】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.5.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC边上的中点,两边PE,PF分别交AB,AC于点E,F,给出以下四个结论:①AE=CF;②EF=AP;③2S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合)有BE+CF=EF;上述结论中始终正确的序号有__________.【答案】①③【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,2PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,2PE=AP,在其它位置时EF≠AP,故④错误;故答案为:①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP 全等是解题的关键,也是本题的突破点.6.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC 的平分线上,与A 相距1cm 的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm 处.【详解】工厂的位置应在∠BAC 的平分线上,与A 相距1cm 的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.7.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
八年级轴对称填空选择达标检测卷(Word版 含解析)

八年级轴对称填空选择达标检测卷(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.【答案】301 4【解析】【分析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE 的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=12OC=14AB=14故答案为:30,1 4【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.2.在ABC中给定下面几组条件:①BC=4cm,AC=5cm,∠ACB=30°;②BC=4cm,AC=3cm,∠ABC=30°;③BC=4cm,AC=5cm,∠ABC=90°;④BC=4cm,AC=5cm,∠ABC=120°.若根据每组条件画图,则ABC能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS,即能画出唯一三角形,正确;②根据BC=4cm,AC=3cm,∠ABC=30°不能画出唯一三角形,如图所示△ABC和△BCD,错误;③符合全等三角形的判定定理HL,即能画出唯一三角形,正确;④∵∠ABC为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.3.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.【答案】8【解析】【分析】作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠∵DE’⊥AB,∠B=60°,∴BE’=BD×1=2,2∴E点和E’点重合,∴∠EDB=30°,∴∠EDB+∠PDF=90°,∴∠EDP+∠GFD=90°=∠EDP+∠DPE,∴∠DPE=∠GFD∵∠DEP=∠FGD=90°,FD=GP,∴△EPD≌△GDF,∴FG=DE,DG=PE,∴F点运动的路径与G点运动的路径平行,即与BC平行,由图可知,当P点在E点时,G点与D点重合,∵DG=PE,∴F点运动的距离与P点运动的距离相同,∴F点运动的路径长为:AB-BE=10-2=8,故答案为8.【点睛】通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.4.如图,C为线段AE上一动点(不与A. E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)【答案】①②③⑤【解析】【分析】①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【详解】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°-60°-60°=60°,∴∠ACP=∠BCQ=60°,在△ACP和△BCQ中,ACP BCQCAP CBQ AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BCQ(AAS),∴CP=CQ,结论③正确;又∵∠PCQ=60°,∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,结论②正确.∵△ACD≌△BCE,∴∠ADC=∠AEO,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,∴结论⑤正确.没有条件证出BO=OE,④错误;综上,可得正确的结论有4个:①②③⑤.故答案是:①②③⑤.【点睛】此题是三角形综合题目,考查了全等三角形的判定和性质的应用、等边三角形的性质和应用、平行线的判定;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.5.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=32,则EC=______【答案】6【解析】【分析】延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【详解】如图,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC,∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,∴∠HEK=∠FAH,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF,∴∠AHB=∠APC,在△ABH与△APC中,ABE PACAB ACAHB APC∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABH≌△APC(ASA),∴AH=CP,在△AHF与△EPF中,90AHF EPFAFH EFPAF EF∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHF≌△EPF(AAS),∴AH=EP,∠CED=∠HAF,∴EC=2AH,∵∠DEC=30°,∴∠HAF=30°,∴AH=2FH=2×32=3,∴EC=2AH=6.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.6.已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使DCF BDES S∆∆=,请写出相应的BF的长:BF=_________【答案】33【解析】【分析】过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 2⊥BD ,∵∠ABC=60°,F 1D ∥BE ,∴∠F 2F 1D=∠ABC=60°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2, ∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩=== , ∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC=∠BDE=∠ABD=12×60°=30°, 又∵BD=6,∴BE=12×6÷cos30°33 ∴BF 1=BF 2=BF 1+F 1F 2333故BF 的长为33故答案为:33【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.7.如图,在ABC中,ACB90,CA CB∠==.点D在AB上,点F在CA的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则ABC的面积为______.【答案】25 2【解析】【分析】作CD的垂直平分线交AD于M,交CD与N,根据垂直平分线的性质可得MC=MD,进而可得∠MDC=∠MCD,根据已知及外角性质可得∠AMC=∠BED,由等腰直角三角形的性质可得∠B=∠CAB=45°,根据三角形内角和定理可得∠ACM=∠BDE,进而可证明∠ADF=∠ACM,进而即可证明∠FCD=∠FDC,根据等腰三角形的性质可得CF=DF,根据已知可求出AC的长,根据三角形面积公式即可得答案.【详解】作CD的垂直平分线交AD于M,交CD与N,∵MN是CD的垂直平分线,∴MC=MD,∴∠MDC=∠MCD,∵∠AMC=∠MDC=∠MCD,∴∠AMC=2∠ADC,∵∠BED=2∠ADC,∴∠AMC=∠BED,∵∠ACB=90°,AC=BC,∴∠B=∠CAB=45°,∵∠ACM=180°-∠CAM-∠AMC,∠BDE=180°-∠B-∠BED,∴∠ACM=∠BDE,∵∠BDE=∠ADF,∴∠ADF=∠ACM,∴∠ADF+∠ADC=∠ACM+∠MCD,即∠FCD=∠FDC,∴FC=FD,∵AF=2,FD=7,∴AC=FC-AF=7-2=5,∴S △ABC=12×5×5=252.故答案为:252【点睛】 本题考查了等腰三角形的判定与性质及线段垂直平分线的性质,线段垂直平分线上的点,到线段两端的距离相等;等腰三角形的两个底角相等;熟练掌握相关的定理及性质是解题关键.8.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.【答案】AC 中点或点P 与点C 重合【解析】分析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合.详解:根据三角形全等的判定方法HL 可知:①当P 运动到AP BC =的,∵90C QAP ∠=∠=︒,在Rt ABC △和Rt QPA 中,AP BC PQ AB =⎧⎨=⎩, ∴Rt ABC △≌Rt ()QPA HL ,即5AP BC ==,即P 运动到AC 的中点.②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC PQ AB =⎧⎨=⎩∴Rt △QAP ≌Rt △BCA (HL ),即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.故答案为:AC 中点或点P 与点C 重合.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.9.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.【答案】53【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE ≌△AFE ,得到DE =FE ,由于90ECF ACB ACF ∠=∠+∠=,根据勾股定理得222CE CF EF +=,设,DE EF x == 则3CE x =-,则()22231,x x -+=由此即可解决问题.详解:90BAC AB AC ∠==,, ∴45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,则△ABD ≌△ACF,,,45,AD AF BAD CAF ABD ACF =∠=∠∠=∠=∵45DAE ∠=,∴45BAD CAE ∠+∠=,∴45,CAF CAE ∠+∠=即45,EAF ∠=∴∠EAD =∠EAF ,在△ADE 和△AFE 中AE AE EAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△AFE ,∴DE =FE ,∵90ECF ACB ACF ∠=∠+∠=,∴222CE CF EF +=,Rt △ABC 中,∵22AB AC ==,∴224BC AB AC =+=,∵1BD =,设,DE EF x == 则3CE x =-,则有()22231,x x -+=解得:5.3x =∴5.3DE = 故答案为5.3点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.10.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm ,则DC=_______【答案】2cm【解析】试题解析:解:连接AD,∵ED是AB的垂直平分线,∴BD=AD=4c m,∴∠BAD=∠B=30°,∵∠C=90°,∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,在Rt△ACD中,∴DC=12AD==12× 4=2c m.故答案为2c m.点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.二、八年级数学全等三角形选择题(难)11.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.12.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A .①②③B .①③④C .①②④D .②③④【答案】C【解析】 试题解析:∵PR ⊥AB 于点R ,PS ⊥AC 于点S ,且PR =PS ,∴点P 在∠BAC 的平分线上,即AP 平分∠BAC ,故①正确;∴∠PAR =∠PAQ ,∵AQ =PQ ,∴∠APQ =∠PAQ ,∴∠APQ =∠PAR ,QP AB ∴, 故④正确;在△APR 与△APS 中,AP AP PR PS =⎧⎨=⎩, (HL)APR APS ∴≌, ∴AR =AS ,故②正确;△BPR 和△QSP 只能知道PR =PS ,∠BRP =∠QSP =90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.13.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC 的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC∠=︒,∴18060120ABC ACB∠+∠=︒-︒=︒,∵BE、CE分别为ABC∠、ACB∠的平分线,∴12EBC ABC∠=∠,12ECB ACB∠=∠,∴11()1206022EBC ECB ABC ACB∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D作DF AB⊥于F,DG AC⊥的延长线于G,∵BE、CE分别为ABC∠、ACB∠的平分线,∴AD为BAC∠的平分线,∴DF DG=,∴36090260120FDG∠=︒-︒⨯-︒=︒,又∵120BDC∠=︒,∴120BDF CDF∠+∠=︒,120CDG CDF∠+∠=︒.∴BDF CDG∠=∠,∵在BDF和CDG△中,90BFD CGDDF DGBDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.14.已知等边三角形ABC 的边长为12,点P 为AC 上一点,点D 在CB 的延长线上,且BD=AP ,连接PD 交AB 于点E ,PE ⊥AB 于点F ,则线段EF 的长为( )A .6B .5C .4.5D .与AP 的长度有关【答案】A【解析】【分析】 作DQ ⊥AB ,交直线AB 的延长线于点Q ,连接DE ,PQ ,根据全等三角形的判定定理得出△APE ≌△BDQ ,再由AE=BQ ,PE=QD 且PE ∥QD ,可知四边形PEDQ 是平行四边形,进而可得出EF=12AB,由等边△ABC的边长为12可得出DE=6.【详解】解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,又∵PE⊥AB于E,∴∠BQD=∠AEP=90°,∵△ABC是等边三角形,∴∠A=∠ABC=∠DBQ=60°,在△APE和△BDQ中,A DBQAEP BQDAP BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BDQ(AAS),∴AE=BQ,PE=QD且PE∥QD,∴四边形PEDQ是平行四边形,∴EF=12EQ,∵EB+AE=BE+BQ=AB,∴EF=12AB,又∵等边△ABC的边长为12,∴EF=6.故选:A.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE⊥AB作辅助线构成全等的三角形.15.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.16.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.=,D、E是斜边BC上两点,且∠DAE=45°,将17.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90 后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.故选D.18.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.【详解】∵∠BCA=∠DCE=60°,∴∠BCA+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,又∵AC=BC,CE=CD,∴△BCD≌△ACE,∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,∴∠BAE=120°,∴∠EAD=60°,②正确,∵∠BCD=90°,∠BCA=60°,∴∠ACD=∠ADC=30°,∴AC=AD,∵CE=DE,∴CE2+AD2=AC2+DE2,④正确,当D点在BA延长线上时,∠BDE-∠BDC=60°,∵∠AEC=∠BDC,∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,∴∠BDE-∠BDC=∠BDC+∠AED∴∠BDE-∠AED=2∠BDC,如图,当点D在AB上时,∵△BCD≌△∠ACE,∴∠CAE=∠CBD=60°,∴∠DAE=∠BAC+∠CAE=120°,∴∠BDE-∠AED=∠DAE=120°,③错误故正确的结论有①②④,故选C.【点睛】此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握19.如图,已知等腰Rt△ABC和等腰Rt△ADE,AB=AC=4,∠BAC=∠EAD=90°,D是射线BC上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )A .5个B .4个C .3 个D .2个【答案】B【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422-=32,∴DE 2=DC 2+EC 2,=()()22322+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+++=45210++,故④正确;当BD =32BC 时,CD =12BC ,∴DE =221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=10BC =5AB .故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.20.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC【答案】B【解析】【分析】根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到∠EFD=∠EBC=∠BAC=2∠1,故B错误.【详解】∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同理:∠EBC=∠BAC.在△ABF与△ADF中,∵12AD ABAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ADF,∴BF=DF,故A正确,∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D正确;∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.故选B.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.21.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=12BF;④AE=BG.其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.22.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.23.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN 于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点【答案】B【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.24.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=12∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.【详解】在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中AB ADB ADFBG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=12∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中AG AFFAE GAEAE AE=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.25.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.26.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.27.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.28.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个【答案】D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.29.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()。
人教版八年级数学上册 轴对称填空选择达标检测(Word版 含解析)

人教版八年级数学上册 轴对称填空选择达标检测(Word 版 含解析)一、八年级数学全等三角形填空题(难)1.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于____.【答案】6:8:3【解析】【分析】由角平分线性质可知,点P 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 边上的高相等,利用面积公式即可求解.【详解】解:过点P 作PD ⊥BC 于D ,PE ⊥CA 于E ,PF ⊥AB 于F∵P 是三条角平分线的交点∴PD=PE=PF ∵AB=30,BC=40,CA=15∴APB S ∆︰BPC S ∆︰CPA S ∆=30∶40∶15=6∶8∶3故答案为6∶8∶3.【点睛】本题主要考查了角平分线的性质和三角形面积的求法. 角平分线上的点到两边的距离相等. 难度不大,作辅助线是关键.2.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).3.如图,10AB =,45A B ∠=∠=︒,32AC BD ==.点E ,F 为线段AB 上两点.现存在以下条件:①4CE DF ==;②AF BE =;③CEB DFA ∠=∠;④5CE DF ==.请在以上条件中选择一个条件,使得ACE △一定..和BDF 全等,则这个条件可以为________.(请写出所有正确的答案)【答案】②③④【解析】【分析】根据三角形全等的判定定理逐个判断即可.【详解】①如图1,过点C 作CM AB ⊥,过点D 作DN AB ⊥32,45A B AC BD ∠=∠===︒3CM AM DN BN ∴====4CE DF ==由勾股定理得:22227,7ME CE CM NF DF DN =-==-=37,37AE AM ME BF BN NF ∴=-=-=+=+,即AE BF ≠此时,ACE ∆和BDF ∆不全等②AFBE =AF EF BE EF ∴+=+,即AE BF = 又452,3AC D A B B ∠=∠=︒==则由SAS 定理可得,ACE BDF ∆≅∆③CEB DFA CEB C A DFA D B ∠=∠⎧⎪∠=∠+∠⎨⎪∠=∠+∠⎩C AD B ∴∠+∠=∠+∠又A B ∠=∠C D ∴∠=∠32AC BD ==则由ASA 定理可得,ACE BDF ∆≅∆④由(1)知,当5CE DF ==时,22224,4ME CE CM NF DF DN =-==-= 此时,,,CE CA DF BD ME AM NF BN >>⎧⎨>>⎩则点E 在点M 的右侧,点F 在点N 的左侧又10AM BN ME AM BN NF AB ++=++==则点E 与点N 重合,点F 与点M 重合,如图2所示因此必有347AE BF ==+=由SSS 定理可得,ACE BDF ∆≅∆故答案为:②③④.【点睛】本题考查了三角形全等的判定定理,熟记各判定定理是解题关键.4.如图,∠ACB =90°,AC =BC ,点C(1,2)、A(-2,0),则点B 的坐标是__________.【答案】(3,-1)【解析】分析:过C 和B 分别作CD ⊥OD 于D ,BE ⊥CD 于E ,利用已知条件可证明△ADC ≌△CEB ,再由全等三角形的性质和已知数据即可求出B点的坐标.详解:过C和B分别作CD⊥OD于D,BE⊥CD于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB=90°;∠CAD=∠BCE,AC=BC,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(1,2),点A的坐标为(−2,0),∴AD=CE=3,OD=1,BE=CD=2,∴则B点的坐标是(3,−1).故答案为(3,−1).点睛:本题主要考查了全等三角形的判定与性质,解题关键在于结合坐标、图形性质和已经条件.5.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④CO平分∠AOE;⑤∠AOB=60°.恒成立的结论有__.(把你认为正确的序号都填上)【答案】①②③④⑤【解析】【分析】根据等边三角形的性质及SAS即可证明△ACD≌△BCE即可求解.①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ∥AE,故本选项正确;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确;④∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,同理可得出∠AOE=120°,∵D,O,C,E四点共圆,∴∠OCD=∠OED,∴∠OAC=∠OCD,∴∠DCE=∠AOC=60°,∴OC平分∠AOE,故④正确;⑤∵△ABC、△DCE为正三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,∵∠ACB=∠CBE+∠CEB=60°,∴∠AOB=60°,故本选项正确.综上所述,正确的结论是①②③④⑤.本题考查等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题关键.6.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;【答案】217【解析】【分析】首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.【详解】作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又AB=BC,∠ADB=∠BEC.∴△ABD≌△BCE,∴BE=AD=3,在Rt△BCE中,根据勾股定理,得34在Rt△ABC中,根据勾股定理,得22342217+=⨯=AB CB故答案为17【点睛】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.7.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E 从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.【答案】0、2、6、8【解析】∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,∴∠CAB=∠DBE=90°,∴△CAB和△EBD都是Rt△,∵点E运动过程中两三角形始终保持斜边ED=CB,∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,又∵点E每秒钟移动3cm,∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.8.已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC 的长度是___________.【答案】2【解析】【分析】过B作BE⊥AC于E, 过D作DF⊥AC于F,构造得出BE=AF利用等腰三角形三线合一的性质得出:AF=可得BE=AF=,利用三角形ABC的面积为1进行计算即可.【详解】过B作BE⊥AC于E, 过D作DF⊥AC于F,∴∠BEA=∠AFD=90°∴∠2+∠3=90°∵∠BAD=90°∴∠1+∠2=90°∴∠1=∠3∵AB=AD∴∴BE=AF∵AD=CD,DF⊥AC∴AF=∴BE=AF=∴∴AC=2故答案为:2【点睛】本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟练掌握辅助线做法构造全等是解题的关键.9.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.【答案】169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.10.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm ,则DC=_______【答案】2cm【解析】试题解析:解:连接AD ,∵ED 是AB 的垂直平分线,∴BD =AD =4c m ,∴∠BAD =∠B =30°,∵∠C =90°,∴∠BAC =90°-∠B =90°-30°=60°,∴∠DAC =60°-30°=30°,在Rt △ACD 中,∴DC =12AD ==12× 4=2c m . 故答案为2c m . 点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.二、八年级数学全等三角形选择题(难)11.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A【答案】B【解析】在Rt△ABC与Rt△DEF中,直角边BC=EF,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.12.如图, AB=AC,AD=AE, BE、CD交于点O,则图中全等三角形共有()A.五对B.四对C.三对D.二对【答案】A【解析】如图,由已知条件可证:①△ABE≌△ACD;②△DBC≌△ECB;③△BDO≌△ECO;④△ABO≌△ACO;⑤△ADO≌△AEO;∴图中共有5对全等三角形.故选A.13.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()A.30°B.60°C.80 °D.50°【答案】B【解析】试题解析:∵D为AB的中点,ED⊥AB,∴DE为线段AB的垂直平分线,∴AE=BE,∴∠DAE=∠DBE,∴∠DAE=∠DBE=∠CAE,在Rt△ABC中,∵∠CAB+∠DBE=90°,∴∠CAE+∠DAE+∠DBE=90°,∴3∠DBE=90°,∴∠DBE=30°,∴∠CAB=90°-∠DBE=90°-30°=60°.故选B.14.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③BP=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.15.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定【答案】C【解析】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.16.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.1+2B.1+2C.2-2D.2-1【答案】B 【解析】第一次折叠后,等腰三角形的底边长为1,腰长为2;第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为112212222++=+.故答案为B.17.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD,D.AB+AC<DB+DC【答案】D【解析】【分析】在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC<DB+DC.【详解】解: 在BA的延长线上取点E, 使AE=AC,连接ED,∵AD是△ABC的外角平分线,∴∠EAD=∠CAD,在△ACD和△AED中,AD ADEAD CADAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(SAS)∴DE=DC,在△EBD中,BE<BD+DE,∴AB+AC<DB+DC故选:D.【点睛】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、DC的长度为边的三角形是解题的关键,也是解本题的难点.18.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.19.下列四组条件中,能够判定△ABC和△DEF全等的是()A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D【答案】D【解析】根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;不符合“SAS”定理,不对应,不能判断全等;D、AC=DF,BC=DE,∠C=∠D,可利用“SAS”判断全等;故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△AB C≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°【答案】B【解析】∵在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°A选项:AB=A′B′=5,BC=B′C′=3,符合直角三角形全等的判定条件HL,∴A选项能使Rt△ABC≌Rt△A′B′C′;B选项:AB=B′C′=5,∠A=∠B′=40°,不符合符合直角三角形全等的判定条件,∴B选项不能使Rt△ABC≌Rt△A′B′C′;C选项符合Rt△ABC和Rt△A′B′C全等的判定条件SAS;∴C选项能使Rt△ABC≌Rt△A′B′C′;D选项符合Rt△ABC和Rt△A′B′C全等的判定条件ASA,∴D选项能使Rt△ABC≌Rt△A′B′C′;故选:B.点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正确答案.21.如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是()A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等【答案】B【解析】【分析】根据题意即是判断甲、乙是否全等,丙丁是否全等.运用判定定理解答.【详解】解:∵∠ACB=CAD=70°,∠BAC=∠ACD=50°,AC为公共边,∴△ABC≌△ACD,即甲、乙全等;△EHG中,∠EGH=70°≠∠EHG=50°,即EH≠EG,虽∠EFG=∠EGH=70°,∠EGF=∠EHG=50°,∴△EFG不全等于△EGH,即丙、丁不全等.综上所述甲、乙全等,丙、丁不全等,B正确,故选:B.【点睛】本题考查的是全等三角形的判定,但考生需要有空间想象能力.判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL.找着∠EGH=70°≠∠EHG=50°,即EH≠EG是正确解决本题的关键.22.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN 上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()A.70°B.65°C.60°D.85°【答案】A【解析】【分析】利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.【详解】如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.故选A.【点睛】本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD=OE=OF.23.在和中,,高,则和的关系是( ) A.相等B.互补C.相等或互补D.以上都不对【答案】C【解析】试题解析:当∠C′为锐角时,如图1所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ADC≌Rt△A′D′C′,∴∠C=∠C′;当∠C为钝角时,如图3所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ACD≌Rt△A′C′D′,∴∠C=∠A′C′D′,∴∠C+∠A′C′B′=180°.故选C.24.如图,在四边形ABCD 中,//AB CD .不能判定ABD CDB ∆≅∆的条件是( )A .AB CD =B .AD BC = C .//AD BC D .A C ∠=∠【答案】B【解析】【分析】根据已知条件,分别添加选项进行排查,即可完成解答;注意BD 是公用边这个条件.【详解】解:A.若添加AB=CD,根据AB ∥CD ,则∠ABD=∠CDB ,依据SAS 可得△ABD ≌△CDB ,故A 选项正确;B.若添加AD=BC,根据AB ∥CD ,则∠ADB=∠CBD ,不能判定△ABD ≌△CDB ,故B 选项错误;C.若添加//AD BC ,则四边形ABCD 是平行四边形,能判定△ABD ≌△CDB ,故C 选项正确;D.若添加∠A=∠C ,根据AB ∥CD ,则∠ABD=∠CDB ,且BD 公用,能判定△ABD ≌△CDB ,故D 选项正确;故选:B.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.25.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP 是等腰直角三角形,故③错误;∵△APE ≌△CPF ,∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =12S △ABC .故④正确, 故选C .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF ,从而得到△APE 和△CPF 全等是解题的关键,也是本题的突破点.26.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠5【答案】A【解析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.27.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化【答案】B【解析】【分析】作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.【详解】如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,∴AB=BE,BF=BO;在△ABO与△BEN中,BAO NBEAOB BNEAB BE∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO≌△BEN(AAS),∴BO=NE,BN=AO;∵BO=BF,∴BF=NE,在△BPF与△NPE中,FBP ENPFPB EPNBF NE∠∠⎧⎪∠∠⎨⎪⎩===∴△BPF≌△NPE(AAS),∴BP=NP=12BN;而BN=AO,∴BP=12AO=12×8=4,故选B.【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.28.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A【解析】试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,{C CBFCD BDEDC BDF∠=∠=∠=∠,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.29.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A .150°B .180°C .210°D .225°【答案】B【解析】【分析】 根据SAS 可证得ABC ≌EDC ,可得出BAC DEC ∠∠=,继而可得出答案,再根据邻补角的定义求解.【详解】由题意得:AB ED =,BC DC =,D B 90∠∠==, ABC ∴≌EDC ,BAC DEC ∠∠∴=,12180∠∠+=.故选B .【点睛】 本题考查全等图形的知识,比较简单,解答本题的关键是判断出ABC ≌EDC ..30.如图,点 D 是等腰直角 △ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且 BB′ 交AD 于 F ,交 AC 于 E ,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C ;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.。
七年级上册青海师范大学附属中学数学期末试卷达标检测(Word版 含解析)

七年级上册青海师范大学附属中学数学期末试卷达标检测(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
如图,将三角板OBD从图(1)绕O点逆时针旋转如图所示,设∠AOD=x∵∠BOD=90°,∠AOC=45°∴∠AOB=90°+x,∠DOC=360°-45°-x=315°-x∵OM、ON分别平分∠BOA、∠DOC,∴∠BOM=∠AOB=,∠DON=∠DOC=∴∠MON=∠BOM+∠DON-∠DOB=+-90°=202.5°-90°=112.5°答:在变化,有时∠MON=112.5°.【解析】【分析】(1)利用角平分线的定义,可得出∠AOM=∠BOA,∠AON=∠AOC,再根据∠MON=∠AOM+∠AON,代入计算可解答。
青海师范大学附属中学数学全等三角形达标检测(Word版 含解析)

青海师范大学附属中学数学全等三角形达标检测(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【解析】【分析】延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.【详解】延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,=∴△BDM ≌△CDE (SAS ),∴MD=ED ,∠MDB=∠EDC ,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN ,在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩==,=∴△MDN ≌△EDN (SAS ),∴MN=EN=CN+CE ,∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.2.已知A 、B 两点的坐标分别为 (0,3),(2,0),以线段AB 为直角边,在第一象限内作等腰直角三角形ABC ,使∠BAC =90°,如果在第二象限内有一点P (a ,12),且△ABP 和△ABC 的面积相等,则a =_____.【答案】-83.【解析】【分析】先根据AB 两点的坐标求出OA 、OB 的值,再由勾股定理求出AB 的长度,根据三角形的面积公式即可得出△ABC 的面积;连接OP ,过点P 作PE ⊥x 轴,由△ABP 的面积与△ABC 的面积相等,可知S △ABP =S △POA +S △AOB ﹣S △BOP =132,故可得出a 的值. 【详解】∵A 、B 两点的坐标分别为 (0,3),(2,0),∴OA =3,OB =2,∴AB∵△ABC 是等腰直角三角形,∠BAC =90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP的面积与△ABC的面积相等,∴111•••222 ABP POA AOB BOPS S S S OA OE OB OA OB PE ++=﹣=﹣,111113332222222a⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a=﹣83.故答案为﹣83.【点睛】本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.3.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J在CAE 和BAD 中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠=在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.4.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.5.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=2DE=2×1=2,∴EF=2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.6.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键8.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=2,∴D′T=42,∴C′D′=34,∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.10.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.二、八年级数学轴对称三角形选择题(难) 11.已知点M(2,2),且OM=22,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .(22,0)B .(0,4)C .(4,0)D .(0,82) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且OM=22,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置,则∠1-∠2的度数是( )A .32°B .64°C .65°D .70°【答案】B【解析】【分析】 此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH-∠DEH=180︒-2∠DEH∠2=180︒-∠D-∠DEH-∠EHF=180︒-∠B-∠DEH-(∠B+∠BEH)=180︒-∠B-∠DEH-(∠B+∠DEH)=180︒-32°-∠DEH-32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH-(180︒-64°-2∠DEH)=180︒-2∠DEH-180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键13.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D.不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高线AH 332S△ABC=12BC•AH=12AB•PD+12BC•PE+12AC•PF,所以1 2×3×AH=12×3×PD+12×3×PE+12×3×PF,即可得PD+PE+PF=AH332P到三角形三边332B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.14.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.15.如图,30MON ∠=︒.点1A ,2A ,3A ,⋯,在射线ON 上,点1B ,2B ,3B ,⋯,在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,⋯均为等边三角形,若11OA =,则201920192020A B A ∆的边长为( )A .20172B .20182C .20192D .20202【答案】B【解析】【分析】 根据等边三角形的性质和30MON ∠=︒,可求得1130∠=︒OB A ,进而证得11OA B ∆是等腰三角形,可求得2OA 的长,同理可得22OA B ∆是等腰三角形,可得222=A B OA ,同理得规律333、、=⋅⋅⋅=n n n A B OA A B OA ,即可求得结果. 【详解】解:∵30MON ∠=︒,112A B A ∆是等边三角形,∴11260∠=︒B A A ,1112A B A A =∴1111230∠=∠-∠=︒OB A B A A MON ,∴11∠=∠OB A MON ,则11OA B ∆是等腰三角形,∴111=A B OA ,∵11OA =,∴11121==A B A A OA =1,21122=+=OA OA A A , 同理可得22OA B ∆是等腰三角形,可得222=A B OA =2,同理得23342==A B 、34482==A B ,根据以上规律可得:2018201920192=A B ,即201920192020A B A ∆的边长为20182,故选:B .【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.16.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD 、DC ,然后证明△EBD ≌△DFC ,从而得到BE=FC ,从而可证明④.【详解】解:如图所示:连接BD 、DC .①∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴ED=DF .∴①正确.②∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°, ∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .∴②正确. ③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.17.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.18.如图所示,等边三角形的边长依次为2,4,6,8,……,其中1(0,1)A ,()21,13A --,()31,13A -,4(0,2)A ,()52,223A --,……,按此规律排下去,则2019A 的坐标为( )A .(673,6736733-B .(673,6736733--C .(0,1009)D .(674,6746743- 【答案】A【解析】 【分析】 根据等边三角形的边长依次为2,4,6,8,……,及点的坐标特征,每三个点一个循环,2019÷3=673,A 2019的坐标在第四象限即可得到结论.【详解】∵2019÷3=673,∴顶点A 2019是第673个等边三角形的第三个顶点,且在第四象限.第673个等边三角形边长为2×673=1346,∴点A 2019的横坐标为 12⨯1346=673.点A 2019的纵坐标为673-13463=673﹣3点A 2019的坐标为:(673,6736733-.故选:A .【点睛】本题考查了点的坐标、等边三角形的性质,是点的变化规律,主要利用了等边三角形的性质,确定出点A 2019所在三角形是解答本题的关键.19.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,180=36°.5∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.20.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.。
青海师范大学附属中学八年级数学上册第三单元《轴对称》测试(包含答案解析)

一、选择题1.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm2.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .113.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA , OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D ,E 可在槽中滑动,若72BDE ︒∠=,则CDE ∠的度数是( )A .84︒B .82︒C .81︒D .78︒4.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒5.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 6.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( )A .80︒B .60︒C .50︒D .20︒7.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( ) A .17B .13或17C .13D .198.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③9.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .8 10.已知点(),3M a ,点()2,N b 关于x 轴对称,则2020()a b +的值( )A .3-B .1-C .1D .311.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个12.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°二、填空题13.如图,点C 在线段AB 上(不与点A ,B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC=EC ,∠ACD =∠BCE =α,连接AE ,BD 交于点P .下列结论:①AE=DB ;②当α=60°时,AD =BE ;③∠APB =2∠ADC ;④连接PC ,则PC 平分∠APB .其中正确的是__________.(把你认为正确结论的序号都填上)14.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.15.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.16.如图在钝角△ABC 中,已知∠BAC=135°,边AB 、AC 的垂直平分线分别交BC 于点D 、E ,连接AD 、AE ,则∠DAE=_____17.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.18.如图,在锐角△ABC 中,AB =62 ,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.19.如图,已知点D 、点E 分别是边长为2a 的等边三角形ABC 的边BC AB 、的中点,连接,AD 点F 为AD 上的一个动点,连接,EF BF 、若,AD b =则BEF 的周长的最小值是__________.20.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________.三、解答题21.如图1,点C 在线段AB 上,∠A =∠B ,AD =BC ,AC =BE . (1)判断△CDE 的形状并说明理由; (2)若∠A=58°,求∠DCE 的度数;(3)根据解决问题(1)(2)的经验,请你继续解答下列问题:如图2,在如图所示的正方形网格中,点P 是BC 边上的一个格点(小正方形的顶点),请你在AB 边上作一点M ,在CD 边上作一点N ,使△MPN 是等腰直角三角形,并说明理由.(不写作法,保留作图痕迹)22.如图,在△ABC 中,AB 边的中垂线PQ 与△ABC 的外角平分线交于点P ,过点P 作PD ⊥BC 于点D ,PE ⊥AC 于点E .(1)求证:BD =AE ;(2)若BC =6,AC =4.求CE 的长度.23.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.24.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ), (3)求出'''A B C ∆的面积25.在平面直角坐标系中,△ABC的位置如图所示,已知点A、B的坐标为(-4,3)(3,0).(1)点C关于x对称的点的坐标(,);(2)在图中作出△ABC关于y轴的对称图形△A′B′C′;(3)△ABC的面积为.26.如图,在8×8的网格中,每个小正方形的边长为1,每个小正方形的顶点称为格点,Rt△ABC的每个顶点都在格点上,利用网格点,只用无刻度的直尺,在给定的网格中按要求画图.(1)画△ABC的角平分线CD交AB于点D;(2)画AB边的垂直平分线l交直线CD于点P.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB 即可. 【详解】 解:∵AB=AC , ∴∠C=∠ABC=15°, ∴∠BAD=30°, ∵BD ⊥AC , ∴∠BDA=90°, ∴AB=2BD ,点B 到边AC 的距离是3cm ,即BD=3cm , ∴AB=2BD=6cm , 故选:D . 【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.2.B解析:B 【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值. 【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线, ∴BP=CP ,∴8PA PB PA PC AC +=+==, ∴PA PB +的最小值为8; 故选:B . 【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.3.A解析:A 【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC ,进一步根据三角形的外角性质可知∠BDE=3∠ODC=72°,即可求出∠ODC 的度数,进而求出∠CDE 的度数. 【详解】 解:∵OC=CD=DE ,∴∠O=∠ODC ,∠DCE=∠DEC , ∴∠DCE=∠O+∠ODC=2∠ODC , ∵∠O+∠OED=3∠ODC=∠BDE=72°, ∴∠ODC=24°,∵∠CDE+∠ODC=180°-∠BDE=108°, ∴∠CDE=108°-∠ODC=84°. 故选:A . 【点睛】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.4.B解析:B 【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案. 【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒, ∴∠B=∠C=50︒, ∵AD AE =, ∴∠AED=∠ADE=70︒, ∵∠AED=∠C+∠CDE , ∴CDE ∠=20︒, 故选:B . 【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.5.D解析:D【分析】先根据等边三角形的性质可得60ABC ACB BAC ∠=∠=∠=︒,从而可得120EBD DCF ∠=∠=︒,再根据等腰三角形的性质、角的和差可得BAD E CDF ∠=∠=∠,然后根据三角形全等的判定定理与性质可得BE CD =,从而可得BED 周长为BE BD DE BC AD ++=+,最后根据点到直线的距离即可得出答案. 【详解】ABC 是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒, 120EBD DCF ∴∠=∠=︒, DF AD =, CAD F ∴∠=∠,又6060BAD CAD BAC CDF F ACB ∠+∠=∠=︒⎧⎨∠+∠=∠=︒⎩,BAD CDF ∴∠=∠, DE AD =, BAD E ∴∠=∠, E CDF ∴∠=∠,在BDE 和CFD △中,EBD DCF E CDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDE CFD AAS ∴≅,BE CD ∴=,则BED 周长为BE BD DE CD BD AD BC AD ++=++=+,在点D 从B 运动到C 的过程中,BC 长不变,AD 长先变小后变大,其中当点D 运动到BC 的中点位置时,AD 最小,∴在点D 从B 运动到C 的过程中,BED 周长的变化规律是先变小后变大, 故选:D .【点睛】本题考查了等腰三角形的性质、等边三角形的性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.6.B解析:B 【分析】分∠A 是顶角和底角两种情况分类讨论求得∠B 的度数,即可得到答案. 【详解】当∠A 是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°, 当∠B 是顶角时,则∠A 是底角, ∴∠B=180°-80°-80°=20°,当∠C 是顶角时,则∠A 和∠B 都是底角, ∴∠B=∠A=80°,综上所述:∠B 的度数为:50°或20°或80°. 观察各选项可知∠B 不可能是60°. 故选B . 【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.7.A解析:A 【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可; 【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩,解得73a b =⎧⎨=⎩,∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系, 此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17. 故答案选A . 【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.8.B解析:B 【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC =∠CAD ,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD ,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可. 【详解】 ∵BE 是中线, ∴AE =CE ,∴△ABE 的面积=△BCE 的面积(等底等高的三角形的面积相等),故①正确; ∵CF 是角平分线, ∴∠ACF =∠BCF ,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.9.C解析:C【分析】根据∠ACB=90°,∠A=30°,CD是斜边AB上的高,利用互余关系求∠BCD=30°,DB=2,可求BC,在Rt△ABC中,再利用含30°的直角三角形的性质求AB,再用线段的差求AD.【详解】解:Rt△ABC中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD是斜边AB上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD=4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C.【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.10.C解析:C【分析】根据关于坐标轴对称的规律,关于谁对称谁不变,另一个坐标变为相反数即可获得a 和b 的值,然后即可得解.【详解】∵点(),3M a ,点()2,N b 关于x 轴对称∴2a =,3b =-∴()()20182018231a b +=-= 故选:C . 【点睛】本题考查了在坐标平面直角坐标系中关于x 轴对称的点的坐标的变化规律,点(),x y 关于x 轴对称的点的坐标为()x y -,,熟记规律即可得到正确答案.11.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.12.A解析:A【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.二、填空题13.①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD 根据全等三角形的解析:①③④【分析】根据SAS 证明△ACE ≌△DCB 可判断①;根据△ACD 和△BCE 是等边三角形,但AC 不一定等于BC 可判断②;由三角形的外角性质可判断③;由△ACE ≌△DCB 可知AE=BD ,根据全等三角形的面积相等,从而证得AE 和BD 边上的高相等,即CH=CG ,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC ,故可判断④.【详解】解:①∵∠ACD=∠BCE ,∴∠ACD+∠DCE=∠DCE+∠BCE ,∴∠ACE=∠DCB ,在△ACE 和△DCB 中CA CD ACE DCB CE CB ⎧⎪∠∠⎨⎪⎩===,∴△ACE ≌△DCB (SAS ),∴AE=DG ,故①正确;②∵AC =DC ,BC=EC ,∠ACD =∠BCE =60°,∴△ACD 和△BCE 是等边三角形,∴AD=AC =DC ,BE=BC=EC ,但AC 不一定等于BC ,故AD 不一定等于BE ,所以②错误;③∵∠APB 是△APD 的外角,∴∠APD=∠ADP+∠DAP由①得△ACE≌△DCB∴∠CAE=∠CDB∵AC=DC∴∠CAD=∠CDA∴∠APD=∠ADC+∠DAC=2∠ADC,故③正确;④如图,分别过点C作CH⊥AE于H,CG⊥BD于G,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC,故④正确;故答案为:①③④.【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定和性质,角的平分线定理及其逆定理,本题的关键是借助三角形的面积相等求得对应高相等.14.16【分析】根据线段的垂直平分线的性质得到EB=EAAF=FC根据三角形的周长公式计算得到答案【详解】解:∵DE是AB边的垂直平分线∴EB=EA∵FG是AC边的垂直平分线∴AF=FC∴△AEF的周长解析:16【分析】根据线段的垂直平分线的性质得到EB=EA、AF=FC,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是AB边的垂直平分线,∴EB=EA,∵FG是AC边的垂直平分线,∴AF=FC,∴△AEF的周长=AF+AE+EF=FC+BE+EF=EC+EF+BE+EF=BC+2EF=10+6=16,故答案为:16.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.②③④【分析】根据题意易证△ABD ≌△ACE 根据三角形全等的性质及余角的性质角的和差关系可进行判断进而得出正确答案【详解】解:∠DAC=∠DAC △ABD ≌△ACEBD=CE ∠ABD=∠ACE④正确;解析:②③④【分析】根据题意易证△ABD ≌△ACE ,根据三角形全等的性质及余角的性质、角的和差关系可进行判断,进而得出正确答案.【详解】 解:90BAC DAE ∠=∠=︒,∠DAC=∠DAC ,∴BAD CAE ∠=∠,AB AC =,AD AE =,∴△ABD ≌△ACE ,∴BD=CE ,∠ABD=∠ACE ,④正确;∵AB AC =,90BAC ∠=︒,∴∠ABC=∠ACB=45°,即∠ABC=∠ABD+∠DBC=45°,∴45ACE DBC ∠+∠=︒,②正确;∵90BAC ∠=︒,∴∠ABC+∠ACB=90°,∴∠DBC+∠DCB=90°,∴BD ⊥CE ,③正确;∴由题意可知ACE DBC ∠=∠不一定成立,综上所述:②③④正确;故答案为:②③④.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的性质,熟练掌握全等三角形的性质与判定及直角三角形的性质是解题的关键.16.90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA 如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF 是AB 的垂直平分线EG 是AC 的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA 、EA ,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF是AB的垂直平分线,EG是AC的垂直平分线,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∴∠DAB +∠EAC =∠B+∠C=45°,∴∠DAE=∠BAC –(∠DAB +∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质.17.9【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P(x-yy)与点Q(-1-5)关于x轴对称得x-y=-1y=5解得x=4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P(x-y,y)与点Q(-1,-5)关于x轴对称,得x-y=-1,y=5.解得x=4,y=5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.18.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=62,∠BAC=45°,∴BH=AH∴222AH BH AB+=∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.19.【分析】过C作CE⊥AB于E交AD于F连接BF则BF+EF最小证△ADB≌△CEB得CE=AD=b即BF+EF=b再根据等边三角形的性质可得BE=a从而可得结论【详解】解:过C作CE⊥AB于E交AD解析:+a b【分析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=b,即BF+EF=b,再根据等边三角形的性质可得BE=a,从而可得结论.【详解】解:过C作CE⊥AB于E,交AD于F,连接BF,∵△ABC是等边三角形,∴BE=12AB a=∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵ADB CEBABD CBE AB CB∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADB≌△CEB(AAS),∴CE=AD=b,即BF+EF=b,∴BEF的周长的最小值为BE+CF=a+b,故答案为:a+b.【点睛】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.20.7【分析】根据关于x轴对称的点横坐标相同纵坐标互为相反数列方程求解即可【详解】解:∵点A(a-13)与点B(2-2b-1)关于x轴对称∴a-1=2-2b-1=-3解得a=3b=1∴=2×3+1=7故解析:7【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程求解即可.【详解】解:∵点A(a-1,3)与点B(2,-2b-1)关于x轴对称,∴a-1=2,-2b-1=-3,解得a=3,b=1,∴2a b+=2×3+1=7.故答案为:7.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题21.(1)等腰三角形,理由见解析;(2)58°;(3)见解析【分析】(1)利用SAS判定△ADC≌△BCE即可判定结论;(2)利用三角形内角和定理,平角的定义,推理得证;(3)构造一对全等的直角三角形,利用上面的结论即可.【详解】(1)∵AD =BC,∠A=∠B,AC=BE,∴△ADC≌△BCE,∴CD=CE,∴△CDE是等腰三角形;(2)∵△ADC≌△BCE,∴∠ADC=∠BCE,∵∠ADC+∠ACD+∠A=180°,∠ADC+∠BCE+∠DCE=180°,∴∠A=∠DCE,∵∠A=58°,∴∠DCE=58°;(3)如图,根据作图,得△PBM≌△NCP,∴PM=PN,∴△PMN是等腰三角形;∵∠B=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形.【点睛】本题考查了三角形的全等,等腰三角形的判定,等腰直角三角形的判定,三角形内角和定理,平角的定义,熟记三角形全等原理,基本作图是解题的关键.22.(1)见解析;(2)CE=1【分析】(1)连接PA、PB,根据角平分线的性质得到PD=PE,根据线段垂直平分线的性质得到PA=PB,证明Rt△AEP≌Rt△BDP,根据全等三角形的性质得到AE=BD;(2)结合图形计算得到答案.【详解】(1)连接PA、PB,∵CP 是∠BCE 的平分线,PD ⊥BC ,PE ⊥AC ,∴PD =PE ,在Rt △CDP 和Rt △CEP 中,PD PE PC PC=⎧⎨=⎩, ∴Rt △CDP ≌Rt △CEP (HL )∴CD =CE ,∵PQ 是线段AB 的垂直平分线,∴PA =PB ,在Rt △AEP 和Rt △BDP 中,PE PD PA PB =⎧⎨=⎩, ∴Rt △AEP ≌Rt △BDP (HL ),∴AE =BD ;(2)AC +CE +CD =BD +CD =BC =6, ∴1(64)12CE CD ==⨯-=. 【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.24.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形 1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)-2,-5;(2)见解析;(3)10【分析】(1)根据轴对称的性质解答;(2)根据轴对称的性质作图;(3)利用割补法求解.【详解】(1)根据坐标系知点C 坐标为(-2,5),∴点C 关于x 对称的点的坐标(-2,-5),故答案为:-2,-5;(2)如图,△A′B′C′即为所求;(3)1117537225510222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:10.【点睛】此题考查关于坐标轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.26.(1)见解析;(2)见解析【分析】(1)取格点T,连接CT交AB于点D,线段CD即为所求.(2)取格点G,R,作直线GR交直线CT于点P,点P即为所求.【详解】解:(1)如图,线段CD即为所求.(2)如图,直线l即为所求.【点睛】本题考查作图的应用与设计,线段的垂直平分线,角平分线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
青海师范大学附属中学小升初数学期末试卷达标检测(Word版 含解析)

青海师范大学附属中学小升初数学期末试卷达标检测(Word版含解析)一、选择题1.10时整,钟面上分针与时针所成的角为()。
A.锐角B.直角C.钝角2.计算下图阴影部分的面积.正确的算式是().A.3.14×6-3.14×4 B.3.14×(3-2)C.3.14×(32-22)3.一个三角形,三个内角度数分别是45°、45°、90°,这个三角形()。
A.没有对称轴B.有一条对称轴C.有两条对称轴D.有三条对称轴4.书店运来故事书和科幻书共750本,故事书是科幻书的1.5倍,如果设科幻书有x本,那么下列方程正确的是()。
A.1.5x-x=720 B.x+x÷1.5=750 C.1.5x+x=7505.下列图形中,从右面看的形状是的有()A.只有①B.②C.①和③6.x、y是两个变化的量,如果x3(0)=≠yy,在下面的表达中错误的是()。
A.x与y成正比例关系B.其图像是条直线C.y=3x D.若x×5,则y×57.下面各题中的两种相关联的量,成反比例关系的是()。
A.圆柱的体积一定,圆柱的底面半径和高B.汽车行驶的速度一定,时间和路程C.平行四边形的面积一定,它的底和高8.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元。
小明在该快递公司寄一件10千克的物品,需要付费()。
A.19元B.21元C.23元D.25元9.如图,将一张长方形纸沿一条对角线对折平放在桌面上,桌面被覆盖的面积是120平方厘米,正好是原长方形面积的60%,原长方形的面积是()平方厘米。
A.72 B.120 C.200 D.240二、填空题10.325小时=(________)分 40.8立方米=(________)升 11.()16=0.375=12∶( )=14×( )=( )%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青海师范大学附属中学数学轴对称填空选择达标检测(Word版含解析)一、八年级数学全等三角形填空题(难)1.如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E ,F,AB=11,AC=5,则BE=______________.【答案】3【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.2.如图,AD⊥BC 于 D,且 DC=AB+BD,若∠BAC=108°,则∠C 的度数是______度.【答案】24【解析】【分析】在DC上取DE=DB.连接AE,在Rt△ABD和Rt△AED中,BD=ED,AD=AD.证明△ABD≌△AED即可求解.【详解】如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,BD EDADB ADEAD AD=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△AED(SAS).∴AB=AE,∠B=∠AED.又∵CD=AB+BD,CD=DE+EC∴EC=AB∴EC=AE,∴∠C=∠CAE∴∠B=∠AED=2∠C又∵∠B+∠C=180°-∠BAC=72°∴∠C=24°,故答案为:24.【点睛】本题考查了全等三角形的判定与性质及三角形内角和定理,属于基础图,关键是巧妙作出辅助线.3.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=254,PD =6.如果点M是OP的中点,则DM的长是_____.【答案】5.【解析】【分析】由角平分线的性质得出∠AOP=∠BOP,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274CE CP PE=-=,由平行线的性质得出∠OPC=∠AOP,得出∠OPC=∠BOP,证出254CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE =+=,再由直角三角形斜边上的中线性质即可得出答案. 【详解】∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴222257446CE CP PE ⎛⎫⎪⎭-⎝=-==, ∵CP ∥OA ,∴∠OPC =∠AOP ,∴∠OPC =∠BOP ,∴254CO CP ==, ∴725448OE CE CO =+=+=, ∴22228610OP OE PE =+=+=,在Rt △OPD 中,点M 是OP 的中点,∴125DM OP ==; 故答案为:5.【点睛】 本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP 是解题的关键.4.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________【答案】33【解析】【分析】过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=12×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,1212DF DFCDF CDFCD CD⎧⎪∠∠⎨⎪⎩===,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×60°=30°,又∵BD=6,∴BE=12×6÷cos30°=3÷32=23,∴BF1=BF2=BF1+F1F2=23+23=43,故BF的长为23或43.故答案为:23或43.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.5.如图,四边形ABCD是正方形,直线l1、l2、l3分别过A、B、C三点,l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形的边长为______.【答案】41【解析】解:过B作直线BF⊥l3于F,交直线l1于点E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=22AE BE=2254=41.故答案为41.点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.6.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。
【详解】在ABM 中,2∠是ABM 的外角∴2M MAB ∠∠∠=+由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒∵BOA 90∠=︒∴OBA OAB 90∠∠+=︒∵MA 平分BAO ∠∴BAO 2MAB ∠∠=由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=∴2290BAO ∠∠=︒+又∵2M MAB ∠∠∠=+∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+∴90BAO 2M BAO ∠∠∠︒+=+2M 90∠=︒M 45∠=︒【点睛】本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。
7.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论2BCD DCE①∠=∠;EF CF=②;3DFE AEF③∠=∠,2BEC CEFS S=④中一定成立的是______ .(把所有正确结论的序号都填在横线上)【答案】②③【解析】分析:由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=12∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系,进而得出答案.详解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,即∠BCD=2∠DCF;故此选项错误;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,A FDMAF DFAFE DFM∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.④∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;综上可知:一定成立的是②③,故答案为②③.点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.8.如图,AB=BC且AB⊥BC,点P为线段BC上一点,PA⊥PD且PA=PD,若∠A=22°,则∠D的度数为_________.【答案】23°【解析】解:过D作DE⊥PC于E.∵PA⊥PD,∴∠APB+∠DPE=90°.∵AB⊥BC,∴∠A+∠APB=90°,∴∠A=∠DPE=22°.在△ABP和△PED中,∵∠A=∠DPE,∠B=∠E=90°,PA=PD,∴△ABP≌△PED,∴AB=PE,BP=DE.∵AB=BC,∴BC=PE,∴BP=CE.∵BP=DE,∴CE=DE,∴∠DCE=45°,∴∠PDC=∠DCE-∠DPC=45°-22°=2 3°.故答案为:23°.9.把两个三角板如图甲放置,其中90ACB DEC ∠=∠=︒,45A ∠=︒,30D ∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.【答案】10【解析】试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°,∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,∴CO=12AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.10.如图,在△ABC 中,∠B =∠C ,BD =CE ,BE =CF .若∠A =40°,则∠DEF 的度数为____.【答案】70°【解析】由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.二、八年级数学全等三角形选择题(难)11.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.A.1 B.2 C.3 D.4【答案】C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵与都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴∴,①正确;∵∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA-∠ADC≠∠CEA-∠AEB∴,③错误∵∴∠DAC+∠BCA=180°∵∠DAB=60°,∴∠BCA=180°-∠DAB-∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴④正确故由①②④三个正确,故选:C【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS,SAS,ASA,AAS,HL,确定条件即可,此题为开放题,只要答案符合判定定理即可. 13.在△ABC中,∠C=90°,D为AB的中点,ED⊥AB,∠DAE=∠CAE,则∠CAB=()A.30°B.60°C.80 °D.50°【答案】B【解析】试题解析:∵D 为AB 的中点,ED ⊥AB ,∴DE 为线段AB 的垂直平分线,∴AE =BE ,∴∠DAE =∠DBE ,∴∠DAE =∠DBE =∠CAE ,在Rt △ABC 中,∵∠CAB +∠DBE =90°,∴∠CAE +∠DAE +∠DBE =90°,∴3∠DBE =90°,∴∠DBE =30°,∴∠CAB =90°-∠DBE =90°-30°=60°.故选B .14.如图,将一个等腰Rt △ABC 对折,使∠A 与∠B 重合,展开后得折痕CD ,再将∠A 折叠,使C 落在AB 上的点F 处,展开后,折痕AE 交CD 于点P ,连接PF 、EF ,下列结论:①tan ∠CAE=2﹣1;②图中共有4对全等三角形;③若将△PEF 沿PF 翻折,则点E 一定落在AB 上;④PC=EC ;⑤S 四边形DFEP =S △APF .正确的个数是( )A .1个B .2个C .3个D .4个【答案】D【解析】【详解】 ①正确.作EM ∥AB 交AC 于M .∵CA=CB ,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=12∠CAB=22.5°, ∴∠MEA=∠EAB=22.5°, ∴∠CME=45°=∠CEM ,设CM=CE=a ,则2,∴tan ∠CAE=212CE AC a a==+,故①正确, ②正确.△CDA ≌△CDB ,△AEC ≌△AEF ,△APC ≌△APF ,△PEC ≌△PEF ,故②正确, ③正确.∵△PEC ≌△PEF ,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP,∴CP=CE,故④正确,⑤错误.∵△APC≌△APF,∴S△APC=S△APF,假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,∴S△ACD=S△AEF,∵S△ACD=12S△ABC,S△AEF=S△AEC≠12S△ABC,∴矛盾,假设不成立.故⑤错误..故选D.15.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC 与△AEF 中,0=90AB AE ABC AEF BC EF ⎧⎪∠∠⎨⎪⎩=== , ∴△ABC ≌△AEF (SAS ),∴AC=AF ,∵AB=CD=AE=BC+DE ,∠ABC=∠AED=90°,∴CD=EF+DE=DF ,在△ACD 与△AFD 中,AC AF CD DF AD AD ⎧⎪⎨⎪⎩=== , ∴△ACD ≌△AFD (SSS ),∴五边形ABCDE 的面积是:S=2S △ADF =2×12•DF•AE=2×12×2×2=4. 故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE 的面积转化为两个△ADF 的面积是解决问题的关键.16.如图,,,,点D 、E 为BC 边上的两点,且,连接EF 、BF 则下列结论:≌;≌;;,其中正确的有( )个.A .1B .2C .3D .4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.17.如图,在等腰直角△ABC中,∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的倍;③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.A.1 B.2 C.3 D.4【答案】C【解析】【分析】结论(1)正确.因为图中全等的三角形有3对;结论(2)错误.由全等三角形的性质可以判断;结论(3)正确.利用全等三角形和等腰直角三角形的性质可以判断.结论(4)正确.利用相似三角形、全等三角形、等腰直角三角形和勾股定理进行判断.【详解】结论(1)正确,理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,∴△AOD≌△COE(ASA),同理可证:△COD≌△BOE.结论(2)错误.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC即△ABC的面积等于四边形CDOE的面积的2倍.结论(3)正确,理由如下:∵△AOD≌△COE,∴CE=AD,∴CD+CE=CD+AD=AC=OA,∴(CD+CE)2=CD2+CE2+2CD•CE=DE2+2CD•CE=2OA2;结论(4)正确,理由如下:∵△AOD≌△COE,∴AD=CE;∵△COD≌△BOE,∴BE=CD.在Rt△CDE中,由勾股定理得:CD2+CE2=DE2,∴AD2+BE2=DE2.∵△AOD≌△COE,∴OD=OE,又∵OD⊥OE,∴△DOE为等腰直角三角形,∴DE2=2OE2,∠DEO=45°.∵∠DEO=∠OCE=45°,∠COE=∠COE,∴△OEP∽△OCE,∴,即OP•OC=OE2.∴DE2=2OE2=2OP•OC,∴AD2+BE2=2OP•OC.综上所述,正确的结论有3个,故选C.【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.=,D、E是斜边BC上两点,且∠DAE=45°,将18.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.19.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR ⊥AB ,PS ⊥AC ,∴点P 在∠BAC 的角平分线上,∴PA 平分∠BAC ,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.20.如图,AC ⊥BE 于点C ,DF ⊥BE 于点F ,且BC =EF ,如果添上一个条件后,可以直接利用“HL ”来证明△ABC ≌△DEF ,则这个条件应该是( )A .AC =DEB .AB =DEC .∠B =∠ED .∠D =∠A【答案】B【解析】在Rt △ABC 与Rt △DEF 中,直角边BC =EF ,要利用“HL”判定全等,只需添加条件斜边AB=DE.故选:B.21.如图,已知在正方形ABCD 中,点E F 、分别在BC CD 、上,△AEF 是等边三角形,连接AC 交EF 于G ,给出下列结论:①BE DF =; ② 15DAF ∠=;③AC 垂直平分EF ; ④BE DF EF +=.其中结论正确的共有( ).A .1个B .2个C .3个D .4个【答案】C【解析】试题分析:四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x.(故④错误).∴综上所述,正确的有3个.考点:正方形的性质;全等三角形的判定与性质;线段垂直平分线的性质;等边三角形的性质.22.如图,点P是AB上任意一点,∠ABC=∠ABD,还应补充一个条件,才能推出△APC≌△APD.从下列条件中补充一个条件,不一定能推出△APC≌△APD的是( )A.BC=BD;B.AC=AD;C.∠ACB=∠ADB;D.∠CAB=∠DAB【答案】B【解析】根据题意,∠ABC=∠ABD,AB是公共边,结合选项,逐个验证得出:A、补充BC=BD,先证出△BPC≌△BPD,后能推出△APC≌△APD,故正确;B、补充AC=AD,不能推出△APC≌△APD,故错误;C、补充∠ACB=∠ADB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确;D、补充∠CAB=∠DAB,先证出△ABC≌△ABD,后能推出△APC≌△APD,故正确.故选B.点睛:本题考查了三角形全等判定,三角形全等的判定定理:有AAS,SSS,ASA,SAS.注意SSA是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.23.如图,在△ABC中,∠ABC=45°, BC=4,以AC为直角边,点A为直角顶点向△ABC 的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为( ) .A.8 B.10 C.2D.2【答案】A【解析】【分析】将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质得到AE=AB,∠BAE=∠DOC=90°,过D点作DF⊥BC,证△EBC≌BFD,可得DF=BC=4,再用三角形面积公式即可得出答案.【详解】解:如下图所示,将△ABD绕着点A顺时针旋转90°得到△AEC,BD与EC交于点O,连接BE,根据旋转的性质可知EC=BD,AE=AB,∠BAE=∠DOC=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,又∵∠ABC=45°,∴∠EBC=90°,∵∠BDF+∠DBF=90°,∠ECB+∠DBF=90°,∴∠BDF=∠ECB在△EBC和△BFD中EBC=BFD=90ECB=BDFEC=BD⎧∠∠⎪∠∠⎨⎪⎩∴△EBC≌△BFD(AAS)∴DF=BC=4∴△DBC的面积=11BC DF=44=822⋅⨯⨯故选A.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定,是一道综合性较强的题,难度较大,关键是正确的作出辅助线构造全等三角形.24.下列命题中的假命题是()A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等C .等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等D .直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等【答案】D【解析】【分析】根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.【详解】解:A 、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;B 、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;C 、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;D 、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,故答案为D .【点睛】本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.25.如图,已知∠DCE=90°,∠DAC=90°,BE ⊥AC 于B ,且DC=EC .若BE=7,AB=3,则AD 的长为( )A .3B .5C .4D .不确定【答案】C【解析】 根据同角的余角相等求出∠ACD=∠E ,再利用“角角边”证明△ACD ≌△BCE ,根据全等三角形对应边相等可得AD=BC ,AC=BE=7,然后求解BC=AC-AB=7-3=4.故选:C .点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.26.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠5【答案】A【解析】【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD ⊥1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG ∴∠=∠在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA ∴∆≅∆,1BD CG G ∴=∠=∠点D 是BC 的中点CD BD CG ∴==在CDF ∆和CGF ∆中,45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G ∴∠=∠13∠∠∴=故选:A .【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.27.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.28.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.A .1B .1或3C .1或7D .3或7 【答案】C【解析】【分析】 分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP=16-2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故选C .【点睛】本题考查全等三角形的判定,判定方法有:ASA ,SAS ,AAS ,SSS ,HL .29.如图所示,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A 、B .下列结论中不一定成立的是( ).A .PA PB =B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP【答案】D【解析】【分析】 根据角平分线上的点到角的两边距离相等可得出PA=PB ,再利用“HL ”证明△AOP 和△BOP 全等,可得出APO BPO ∠=∠,OA=OB ,即可得出答案.【详解】解:∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥∴PA PB =,选项A 正确;在△AOP 和△BOP 中,PO PO PA PB =⎧⎨=⎩, ∴AOP BOP ≅∴APO BPO ∠=∠,OA=OB ,选项B ,C 正确;由等腰三角形三线合一的性质,OP 垂直平分AB ,AB 不一定垂直平分OP ,选项D 错误. 故选:D .【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.30.在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,如图,那么下列各条件中,不能使Rt △AB C ≌Rt △A′B′C′的是( )A .AB =A′B′=5,BC =B′C′=3B .AB =B′C′=5,∠A =∠B′=40°C .AC =A′C′=5,BC =B′C′=3D .AC =A′C′=5,∠A =∠A′=40°【答案】B【解析】∵在Rt △ABC 和Rt △A′B′C ′中,∠C=∠C′=90°A选项:AB=A′B′=5,BC=B′C′=3,符合直角三角形全等的判定条件HL,∴A选项能使Rt△ABC≌Rt△A′B′C′;B选项:AB=B′C′=5,∠A=∠B′=40°,不符合符合直角三角形全等的判定条件,∴B选项不能使Rt△ABC≌Rt△A′B′C′;C选项符合Rt△ABC和Rt△A′B′C全等的判定条件SAS;∴C选项能使Rt△ABC≌Rt△A′B′C′;D选项符合Rt△ABC和Rt△A′B′C全等的判定条件ASA,∴D选项能使Rt△ABC≌Rt△A′B′C′;故选:B.点睛:此题主要考查学生对直角三角全等的判定的理解和掌握,解答此题不仅仅是掌握直角三角形全等的判定,还要熟练掌握其它判定三角形全等的方法,才能尽快选出此题的正确答案.。